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Reflexivity of spaces of weakly summable sequences

L. Oubbi and M. A. Ould Sidaty

Abstract. We deal with the space of Λ-summable sequences from a locally convex space E, where Λ
is a metrizable perfect sequence space. We give a characterization of the reflexivity of Λ(E) in terms of
that of Λ and E and the AK property. In particular, we prove that if Λ is an echelon sequence space and
E is a Fréchet space then Λ(E) is reflexive if and only if Λ and E are reflexive.

Reflexividad de espacios de sucesiones débilmente sumables

Resumen. Consideramos el espacio de las sucesiones Λ-sumables en un espacio localmente convexo
E, donde Λ es un espacio de sucesiones perfecto y metrizable. Damos una caracterización de la reflexi-
vidad de Λ(E) en términos de la de Λ y E y de la propiedad AK. En particular, demostramos que si Λ
es un espacio escalonado y E es un espacio de Fréchet entonces Λ(E) es reflexivo si y solo si Λ y E son
reflexivos.

1 Introduction
The spaces `p[E] and `p{E} respectively of weakly `p-summable and absolutely `p-summable sequences
in a locally convex space E were first introduced by A. Pietsch [11] in connection with the nuclearity of E.
This allowed him also to introduce and study the absolutely p-summing operators. Later, in the case when
E is a normed space, J. S. Cohen [2] introduced the space `p〈E〉 of strongly p-summable sequences. He
used this space together with the spaces `p[E] and `p{E} to define the strongly and the nuclear p-summing
operators. The definition of `p〈E〉 was generalized to an arbitrary locally convex space E by H. Apiola [1]
in order to get new conditions for the nuclearity of E. H. Apiola studied the duality relations between the
three spaces, namely `p[E], `p{E} and `p〈E〉. In [11], A. Pietsch introduced and studied also the space
Λ(E) of Λ-summable sequences in E, Λ being a perfect sequence space in the sense of Köthe endowed
with its normal topology. M. Florencio and P. J. Paúl [4] considered the general case where Λ is no longer
equipped with the normal topology, but with a general polar one. They obtained results on Λ(E) such as
the characterization of the AK property and then the relationship with the completion Λ⊗̃εE of the injective
tensor product Λ⊗ε E. In [9], the authors gave a definition of strongly Λ-summable sequences. They then
reconsidered the space Λ(E) and obtained some of its properties. They mainly described the continuous
dual space of Λ(E) in terms of strongly Λ∗-summable sequences in E′, Λ∗ being the α-dual of Λ and
E′ the dual of E. In this note, we are concerned with the reflexivity of the locally convex space Λ(E).
After a section giving preliminary results and definitions, we exhibit, in section 3, a fundamental family of
bounded sets in Λ(E). This allows us to characterize its strong dual space Λ(E)′β . In section 4, we endow
the space Λ〈E〉 of all strongly Λ-summable sequences in E with a natural topology in the spirit of [1] for

Presentado por José Bonet.
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`p〈E〉. We then describe the continuous dual of Λ〈E〉 in terms of weakly Λ∗-summable sequences of E′.
The section 5 is devoted to the reflexivity of Λ(E). We show that if Λ and E are Fréchet spaces, then
Λ(E)′r = Λ∗〈E′

β〉, where Λ(E)r is the subspace of Λ(E) consisting of the sequences which are the limit
of their finite sections. The equality above turns out to be topological if E happens to be semi-reflexive.
We then get that, for Fréchet spaces Λ and E, Λ(E) is reflexive if and only if E and Λ are reflexive and the
spaces Λ(E) and Λ∗〈E′

β〉 are AK. As a consequence, whenever Λ is an echelon space, Λ(E) is reflexive if
and only if E and Λ are. Using a result of [4], this gives that, in this case, Λ⊗̃εE is reflexive if and only if
Λ and E are.

2 Preliminaries

Throughout this paper, Λ will be a perfect sequence space and E a sequentially complete Hausdorff locally
convex space. The Köthe dual space of Λ will be denoted by Λ∗ while E′ will stand for the topological
dual of E. The collection of all absolutely convex, σ(E′, E)-closed and equicontinuous subsets of E′ will
be denoted by M, while S will denotes a collection of closed, absolutely convex, normal and σ(Λ∗,Λ)-
bounded subsets of Λ∗ such that Λ∗ is the union of the members of S and the latter is stable by homothety.
We will then consider on Λ the polar topology τS associated with the collection S. This topology is
generated by the seminorms

PS(α) := sup

{∑
n

|αnβn|, β = (βn)n ∈ S

}
, S ∈ S.

For an absolutely convex bounded subset A of a Hausdorff topological vector space F , let us denote by FA

the subspace of F generated by A. When no topology is specified on FA, it will be endowed with the gauge
‖·‖A of A as a norm. We will then consider without any further mention the spaces EB , E′

M , ΛR and Λ∗S ,
where B is a bounded subset of E, M ∈M, S ∈ S and R is a bounded absolutely convex subset of Λ. For
every M ∈M, consider on E the seminorm PM defined by

PM (x) = sup{|a(x)|, a ∈ M}

and by E(M◦) the quotient space of E by the annihilator M⊥ of PM . It is well known (see e.g. [7,
Prop. 8.6.9]) that the topological dual space (E(M◦))′, when E(M◦) is equipped with the associated quotient
norm with PM , is isometrically isomorphic to the Banach spaces E′

M .
A sequence (xn)n ⊂ E is said to be Λ-summable if the series Σαnxn converges in E for all (αn)n in

Λ∗. It is weakly Λ-summable if (a(x)n)n ∈ Λ, for all a ∈ E′. The space of all Λ-summable sequences
from E will be denoted by Λ(E), while that of the weakly Λ-summable ones will be designated by Λ[E].
Similarly, Λ∗S [E′

M ] will stand for the weakly Λ∗S-summable sequences from E′
M , S ∈ S and M ∈ M.

Following [2] and [9], we will say that the sequence (xn)n is strongly Λ-summable if for every M ∈ M,
the series Σan(xn) converges for all (an)n ∈ Λ∗[E′

M ]. The space of all such sequences will be denoted by
Λ 〈E〉. The three spaces are linear and, since Λ is perfect, the following inclusions hold: Λ 〈E〉 ⊂ Λ(E) ⊂
Λ[E].

Following [4], Λ(E) will be equipped with the topology εM,S generated by the family (εS,M )S∈S,M∈M
of seminorms, defined by

εS,M (x) := sup

{ ∞∑
n=1

|αna(xn)| , a ∈ M, α = (αn)n∈N ∈ S

}
, ∀x = (xn)n ∈ Λ(E).

These seminorms turn out to be defined also on Λ[E] so that Λ(E) is a closed topological subspace of Λ[E].
Both spaces will henceforth be equipped with this topology. The subspace Λ(E)r (resp. Λ[E]r) consisting
of those sequences x = (xn)n belonging to Λ(E) (resp. to Λ[E]) which are limits of their finite sections
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x(n) will come in force in the sequel. Here, if en is the scalar sequence whose components are all zero
except the nth which equals 1, then

x(n) = (x1, x2, . . . , xn, 0, 0, . . . ) =
n∑

i=1

xiei.

Note that, if E and (Λ, τS) happen to be metrizable, then so is also Λ[E]. Moreover, if E and (Λ, τS)
are Fréchet spaces, then so are also Λ[E], Λ(E) and their closed subspaces Λ[E]r and Λ(E)r.

We refer the reader to Section 30 of [8] and Chapter 2 of [13] for details concerning Köthe theory
of sequence spaces and to [7] for the terminology and notations concerning the general theory of locally
convex spaces.

All the vector spaces considered here will be spaces on the field K of real or complex numbers.

3 Bounded sets of Λ(E)

If B and R are closed absolutely convex bounded subsets respectively of E and Λ, set

R(B) := {(xn)n ∈ Λ(E) : ∀x′ ∈ B◦, (x′(xn))n ∈ R} .

It is easily seen that R(B) is an absolutely convex subset of Λ(E) and that

R(B) =

{
(xn)n ∈ Λ(E) : ∀α = (αn)n ∈ R◦,

∑
n

αnxn ∈ B

}
.

Proposition 1 If B and R are closed absolutely convex bounded subsets respectively of E and Λ with R
normal, then R(B) is a bounded subset of Λ(E). Moreover, R(B) ⊂ ΛR[EB ].

PROOF. It is obvious that R(B) is absolutely convex. Now, if x = (xn)n ∈ R(B), M ∈ M and S ∈ S,
then there are r, s > 0 so that M ⊂ rB◦ and S ⊂ sR◦. Hence

εS,M (x) = sup

{ ∞∑
n=1

|αna(xn)| , a ∈ M, α = (αn)n∈S

}

= s r sup

{ ∞∑
n=1

∣∣∣αn

s

a

r
(xn)

∣∣∣ , a ∈ M, α ∈ S

}

≤ s r sup

{ ∞∑
n=1

|αna(xn)| , a ∈ B◦, α ∈ R◦

}
≤ r s.

Whereby R(B) is bounded in Λ(E). Now, let x = (xn)n be an element of R(B) and ϕ a continuous linear
functional on EB . Then there exists K > 0 such that, for all b ∈ B, |ϕ(b)| ≤ K. Let α = (αn)n ∈ Λ∗

and µ > 0 so that α ∈ µR◦. Since R◦ is normal, for every k ∈ N, the kth finite section α(k) of α

belongs to µR◦. Hence
∑k

n=1 αnxn = µ
∑k

n=1 µ−1αnxn ∈ µB and
∣∣∣∑k

n=1 αnϕ(xn)
∣∣∣ ≤ µK. Therefore

(xn)n ⊂ EB . Let (εn)n be a scalar sequence with |αnϕ(xn)| = εnαnϕ(xn), for all n ∈ N. Thanks to the
normality of R◦, (εnαn)n ∈ µR◦ and therefore

∑k
n=1 εnαnxn ∈ µB. So,

k∑
n=1

|αnϕ(xn)| =
k∑

n=1

εnαnϕ(xn)

= ϕ(
k∑

n=1

εnαnxn) ≤ µK.
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Thus, the series
∑

αnϕ(xn) is absolutely convergent with

∞∑
n=1

|αnϕ(xn)| ≤ µK,

showing that (ϕ(xn))n ∈ Λ. Now, if α ∈ R◦ then
∑∞

n=1 |αnϕ(xn)| ≤ K. That is (ϕ(xn))n ∈ KR◦◦ =
KR. Hence (ϕ(xn))n ∈ ΛR, whereby x ∈ ΛR[EB ]. �

The following result characterizes the bounded subsets of Λ(E) by means of the R(B)’s, when E and
Λ are metrizable.

Proposition 2 If E and Λ are metrizable. Then, for every bounded subset B of Λ(E), there exist closed
absolutely convex bounded subsets B and R respectively of E and Λ with R normal such that B ⊂ R(B).

PROOF. Since E and Λ are metrizable, S and M admit fundamental sequences respectively (Sk)k∈N and
(Mp)p∈N. As B is bounded, for every p ∈ N,

ck,p := sup
{
εSk,Mp(x), x ∈ B

}
< +∞.

Set Bk =
⋂

p ck,pM
◦
p . This is a bounded subset of E. Hence, there are µk > 0 such that B :=

absconv(
⋃

k µkBk) is still bounded. Now, consider the set

R0 := {(a(xn))n, a ∈ B◦, x = (xn)n ∈ B}

and R the normal absolutely convex hull of R0. Obviously B ⊂ R(B). So, we only need to show that R0,
and then also R, is bounded in Λ. But for k ∈ N, we have

PSk
((a(xn))n) = sup

{ ∞∑
n=1

|αna(xn)|, α ∈ Sk

}

= sup

{∣∣∣∣∣a
( ∞∑

n=1

αnxn

)∣∣∣∣∣ , α ∈ Sk

}
.

In order to conclude, it suffices to show that Ak = {
∑∞

n=1 αnxn, α ∈ Sk, x ∈ B} is contained in Bk. But
for every p ∈ N, α ∈ Sk and x ∈ B,

PMp

( ∞∑
n=1

αnxn

)
= sup

{∣∣∣∣a(
∞∑

n=1

αnxn)
∣∣∣∣, a ∈ Mp

}

≤ sup

{ ∞∑
n=1

∣∣αna(xn)
∣∣, a ∈ Mp

}
≤ ck,p.

Showing that Ak ⊂ Bk. �

A slightly modified proof shows that, whenever the spaces Λ (resp. E) is a normed space, the result
remains true without any further condition on E (resp. on Λ).

4 Dual space of Λ 〈E〉
We are going to define on Λ 〈E〉 a locally convex topology which extends that introduced by H. Apiola [1]
in the `p case. We start with the following result:
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Proposition 3 Let S ∈ S and M ∈M be given. Then

1. εS◦,M◦ is a complete norm on Λ∗S [E′
M ], where, for a = (an)n ∈ Λ∗S [E′

M ],

εS◦,M◦(a) = sup

{ ∞∑
n=1

|αnan(x)| , x ∈ M◦, α = (αn)n∈N ∈ S◦

}
.

2. σS,M is a seminorm on Λ 〈E〉, where, for all x = (xn)n ∈ Λ 〈E〉,

σS,M (x) = sup

{ ∞∑
n=1

|an(xn)| , a = (an)n ∈ Λ∗S [E′
M ] , εS◦, M◦(a) ≤ 1

}
.

PROOF. 1. Follows from Proposition 1 of [9], since Λ∗S and E′
M are Banach spaces.

2. We only have to prove that σS,M (x) is finite for every x ∈ Λ 〈E〉. Define a linear mapping Tx from
Λ∗S [E′

M ] into `1 by Tx((an)n) = (an(xn))n. Then Tx is continuous by the closed graph theorem. Indeed,
suppose that (f i)i∈N ∈ Λ∗S [E′

M ] converges to f := (fn)n and (Tx((f i)i) converges in `1 to (αn)n. By the
continuity of the projections, (f i

n)i∈N converges to fn for every n ∈ N and then
(
f i

n (an)
)
i∈N converges to

fn(an) as well. It follows that (fn(an))n = (αn)n showing that the graph of Tx is closed and then that Tx

is continuous. Hence, it is bounded on the unit ball of Λ∗S [E′
M ]. �

From now on, the space Λ 〈E〉 will be equipped with the topology σS,M generated by the seminorms
σS,M , S ∈ S and M ∈ M. We will also consider the subspace Λ 〈E〉r of Λ 〈E〉 consisting of all the
sequences which are the limit of their finite sections.

The following result gives a description of the continuous dual of the subspace Λ 〈E〉r.

Theorem 1 1. For every S ∈ S, M ∈M and a = (an)n ∈ Λ∗S [E′
M ], the correspondence

Fa : x 7−→
∞∑

n=1

an(xn)

is a continuous linear functional on Λ 〈E〉.

2. Conversely, if F is a continuous linear functional on Λ 〈E〉, then there exist S ∈ S, M ∈ M and
a = (an)n ∈ Λ∗S [E′

M ] so that F = Fa on Λ 〈E〉r.

3. Consequently, the topological dual (Λ 〈E〉r)
′ of Λ 〈E〉r is isomorphic to the linear space⋃

S,M

Λ∗S [E′
M ] .

PROOF. 1. Fa is obviously linear and for a = 0 there is nothing to show. Assume then that a 6= 0 and
take b =

a

εS◦,M◦(a)
. Then εS◦,M◦(b) ≤ 1 and therefore

∣∣∣∣∣
∞∑

n=1

an(xn)

∣∣∣∣∣ ≤
∞∑

n=1

|an(xn)|

≤ εS◦,M◦(a)
∞∑

n=1

|bn(xn)|

≤ εS◦,M◦(a)σS,M (x)
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whereby Fa is continuous.
2. Note first that, for every m, the linear mapping θm defined from E into Λ 〈E〉 by θm(x) = xem is
continuous. Indeed, for S ∈ S and M ∈M, one has

σS,M (θm(t)) = sup {|um(t)|, a ∈ Λ∗S [E′
M ], εS◦,M◦(u) ≤ 1} .

But if εS◦,M◦(u) ≤ 1, then

|αm||um(c)| ≤ 1, ∀c ∈ M◦, α = (αn)n ∈ S◦.

Hence
|αm|‖um‖M ≤ 1, ∀α = (αn)n ∈ S◦.

Fix α ∈ S◦ so that αm 6= 0. Then

σS,M (θm(t)) ≤ sup {|um(t)|, |αm|‖um‖M ≤ 1}

≤ sup
{

PM (t)‖um‖M , ‖um‖M ≤ 1
|αm|

}
≤ 1
|αm|

PM (t).

Whereby θm is continuous. Now, since F is continuous, am = F ◦ θm belongs to E′. Moreover, there exist
some S ∈ S and some M ∈M such that

|F (x)| ≤ σS,M (x), ∀x = (xn)n ∈ Λ〈E〉.

Choosing αm as above, we get

|am(t)| ≤ 1
|αm|

PM (t), t ∈ E.

Which means that an ∈ E′
M . In order to show that a = (an)n ∈ Λ∗S [E′

M ], let f ∈ (E′
M )′, α = (αn)n ∈ Λ,

n ∈ N and δ > 0 be given. We may and do assume that ‖f‖ ≤ 1. Denote by Ê(M◦) the completion of
E(M◦).

Since (Ê(M◦))′ = (E(M◦))′ is isometrically isomorphic to E′
M , due to the principle of local reflexivi-

ty [3], there exists a continuous operator

un : K.f −→ Ê(M◦)

such that ‖uk‖ ≤ 1 + δ and ak(unf) = f(ak) for all k ∈ {1, 2, . . . , n}. Since every an is continuous and

E(M◦) is dense in Ê(M◦), there exist 0 < δn ≤
δ

k(1 + pS(en))
and xn ∈ E such that

‖x̂k − unf‖ ≤ δn and |ak(x̂k − unf)| ≤ δ

k(|αk|+ 1)
,

x̂n being xn + M⊥.
We claim that the series

∑
αnf(an) converges absolutely. So that (f(an))n belongs to Λ∗. We will proceed

in steps:
Step 1: Let ρ > 0 be such that α belongs to ρS◦. We have∣∣∣∣∣

n∑
k=1

αkf(ak)

∣∣∣∣∣ ≤ 2δ + (1 + δ)ρ, n ≥ 1.
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For ∣∣∣∣∣
n∑

k=1

αkf(ak)

∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=1

ak(unfk)

∣∣∣∣∣
≤

∣∣∣∣∣
n∑

k=1

ak(αkx̂k − unfk)

∣∣∣∣∣+
∣∣∣∣∣

n∑
k=1

ak(αkxk)

∣∣∣∣∣
≤

n∑
k=1

|αk||ak(x̂k − unf)|+

∣∣∣∣∣F (
n∑

k=1

αkxkek)

∣∣∣∣∣
≤ δ + σS,M

(
k∑

k=1

αkxkek

)

= δ + sup

{∣∣∣∣∣
n∑

k=1

x′k(αkxk)

∣∣∣∣∣ : (x′k)k ∈ Λ∗S [E′
M ], εS◦,M◦((x′n)n) ≤ 1

}
.

But, for (x′k)k ∈ Λ∗S [E′
M ] with εS◦,M◦((x′n)n) ≤ 1, we have

‖αkx′k‖M = sup {|αkx′k(t)| : t ∈ M◦}

= ρ sup
{∣∣∣∣1ραkx′k(t)

∣∣∣∣ : t ∈ M◦
}

≤ ρεS◦,M◦((x′k)k)
≤ ρ.

Whereby, ∣∣∣∣∣
n∑

k=1

x′k(αkxk)

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
k=1

αkx′k(x̂k − unf)

∣∣∣∣∣+
∣∣∣∣∣

n∑
k=1

αkx′n(unf)

∣∣∣∣∣
≤

n∑
k=1

|αkx′k|M |x̂k − unf |+

∣∣∣∣∣
n∑

k=1

αkx′n(unf)

∣∣∣∣∣
≤

n∑
k=1

ρδk +

∥∥∥∥∥
n∑

k=1

αkx′k

∥∥∥∥∥
M

‖f‖ (1 + δ)

≤ δ + (1 + δ)εS◦,M◦((x′k)k)
≤ δ + (1 + δ)ρ.

Hence, for all n ∈ N, ∣∣∣∣∣
n∑

k=1

αkf(ak)

∣∣∣∣∣ ≤ 2δ + (1 + δ)ρ.

Step 2: The series
∑

αkf(ak) converges absolutely.
For, since α ∈ ρS◦ the same holds for the sequence β := (εkαk)k with (εn)n so chosen that

|αnf(an)| = εnαnf(an), n ∈ N.

Then, by step 1, ∣∣∣∣∣
n∑

k=1

εkαkf(ak)

∣∣∣∣∣ ≤ 2δ + (1 + δ)ρ.

57



L. Oubbi and M. A. Ould Sidaty

Therefore
n∑

k=1

|αkf(ak)| =
n∑

k=1

εkαkf(ak) ≤ 2δ + (1 + δ)ρ.

Since n is arbitrary, the series
∑

αnf(an) converges absolutely. This shows that (f(an))n belongs to Λ∗.
Step 3: (an)n belongs to Λ∗S [E′

M ]. Indeed, since δ is arbitrary in the last inequality, we get

∞∑
n=1

|αnf(an)| ≤ ρ

so that (f(ak))k ∈ ρS◦◦ = ρS, whereby (an)n ∈ Λ∗S [E′
M ]. Now, if x = (xn)n ∈ Λ〈E〉r then x =∑∞

m=1 xmem and by the continuity of F and Fa we have

F (x) =
∞∑

m=1

F (xmem) =
∞∑

m=1

am(xm) = Fa(x).

3. By 1., the map a 7→ fa from ∪{Λ∗S [E′
M ] , S ∈ S,M ∈M} into (Λ 〈E〉r)

′ is well defined, linear and
one to one. It is onto by 2. and the definition of Λ 〈E〉r. �

According to the foregoing proof, the bilinear mapping

θ : Λ∗S [E′
M ]× Λ 〈E〉 → `1, 〈(an)n, (xn)n)〉 = (an(xn))n

is continuous in both variables.

5 Reflexivity of Λ(E)

The following lemma will be needed in the sequel:

Lemma 1 For all (γn)n ∈ c0 and x = (xn)n ∈ Λ [E], (γnxn)n ∈ Λ(E)r.

PROOF. For S ∈ S and M ∈M, (αn)n ∈ S, a ∈ M and p ∈ N, one has

∞∑
n=p+1

|αna (γnxn)| ≤ sup
n>p

|γn|
∞∑

n=p+1

|αna (xn)| ≤ sup
n>p

|γn| εS,M ((xn)n)

This shows that
∑∞

n=p+1 |αna (γnxn)| converges to 0, uniformly on a ∈ M and α ∈ S. That is (γnxn)n is
the limit in Λ[E] of its finite sections which belong to Λ(E). The latter being closed in Λ[E] by Proposition 1
of [9], then (γnxn)n ∈ Λ(E)r. �

In the sequel, E and Λ will be a Fréchet spaces and R and B the families of all absolutely convex
bounded subsets of Λ and E respectively. The members of R are assumed to be normal.

Theorem 2 The equality (Λ(E)r)′ = Λ∗
〈
E′

β

〉
holds algebraically and the identity

J :
(
Λ∗
〈
E′

β

〉
, σR,B

)
−→ (Λ(E)′r, β(Λ(E)′r,Λ(E)r))

is continuous. If, in addition, E happens to be reflexive, then J turns out to be also open.
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PROOF. By Theorem 7 of [9], we have

(Λ(E)r)
′ =

⋃
S,M

Λ∗S 〈E′
M 〉 .

We will then show that ⋃
S,M

Λ∗S 〈E′
M 〉 ⊂ Λ∗

〈
E′

β

〉
⊂ (Λ(E)r)′.

Let S ∈ S, M ∈ M and (an)n ∈ Λ∗S 〈E′
M 〉. If H is an equicontinuous subset of (E′

β)′ and f = (fn)n ∈
Λ[(E′

β)′H ], then The polar H◦ of H with respect to the duality 〈(E′
β)′, E′〉 absorbs the equicontinuous (and

then strongly bounded) subset M . There exists ρ > 0 such that M ⊂ ρH◦. On the other hand, for all
n ∈ N, let εn > 0 be such that fn ∈ εnH. Then, for all x′ ∈ M , one has

|fn(x′)| = ρεn

∣∣∣∣ 1
εn

fn(
1
ρ
x′)
∣∣∣∣ ≤ ρεn,

so that each fn is continuous on E′
M . But for x′ ∈ E′

M , the mapping

δx′ : (E′
β)′H → K, δx′(x′′) = x′′(x′)

is linear and continuous. Thus, (δx′(fn))n = (fn(x′))n ∈ Λ ⊂ (Λ∗S)∗. Whereby f ∈ (Λ∗S)∗[(E′
M )′]. By

Proposition 2 of [9], since a ∈ Λ∗S〈E′
M 〉,

∞∑
n=1

|fn(an)| < ∞.

Hence (an)n ∈ Λ∗
〈
E′

β

〉
. Since S and M were arbitrary, we obtain

(Λ(E)r)′ =
⋃
S,M

Λ∗S 〈E′
M 〉 ⊂ Λ∗

〈
E′

β

〉
.

Next, let a = (an)n ∈ Λ∗
〈
E′

β

〉
and (xn)n ∈ Λ(E)r. By Proposition 2, there exists absolutely convex

bounded subsets B of E and R of Λ with R normal such that (xn)n ∈ R(B). Then, by Proposition 1,

(xn)n ∈ ΛR[EB ] ⊂ Λ∗∗R [(E′
β)′B◦◦ ] ⊂ Λ[(E′

β)′B◦◦ ],

where B◦◦ is the polar of B◦ in (E′
β)′. Since B◦◦ is equicontinuous, the series

∑∞
n=1|an(xn)| is con-

vergent by the very definition of Λ∗〈E′
β〉. Now, consider the linear mapping defined from Λ(E)r into

`1 by ϕa((xn)n) = (an(xn))n. Due to the closed graph theorem, ϕa is continuous. Then the map-
ping fa : (xn)n 7→

∑∞
n=1 an(xn) is continuous on Λ(E)r and therefore belongs to (Λ(E)r)′. Whence

Λ∗
〈
E′

β

〉
⊂ (Λ(E)r)′.

For the second part of the proof, let B be an absolutely convex bounded subset of Λ(E)r. By Propo-
sition 2, there exists absolutely convex bounded subsets B of E and R of Λ with R normal such that
B ⊂ R(B). We claim that the polar B◦ of B in Λ∗〈E′

β〉 = (Λ(E)r)′ contains the unit ball VR,H of σR,H ;
here H = B◦◦ is the polar of B◦ in (E′

β)′. Let a = (an)n ∈ VR,H and x = (xn)n ∈ R(B). Since B ⊂ H ,
we have (xn)n ⊂ (E′

β)′H . Therefore (x′(xn))n ∈ Λ for all x′ ∈ E′. By Proposition 2 of [9], we have
(xn)n ∈ Λ[(E′

β)′H ]. But (x′(xn))n ∈ R, for all x′ ∈ B◦ and

εR◦,B◦((xn)n) = sup

{ ∞∑
n=1

|αnx′(xn)|, x′ ∈ H◦, α = (αn)n∈N ∈ R◦

}
≤ 1.

59



L. Oubbi and M. A. Ould Sidaty

Hence,

|〈a, x〉| =

∣∣∣∣∣
∞∑

n=1

an(xn)

∣∣∣∣∣ ≤ σR,H((an)n) ≤ 1.

Therefore, B◦ ⊂ VR,H . To see that J is open, let H be an absolutely convex equicontinuous subset of
(E′

β)′. Then H is σ((E′
β)′, E′

β)-bounded. Since E is semi-reflexive, there exists an absolutely convex
bounded subset B of E such that, H = h(B), where h : E 7→ (E′

β)′ is the canonical isomorphism.
If R is a normal bounded subset of Λ, R(B)◦ ⊂ VR,H . Indeed, let (an)n ∈ R(B)◦, f = (fn)n ∈

ΛR[(E′
β)′H ], with εR◦,H((fn)n) ≤ 1. For all n ∈ N, there exists xn ∈ EB such that fn = j(xn). So that,

(xn)n ∈ Λ[E]. Since εR◦,B◦((xn)n) ≤ 1, for all a ∈ B◦, (a(xn))n ∈ R. If α = (αn)n ∈ R, a ∈ B◦ with
(γn)n ∈ c0 and |(γn)n|c0

≤ 1. We have

∞∑
n=1

|αna (γnxn)| ≤
∞∑

n=1

|αna (xn)| ≤ εR◦,B◦((xn)n) ≤ 1.

By lemma 1, (γnxn)n is in Λ(E)r and then R(B). Thus,∣∣∣∣∣
∞∑

n=1

γnfn(an)

∣∣∣∣∣ =
∣∣∣∣∣
∞∑

n=1

γnan(xn)

∣∣∣∣∣ ≤
∞∑

n=1

|an(xn)| ≤ 1.

This shows that
∑∞

n=1|fn(an)| ≤ 1, and (an)n ∈ VR,H . �

Next we prove our main result.

Theorem 3 If E and Λ are Fréchet spaces, then Λ(E) is reflexive if, and only if, the following three
assertions hold :

(i) E and Λ are reflexive.

(ii) Λ(E) is an AK-space.

(iii) Λ∗〈E′
β〉 is an AK-space.

PROOF. Suppose that Λ(E) is reflexive, then E and Λ are reflexive as subspaces of Λ(E). So, (i) holds.
By [8, 23.5(10)], Λ(E)r is reflexive as a closed subspace of Λ(E), it is then weakly quasi-complete by [8,
23.5(2)]. Thus, Λ(E)r is weakly sequentially complete.
Let x = (xn)n ∈ Λ(E). Then, the sequence (x(k))k∈N consisting of the finite sections of x is contained
in Λ(E)r and is is weakly Cauchy in it. Indeed, consider a in (Λ(E)r)′. By Theorem 7 of [9], there exists
a sequence (an)n in E′ such that the series

∑
an(xn) converges, (a(x(k)))k = (

∑k
n=1 an(xn))k is then a

Cauchy sequence, hence (x(k))k∈N converges weakly to a limit y = (yn)n ∈ Λ(E)r and it is obvious that
x = y so that (ii) holds.
Now, since Λ(E)r is reflexive, the same holds for its strong dual Λ∗〈E′

β〉 and the argumentation above still
works to prove (iii).
Conversely, assume that (i), (ii) and (iii) are satisfied. Then, since Λ and E are reflexive, an application of
Theorem 1 and Theorem 2 gives

(Λ(E))′′ = (Λ(E)r)
′′

, (by (ii))

=
(
Λ∗
〈
E′

β

〉)′ =
(
Λ∗
〈
E′

β

〉
r

)′
, (by (iii))

=
⋃
R,B

ΛR

[(
E′

β

)′
B◦◦

]
, (by Theorem 1)

=
⋃
R,B

ΛR [EB ] , (by (i))

⊂ Λ [E] = Λ(E).
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The last inclusion holds by corollary 1.4 of [5]. Hence the Fréchet space Λ(E) is semi-reflexive and then
reflexive. �

In the sequel, Λ will stand for an echelon space defined by a Köthe matrix (uk)k. This is an increasing
sequence of strictly positive sequences and

Λ :=

{
α = (αn)n ∈ KN : Pk(α) =

∞∑
n=1

uk
n |αn| < ∞, ∀k ∈ N

}
.

We equip Λ with its Fréchet locally convex topology generated by the sequence (Pk)k∈N of seminorms.

Proposition 4 If Λ is reflexive then Λ∗〈E′
β〉 is an AK-space.

PROOF. Let (an)n ∈ Λ∗〈E′
β〉, we have to prove that (a〈k〉)k defined by a〈k〉 = (0, . . . , 0, ak+1, ak+2, . . .),

for all k ∈ N, is a null sequence. Let R be an absolutely convex normal closed and bounded subset of Λ, H
an equicontinuous absolutely convex subset of (E′

β)′ and f = (fn)n ∈ ΛR[(E′
β)′H ] such that εR◦,H(f) ≤ 1.

By Theorem 2 and the remark following ([8, 45. 5. (8)]) there exist γ = (γn)n ∈ Λ∗ and a pre-nuclear
sequence (x′n)n ⊂ E′ such that for all n ∈ N, an = γnx′n. First we prove that (fn(x′n))n ∈ Λ. Let
α = (αn)n ∈ Λ∗, ε > 0, S ∈ S, such that β ∈ S and p ∈ N. Since (x′n)n is pre-nuclear, there exist an
equicontinuous subset M ⊂ E′, and a positive Radon measure µ on M such that

sup
n
|x′n(x)| ≤

∫
M

|a(x)| dµ(a).

As, |xn(x)| ≤ ‖µ‖1 PM (x), for all n ∈ N, (x′n)n ⊂ E′
M . Now, since M is equicontinuous, as we did in

the proof of Theorem 2, fn ∈ (E′
M )′ . Now, by the principle of local reflexivity, there exists a continuous

linear operator
Tp : span {f1, f2, . . . , fp} 7→ E(M◦)

such that ‖Tp‖ ≤ 1 + ε and x′n(Tpfn) = fn(x′n) for all n ∈ {1, 2, . . . , p}. So,

p∑
n=1

|αnfn(x′n)| =
p∑

n=1

|αnx′n(Tpfn)| ≤
p∑

n=1

∫
M

|αna(Tpfn)| dµ(a)

≤ ‖µ‖1 sup

{
p∑

n=1

|αnaTpfn| , a ∈ M

}

≤ ‖µ‖1 sup

{∣∣∣∣∣
p∑

n=1

βnaTpfn

∣∣∣∣∣ , a ∈ M, (βn)n ∈ S

}
≤ ρ1ρ ‖µ‖1 εR◦,H(f)
≤ ρ1ρ ‖µ‖1 ,

where ρ1 is such that S ⊂ ρ1R
◦. Hence, (fn(x′n))n ∈ Λ. Without loss of generality, we (may and do)

assume that (fn(x′n))n ∈ R. Hence,{
(fn(x′n))n , f = (fn)n ∈ ΛR

[(
E′

β

)′
H

]
, εR◦,H(f) ≤ 1

}
⊂ R,

which is σ(Λ,Λ∗)-compact, since Λ is reflexive. It follows from [13, 2.4.26] that

lim
k→∞

sup

{ ∞∑
n=k+1

|γnfn(x′n)| , f = (fn)n ∈ ΛR

[(
E′

β

)′
H

]
, εR◦,H(f) ≤ 1

}
= 0.

Thus, limk→∞ σR,H

(
a〈k〉

)
= 0. This finishes the proof. �
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Theorem 4 Let Λ be an echelon sequence space and E a Fréchet space. Then Λ(E) is reflexive if and
only if Λ and E are reflexive.

PROOF. It derives from Theorem 3, Proposition 4 and the fact that Λ(E) is an AK-space by [8, 44.8 (10)].
�

Corollary 1 For any echelon space Λ and any Fréchet space E, the injective tensor product Λ⊗̂εE is
reflexive, if and only Λ and E are reflexive.

PROOF. It follows from the Proposition 2 of [4] and the preceding theorem. �
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