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Misclassified multinomial data: a Bayesian approach

C. J. Pérez, F. J. Gir ón, J. Martı́n, M. Ruiz, and C. Rojano

Abstract. In this paper, the problem of inference with misclassified multinomial data is addressed. Over
the last years there has been a significant upsurge of interest in the development of Bayesian methods to
make inferences with misclassified data. The wide range of applications for several sampling schemes
and the importance of including initial information make Bayesian analysis an essential tool to be used in
this context. A review of the existing literature followed by a methodological discussion is presented in
this paper.

Datos Multinomiales Imperfectos: Un Enfoque Bayesiano

Resumen. En este artı́culo se trata el problema de la inferencia con datos multinomiales imperfectos.
Durante los últimos años ha habido un resurgimiento del interés en el desarrollo de métodos bayesianos
para hacer inferencias con datos imperfectos. El análisisBayesiano se ha convertido en una herramienta
fundamental en este contexto debido al gran número de aplicaciones existentes para diversos tipos de
muestreo y a la importancia de incorporar información a priori. Se presenta una revisión de la literatura
existente seguida de una discusión metodológica con ejemplos.

1. Introduction

Classification is a task performed quite naturally by human beings. Many activities have classification at
their foundation. It is possible to classify the individuals of a population in multiple ways. Examples include
classifying subjects by sex (male/female), smoking status(smoker/non-smoker), health status (ill/sane),
and so on. These examples are based on dichotomous data. Multiple classifications are also possible,
e.g. individuals may be classified in the following groups: (A) single, (B) married, (C) divorced, and (D)
widowed. Classifications may also be carried out by two or more criteria.

When information is collected in the real world, the data do not often reflect the true status of the
elements in the sample, i.e. the data-generating process isoften noisy. This fact can happen due to seve-
ral causes. In consumer surveys, consumers may not remembertheir previous behaviors accurately, may
misunderstand survey questions or may intentionally misreport. In medical diagnosis, test failures and
miscoded information are causes of distortion. In electionsurveys, voters are often reluctant to provide
their true opinions. These and other situations occur in many other applications. The main consequence
is that such distortions or noises can have an important effect on inferences because the effective amount
of information obtained from the sample is considerably reduced. If the noise in a data-generating process
is not appropriately modeled, the information may be perceived as being more accurate than it actually is,
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leading in many cases to a non-optimal decision making. The underlying statistical problem is known as
inference with misclassified data.

The effects of ignoring misclassification were first noted byBross [5], who showed that classical esti-
mators base sampling on a dichotomous process under the assumption of known noise parameters. These
parameters are needed to correct the bias resulting from estimation based on the observed proportion. One
way of assessing the extent of the misclassification with a particular method of observation is to compare it
to a definitive method (also called gold standard or infallible) which is error free. A portion of the sample
is processed by an infallible classifier, and then it is cross-classified by both fallible and infallible clas-
sifiers. This fact allows to estimate false positive and false negative rates. This technique is known as
double sampling. A maximum likelihood approach to double sampling was presented by Tenenbein [29]
and Tenenbein [30] and generalized by Hochberg [16], Chen [6], and Ekholm and Palmgren [7] among
others. However, double sampling is not the panacea becausegold standard methods are often not available
for many applications, can be prohibitively expensive or can be misdefined.

Many investigators (as the previous ones) have considered misclassified data from the frequentist view-
point (see Chen [6] and Walter and Irwing [32] for two particular reviews). However, over the last years
there has been a significant upsurge of interest in the development of Bayesian methods to make inferences
on misclassified data. The reason is that Bayesian methodology provides a complete paradigm for statistical
inference under uncertainty that allows to combine information derived from observations with information
elicited from experts (a summary of some Bayesian activity is presented by Berger [3]). The incorporation
of relevant initial information through the prior distribution is determinant for this kind of problems. Also,
the advent of Markov Chain Monte Carlo (MCMC) methods has been decisive in the growing of Bayesian
literature in general, and, in the increase of Bayesian literature for misclassified data in particular. The im-
plementation of these simulation-based techniques allowsto obtain numerical solutions for problems based
on truly complex models (see Brooks [4] for a review and Gilkset al. [14] for a monograph). In this paper,
inference with misclassified multinomial data is addressedfrom a Bayesian viewpoint.

The rest of the article is organized as follows. Section 2 presents a brief review of Bayesian inference
for misclassified binary data. Section 3 discusses the multinomial case, including an illustrative example.
Finally, the conclusion is presented in Section 4.

2. Binomial data

Inference with misclassified data has been widely studied for data obtained from a dichotomous process.
This kind of process is usually modeled by using Bernoulli distributions. The usual presence of noise com-
plicates the process of making inferences on the proportionof individuals presenting a certain characteristic.

The problem of inference with misclassified binary data has been addressed from a frequentist view-
point. Several techniques have been developed. All of them provide joint information about the parameter
of interest and the noise parameters, but not for each group of parameters separately. By performing a
likelihood analysis, Winkler and Gaba [34] found a nonidentifiability problem in a binomial model with
an unknown noise parameter. This problem can be overcome by using a Bayesian approach. Furthermore,
Bayesian inference can provide separate information for each group of parameters (proportion and noises)
through their respective posterior distributions. Although the posterior distribution may be difficult (or
impossible) to calculate directly, the aforementioned MCMC methods may be used. Sometimes, it is nec-
essary to introduce auxiliary or latent random variables tomake the generating process easier. Note that no
closed-form expressions are obtained for these proceduresbecause they are iterative, but the quantities of
interest can be easily estimated. Another advantage of the Bayesian approach is that initial information can
be used. Any information about the parameter of interest or the noise parameters can be included into the
model through the prior distribution. For these reasons, Bayesian modeling allows a flexible handling of
misclassified binary data.

The following literature review does not pretend to be exhaustive; however, it reflects the very important
advances in the Bayesian treatment of binomial misclassified data under several sampling schemes. In 1976,
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Lindley and Phillips [21] presented an explanatory articleon Bernoulli processes without misclassification
from a Bayesian perspective. This paper shows the foundations of the Bayesian approach and its advantage
over the frequentist approach in this simple problem. The consequence of ignoring misclassification in
this model was noted by Winkler [33]. He indicated that the noise should be adequately modeled to avoid
information loss. The effect of noise is generally to shift the posterior distribution toward the prior and
to increase its dispersion. A Bayesian model with a single unknown noise parameter was presented by
Winkler and Gaba [34]. They noticed a nonidentifiability problem by performing a likelihood analysis.
This problem was avoided by using a Bayesian model with a joint prior distribution for the parameter of
interest and the noise parameter. An extension to two unknown noise parameters was presented by Johnson
and Gastwirth [17]. They described a large sample-based Bayesian model in the context of screening data
for rare diseases. Later, Gaba and Winkler [11] presented a general Bayesian model with two unknown
noise parameters. Both Johnson and Gastwirth [17] and Gaba and Winkler [11] considered that the noise
parameters are independent of the proportion in the prior distribution1. The extension to the dependent case
was presented by Gaba [10], who described a Bayesian model formalizing a prior dependence between
the proportion and the noise parameter. A Bayesian approachto double sampling incorporating covariates
was presented by York et al. [35]. They used MCMC methods to approximate the posterior distribution.
Evans et al. [8] extended the analysis from Gaba and Winkler [11] to the multiple measurement case and to
the comparison of two proportions for independent populations. Through some particular examples, they
showed that the Gauss-Jacobi quadrature requires less computation to reach the same level of accuracy as the
Gibbs sampling. The Bayesian sample size determination wasinvestigated by Rahme et al. [24], whereas
Kuo and Yang [18] described a Bayesian nonparametric approach using mixtures of Dirichlet processes to
model the misclassified binary data. Ruiz et al. [26] developed a Bayesian model to make inferences on the
parameters and on the true status for a particular individual. They introduce auxiliary variables to obtain
an easy-to-implement Gibbs sampling-based algorithm. Paulino et al. [23] and Achcar et al. [1] studied
misclassified binary data in the presence of covariates by assuming a logistic regression model. Finally, it
is remarkable the work of Paulino et al. [22] that presented arandom effect binary logistic regresion model.

Although the range of applications for binomial sampling with misclassified data is very wide, most
authors have focused on medical applications. The special importance of decisions in the medical context
has made this kind of analysis necessary. Examples in medical settings can be found in some of the previous
references ( [1,8,17,18,22,23]). A particular example of diagnostic test presented in Ruiz et al. [26] is used
to illustrate the Bayesian analysis of misclassified binarydata.

Example 1 (Diagnostic test) The confirmation of many chronic diseases is a complex and expensive
task. It is often necessary to propose screening tests that can be rapidly and economically applied to many
people. However, these tests are not error-free. Table1 shows the general representation of a diagnostic
test.

Disease (Reality)
+ − Total

Test + True+ (a) False+ (b) a + b

(Classification) − False− (c) True− (d) c + d

Total a + c b + d n

Table 1: General representation of a diagnostic test.

For every diagnostic test there are two critical values thatdetermine its accuracy: sensitivity and speci-
ficity. Sensitivity is the probability that a test turns out to be positive, given that the person has the disease,
while specificity is the probability that a test turns out to be negative, given that the person does not have

1Some remarks on independence applicable to these kinds of models can be found in Girón et al. [15].
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the disease. A valid test should have both a high sensitivityand specificity. Positive and negative predictive
values are also very important in this context. For more information about diagnostic tests, see Altman[2].

As an example, assume that in a study about AIDS a random sample of192,415 individuals is selected
from a particular population and that20 individuals are classified as disease-affected by screening their
blood samples. Assume that a process with misclassified datais modeled for this application as in Ruiz et
al. [26]. Letθ be the prevalence of the disease, and letλ1 andλ0 be the noise parameters (sensitivity and
false positive coefficient, respectively). So, the likelihood is:

L(θ, λ1, λ0) ∝ (θλ1 + (1 − θ)λ0)
20(θ(1 − λ1) + (1 − θ)(1 − λ0))

192395.

The prior densities proposed by Johnson and Gastwirth[17] are θ ∼ Be(15, 94092), λ1 ∼ Be(142, 1)
andλ0 ∼ Be(3, 1363). In this case, the prior distributions are conjugate for each parameter. This fact
allows for an easy implementation of the posterior generation process. The model is also applicable with
non-conjugate distributions.

After the chain has been considered to have converged, a sample of size100000 is generated from the
posterior distributions ofθ, λ1, andλ0. Histograms for the posterior distributions ofθ, λ0, andλ1 are
represented in Figure1. A simple look at the figures shows the main characteristics of the prior and the
posterior distributions for the proportion and the noise parameters. Note that the prior distribution forλ0 is
substantially transformed by the data into the posterior distribution. Bayesian analysis provides inference
not only on the proportion of AIDS but also on the sensitivityλ1 and specificity1 − λ0.

In many applications, data are classified in more than two categories. Then, a generalization of the
problem considering multinomial data is useful in practice. Next section addresses the problem of inference
with misclassified multinomial data.

3. Multinomial data

Many fewer developments have been realized for the multinomial sampling case. Here, the main interest
is focused on making inferences on the proportions for them mutually exclusive categories the individuals
are classified in. Inferences on the noise parameters are also interesting. The advantages of the Bayesian
modeling pointed out formerly still hold for this more general case.

Firstly, the case where the individuals are classified by only one criterion is considered. Then, only one
classification variable is involved. Ruiz et al. [25] developed a Bayesian model for multinomial sampling
with misclassified data that is a generalization of the modeldescribed in Ruiz et al. [26]. A brief description
of the model is exposed in order to show its advantages through an illustrative example.

A populationP is divided intom disjoint categories denoted byA1, A2, . . . , Am. On represents an
observed sample of sizen, and the individuals fromOn can be misclassified. The main interest is focused
on making inferences on the proportionsθ1, θ2, . . . ,θm of individuals belonging to the classesA1, A2, . . . ,
Am. The noise parameters are characterized by the transition matrix:

Λ =











λ11 λ12 · · · λ1m

λ21 λ22 · · · λ2m

...
...

. . .
...

λm1 λm2 · · · λmm











,

whereλij denotes the probability that an individual fromAi is classified inAj . Then,θ = (θ1, θ2, . . . , θm)′

denotes the vector of proportions andλi = (λi1, λi2, . . . , λim)′ denotes the transition vector for the class
Ai (i = 1, 2, . . . ,m).

A particular notation is introduced into the model to differentiate between the observed and the true
number of individuals in each class.X (Y ) is defined as a random vector representing the number of
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Figure 1: Prior distributions (solid line) and estimated posteriordistributions (histogram) forθ, λ1, andλ0.

individuals that belong to (that are classified in) each category. The objective is to make inferences onX,
θ, andλi, i = 1, 2,. . . ,m by using the information given by the observed data and the prior knowledge.

Some hypothesis about conditional independence and the distribution of some random vectors involved
in the model are assumed. Then, the likelihood is:

f(y|θ,Λ) =
n!

y1! · · · ym!

m
∏

j=1

(

m
∑

i=1

θiλij

)yj

.

Due to the difficulty to deal with the likelihood (and hence with the posterior distribution), auxiliary or latent
random vectors are introduced. This fact allows to develop an easy-to-implement Gibbs sampling-based
algorithm in order to generate samples from distributions of interest. Then, inferences on the proportion
and noise parameters can be carried out. Monte Carlo standard error estimates can also be obtained.

The initial information about the parameters is included into the model through the prior distribution.
The prior densities forθ andλi depend on the hyperparametersρ andπi, i = 1, 2, . . . , m, respectively.
For each set of hyperparametersπ = {ρ, π1, π2, . . . , πm}, the joint prior distribution is assumed to be:

f(θ, λ1, λ2, . . . , λm|π) = f(θ|ρ)

m
∏

i=1

f(λi|πi).
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When conjugate prior distributions are used, the generating process is even easier.
This model can be applied to a wide range of applications. An illustrative example related to elections

is presented in Ruiz et al. [25] and discussed here.

Example 2 Opinion surveys typically provide misclassified information. Voters reluctance to provide their
true opinions and possible opinion changes are the two main reasons why observed data do not reflect the
true vote intention.

The information obtained by a survey related to the2003 local election, which took place in Ḿalaga
(Spain), is analyzed. Note that the political situation wastense when the survey was made because of some
events affecting the national government (PP party) like Iraq war or the Prestige case (sinking of an oil ship
in northwest Spain). However, the economical situation of the country was relatively satisfactory. These
facts influenced the vote changes for the local election.

The survey was conducted on a sample of420 individuals, and the results were:186 for PP (A1), 152
for PSOE (A2), 49 for IU (A3), 20 for PA (A4), and13 for the remaining minority parties (A5). Then,
the observed vector isy = (186, 152, 49, 20, 13)′. The vectorX representing the true number of votes for
each party is assumed to follow a multinomial law with parameter θ = (θ1, θ2, θ3, θ4, θ5)

′ and its assigned
prior density is a Dirichlet with hyperparameter vectorρ = (4, 3, 1, 0.5, 0.3). In our opinion this density
reflects reasonably well the prior information on the political evolution of this city and the country from the
last local elections. Also, this prior knowledge is adequately reflected on the transition vectors, whose prior
densities are Dirichlet laws characterized by the sets of hyperparameters given in the rows of the following
matrix:

A =













6 0.5 0.02 0.3 0.05
0.1 5 0.4 0.1 0.05
0.01 0.1 6 0.05 0.1
0.1 0.5 0.05 5 0.1
0.05 0.3 0.3 0.3 5













A sample of size5000 was generated after the chain was considered to have converged. Figure2 repre-
sents the scatter-plot and the histograms for the generatedproportions of the two main parties, whereas the
estimations for parameterθ by using this model and a noise-free one are represented in Table 2. The true
proportions (obtained after the election results were known) for each party are also represented.
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Figure 2: Scatter-plot and histograms for the generated vote proportions ofA1 andA2.
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θ1 θ2 θ3 θ4 θ5

True proportion 0.499 0.347 0.085 0.042 0.027
Noise model 0.491 0.356 0.094 0.033 0.026
Noise-free model 0.443 0.361 0.117 0.048 0.031

Table 2: Comparison of estimates by using the proposed noise model and a noise-free one.

Finally, Figure3 represents the generatedλij for the two main parties. Note that Figure3 (b)shows a
high proportion of hidden vote in favor ofA1, while Figure3 (c)shows the opposite behavior forA2. This
is in agreement with what happened when the voting results were obtained.
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Figure 3: Generated data for (a)λ11 (b) λ12 (c) λ21 and (d)λ22.

This model could be linked to a generalized linear model to allow for the introduction of covariates.
The presence of covariates in a Bayesian approach to model misclassified data would be very interesting.
For example, in the election context, a covariate could be the real vote of the surveyed individual in the
last elections. Furthermore, it could be considered that the covariate has been measured with error. Age or
social status could be two more covariates susceptible to beincluded in the model.

Two more references on Bayesian models for the treatment of misclassified multinomial data are Via-
na [31] and Swartz et al. [27]. Viana [31] applied Bayesian computations based on the matrix of misclas-
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sification probabilities to small-sample multinomial data. Swartz et al. [27] extended the work of Evans et
al. [8]. They also discussed on the nonidentifiability problem and made emphasis on practical concerns for
Bayesian analysis involving nonidentifiability.

Sometimes, the population is divided into some subpopulations and the interest is focused on estimating
the proportion and the noise parameters separately for eachsubpopulation. The model to be used in this
context could be an extension of the hierarchical model described by Gelman et al. [12] for only one
proportion and, also, an extension of the model given in Ruizet al. [25].

This model could be used to analyze misclassified data obtained from a random sample of sizenl for
each subpopulationPl, l = 1, 2, . . . ,L of a populationP . Now,θl = (θl1, θl2, . . . , θlm)′ andΛl denote the
proportion vector and the transition matrix for the subpopulation l, respectively.

Two situations can be considered. First, the case where the transition matrix is shared by all the sub-
populations, that is,Λl = Λ for l = 1, 2, . . . ,L. For many problems, it is common that the data are affected
by misclassification in a similar way for different subpopulations. For example, in an election context, the
same transition matrix could be used by two or more provincesinto one region. The model applicable in
this context is a direct extension of the one given in Ruiz et al. [25]. This new model maintains the same
good properties described for the one population case. The second case eliminates the hypothesis of a
global transition matrix, which may be restrictive in some situations. Furthermore, the transition matrices
could be dependent on the corresponding proportion vector.The resulting hierarchical model should be
easy to generate from, mainly by MCMC methods. This is the following step in the Bayesian treatment of
multinomial data in several subpopulations. This model canbe used when the classification errors in the
subpopulations are heterogeneous.

Finally, when more than one criterion is considered to classify the individuals, contingency tables can
be used. In this case, the relation among the two or more classification variables can be investigated rather
than only focusing on the estimation of the proportions. Fleiss et al. [9] studied how misclassification of one
variable affects measures of association. They also considered the case where both variables are observed
with error.

Geng and Asano [13] considered Bayesian estimation methodsfor categorical data occurring in the form
of a contingency table. They used a double sampling scheme representing observations in a contingency
table categorized by error-free and error-prone categorical variables. The posterior means of probabili-
ties in cells are used as estimators. When the posterior means are difficult to obtain directly, they use
the expectation-maximization (EM) algorithm. Kuroda and Geng [19] noted that the EM algorithm can
not evaluate posterior distribution on the model parameters for contingency tables in a non-double scheme
sampling. They proposed a Bayesian approach that uses the data augmentation algorithm of Tanner and
Wong [28] to estimate cell proportions by using posterior means. This approach overcomes the unin-
dentifiability of the model parameters. Later, Kuroda and Nakagawa [20] proposed a more efficient data
augmentation algorithm for graphical models from the computation time viewpoint.

4. Conclusion

Multinomial data subject to misclassification can be well handled by Bayesian methods. When available,
the inclusion of initial relevant information into the model is very useful to model adequately the process
for both proportion and noise parameters. Computational difficulties can be avoided by using simulation-
based methods as MCMC. The increasing number of papers addressing applications on this topic shows its
importance.
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