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ABSTRACT

We explicitly introduce and exploit div-curl Young measures to examine optimal
design problems governed by a linear state law in divergence form. The cost is
allowed to depend explicitly on the gradient of the state. By means of this
family of measures, we can formulate a suitable relaxed version of the problem,
and, in a subsequent step, put it in a similar form as the original optimal design
problem with an appropriate set of designs and generalized state law. Many of
the issues involved has been analyzed elsewhere. The emphasis here is placed
on the fact that, by using div-curl Young measures, we make the treatment
dimension-independent.

Key words: high-dimensional conductivity, cost depending on the field, relaxed formu-
lation.

2000 Mathematics Subject Classification: 49J45, 74P10.

Introduction

Our motivation is the analysis of a typical optimal design problem in conductivity of
the form

Minimize in χ : I(χ) =
∫

Ω

(aαχ(x) + aβ(1 − χ(x))|∇u(x)|2 dx
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subject to

div[αχ(x) + β(1 − χ(x))∇u(x)] = 0 in Ω
u = u0 on ∂Ω,

where 0 < α < β are positive constants, while aα and aβ could have any sign. The
design variable χ is a characteristic function restricted also by a volume constraint of
the type ∫

Ω

χ(x) dx = t0|Ω|.

Ω is a bounded domain in RN , N ≥ 2, u0 ∈ H1(Ω), and t0 ∈ (0, 1). A more general
form can be allowed for the cost density, the state equation, etc, but for the sake of
simplicity, we will stick to this simple form of the problem. The most striking feature
of this problem is the explicit dependence of the cost density on the gradient of the
state u.

This kind of problems has been extensively studied because of its importance in
applications ([5]). From an analytical perspective, it has been a main motivation to
study homogenization of PDE, and tackled by means of these techniques. See [11–13,
20]. The more recent accounts [1, 21] are very helpful to gain an overall picture of
the problems, the techniques, and the history of homogenization and related concepts
and applications. More recently, it has been treated by means of non-convex, vector,
variational problems ([17]). We would like to pursue this point of view further.

The approach based on a suitable reformulation of the optimal design problem as a
non-convex, vector, variational problem relies on the ability of representing divergence
free (solenoidal) vector fields in an appropriate way. This representation depends in
an essential way on dimension. For instance, in dimension N = 2, it is well-known
that all such solenoidal fields are of the form R∇u, rotated gradients with R the
π/2-, counterclockwise rotation in the plane, while in dimension N = 3, in most
cases divergence-free vector fields F admit the representation F = ∇u × ∇v. This
decomposition is not unique or canonical, and, what is more important, sometimes
does not hold ([14, 23]). The fields u and v are called Clebsch potentials ([7]). In
dimension N > 3, similar representations can be utilized involving N − 1 Clebsch
potentials which lead to a more complex analysis.

Our main contribution in this note is to develop, in the context of the above
optimal design problem, a similar framework as in other previous works ([16]) but
without the need to introduce additional potentials. We will rather work directly with
divergence-free vector fields and gradients. The associated Young measures ([24]) will
be called div-curl Young measures in the spirit of ([6]). In this way, we can treat the
above problem in the same manner, regardless of dimension, and at the same time,
simplify some of the computations performed in similar problems in other contexts
([4, 8]).

To explain how the use of div-curl Young measures arise in this kind of optimal
design problems, consider a sequence χj of feasible designs for the original problem.
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Put
Fj = [αχj(x) + β(1 − χj(x))]∇uj(x), (1)

and consider the sequence of pairs {(Fj ,∇uj)}. This is a sequence of div-curl pairs
(div Fj = 0, curl∇uj = 0) because of the diffusion state equation. It generates in the
limit a div-curl Young measure ν = {νx}x∈Ω. What do we know about the support
of this family of measures? It is evident, because of the form of Fj coming from the
state equation, that

supp(νx) ⊂ Λα ∪ Λβ (2)

where
Λγ = {(λ, ρ) ∈ RN × RN : ρ = γλ}, γ = α, β.

Therefore we have a div-curl Young measure ν whose support is restricted to be
contained in the union of those two linear manifolds. We claim that this provides a
lot of information on ν, which eventually suffices to solve the optimal design problem
completely in the sense that we can produce an explicit, relaxed version of it, and
whose optimal solutions encode the precise information to build (some) minimizing
sequences of designs. Notice that the cost functional can also be written explicitly in
terms of ν. If we put

νx = t(x)νx,α + (1 − t(x))νx,β

where each νx,γ has its support contained in Λγ , then the limit of the costs corre-
sponding to χj will be∫

Ω

[
aαt(x)

∫
RN

|λ|2 dν(1)
x,α(λ) + aβ(1 − t(x))

∫
RN

|λ|2 dν
(1)
x,β(λ)

]
dx.

Here ν
(1)
x,γ is the projection of νx,γ onto the first copy of RN .

To state our main theorem, we introduce a bit of notation. For 0 < α < β, aα,
aβ as before, let m(t, λ, ρ) stand for the minimum value of the linear programming
problem

Minimize in (sα, sβ) ∈ R2 : aαtsα + aβ(1 − t)sβ

subject to the constraints

λ · ρ = tαsα + (1 − t)βsβ ,

sα ≥ 1
t2(β − α)2

|βλ − ρ|2, sβ ≥ 1
(1 − t)2(β − α)2

|ρ − αλ|2.

Further if

ρ =
2αβ + t(1 − t)(β − α)2

2[α(1 − t) + βt]
λ +

t(1 − t)(β − α)2

2[α(1 − t) + βt]
|λ|s, s ∈ RN , |s| ≤ 1,

set
ψ(t, s, λ) = m(t, ρ, λ),
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and

ϕ(t, s, λ) =
2αβ + t(1 − t)(β − α)2

2[α(1 − t) + βt]
λ +

t(1 − t)(β − α)2

2[α(1 − t) + βt]
|λ|s.

Theorem 0.1. Consider the problem

Minimize in (t, s, u) :
∫

Ω

ψ(t(x), s(x),∇u(x)) dx

subject to

0 ≤ t(x) ≤ 1,

∫
Ω

t(x) dx = t0|Ω|, s(x) ∈ RN , |s(x)| ≤ 1,

div ϕ(t(x), s(x),∇u(x)) = 0 in Ω, u = u0 on ∂Ω.

This problem is a relaxation of the original optimal design problem in the sense:

• the infimum for the original problem equals the minimum for this problem;

• optimal solutions for this problem encode in a precise way (see below) the optimal
microestructures for the original problem.

Notice that by taking t = 0 and t = 1, the relaxed problem reduces to the original
one. We will specify later (formulae in Lemma 3.1 of section 3) this “precise way”
in which optimal microestructures can be built from optimal solutions of the relaxed
version. This is always done through div-curl laminates of at most second-order (see
section 3 and [16]).

We know, because it is a relaxation, that this is a well-posed optimal design prob-
lem whose optimal solutions can be approximated by exploiting optimality conditions,
or by looking for descent directions. We will pursue this approach in a forthcoming
work. The explicit form for ψ can be given for each choice of the coefficients aα

and aβ . We include a particular example at the end of section 3.
Let us emphasize again that the main contribution of this note is to free the

analysis of previous works (see references above), which is only valid for the case
of 2 or 3 dimensions, to any dimension without the need of making any distinction
based on the dimension of the problem. We will not therefore prove again formal
results and computations which are exactly the same in our context. In particular,
we simply incorporate facts which have been discussed in detail in [2,16,17] with some
indications when appropriate. We refer readers to these papers for a full discussion.

1. Div-Curl Young measures

This is the class of Young measures associated with a sequence of pairs of vector fields
{(Fj , Gj)} such that

Fj : Ω → Mm×N , Gj : Ω → Mm×N

Revista Matemática Complutense
2007: vol. 20, num. 1, pags. 239–255 242



Pablo Pedregal Div-curl Young measures and optimal design in any dimension

are bounded sequences in L2(Ω), where Ω ⊂ RN is a regular, bounded domain, and

div Fj = 0, curlGj = 0 in Ω,

in a weak sense. Under the additional assumption of simple-connectedness of Ω, we
can put Gj = ∇uj for a certain uj ∈ H1(Ω;Rn), so that we will consider from the
start sequences of pairs {(Fj ,∇uj)} and forget about the simple-connectedness of Ω.
In what follows, more general assumptions can be allowed on the spaces of fields in the
sense that the divergence-free and curl-free requirements for Fj and Gj , respectively,
can be relaxed.

We know ([3,9,15,22]) that we can always associate with such a sequence (rather
a subsequence) of pairs a family of probability measures, its Young measure ν =
{νx}x∈Ω, supported in Mm×N ×Mm×N , such that whenever the sequence of functions
{φ(x, Fj(x),∇uj(x))} weakly converges in L1(Ω) for some Carathéodory integrand φ,
the weak limit is given by

φ̄(x) =
∫
Mm×N×Mm×N

φ(x, ρ, λ) dνx(ρ, λ).

More formally, we adopt the following definition.

Definition 1.1. A family of probability measures ν = {νx}x∈Ω is called a (L2-)
div-curl Young measure if there exists a sequence of pairs of vector fields Fj in
L2(Ω;Mm×N ), and uj in H1(Ω;Rm), such that

div Fj → 0 in H−1(Ω;Rm), {|Fj |2}, {|∇uj |2} are equiintegrable in Ω,

and the Young measure associated with {(Fj ,∇uj)} is ν.

The whole point is to understand better this class of measures, and, in particu-
lar, how the property of being a pair with an essentially-divergence-free component
and a gradient, translates into the structure of the Young measure itself. We are
specially interested, bearing in mind the application to optimal design problems, in
exploring the interaction between the divergence-free and the curl-free components
of the sequence of pairs. It is important to point out that this is a very particular
situation of the rather general framework of A-quasiconvexity, and A-Young measures
as introduced and discussed in [6]. See also [18]. We will in fact rely on this work for
all the proofs and rigorous facts of this section. Indeed, the rest of this section is a
reminder of the main facts about this class of measures whose proofs can be found in
that reference.

The main constraint on this class of measures, from our point of view, is, however,
an immediate consequence of the classic and well-known div-curl lemma ([10,19,21]).

Lemma 1.2. Let {Fj} be a sequence of bounded fields in L2(Ω;Mm×N ) converging
weakly to F , such that {div Fj} is bounded in L2(Ω;Rm), and let {∇uj} be a bounded
sequence of gradients in H1(Ω;Rm) converging weakly to ∇u. Then

Fj(∇uj)T ⇀ F∇uT

243
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in the sense of distributions.

By a direct application of this fundamental result to div-curl Young measures, we
obtain the fundamental commutation property.

Lemma 1.3. If ν = {νx}x∈Ω is a div-curl Young measure, then for a.e. x ∈ Ω,∫
Mm×N×Mm×N

ρλT dνx(ρ, λ) =
∫
Mm×N

ρ dν(1)
x (ρ)

∫
Mm×N

λT dν(2)
x (λ),

where ν
(i)
x , i = 1, 2, are the marginals on the two components, respectively.

Notice that the product ρλT is an m × m matrix.
The localization principle is also valid for this class of Young measures. This

basically says that if ν = {νx}x∈Ω is a div-curl Young measure, then for a.e. a ∈ Ω
each individual member νa is in its own right a homogeneous (not dependent on
x ∈ Ω), div-curl Young measure, which means that it can be generated by a new
sequence of pairs {(F a

j ,∇ua
j )} (depending on a) with div(F a

j ) → 0 in Ω. These pairs of
fields are obtained through a typical process of localization or blow-up around a from
the pairs determining the initial div-curl Young measure. This is standard ([6, 15]).
Conversely, we can glue together specific, homogeneous div-curl Young measures, one
for each point x ∈ Ω, in a big div-curl Young measure all over Ω. The only requirement
is that the resulting barycenter be consistent with the div-curl constraint.

Lemma 1.4 ([6]). A family of probability measures ν = {νx}x∈Ω is a div-curl Young
measures if and only if:

• For a.e. x ∈ Ω, each individual νx is a homogeneous, div-curl Young measure
itself.

• There exists a divergence-free vector field F in L2(Ω;Rm), and a field u ∈
H1(Ω;Rm) such that

F (x) =
∫
Mm×N

ρ dν(1)
x (ρ), ∇u(x) =

∫
Mm×N

λ dν(2)
x (λ).

There is another important issue that refers to a specific, general way of construct-
ing explicitly div-curl Young measures. This is the analogue of laminates for gradient
Young measures ([15]), and it is based on the same principle. This is again standard.
The basic construction and the typical recursive procedure are recorded in the next
lemma.

Lemma 1.5. Suppose that ρi, λi, i = 1, 2 are four m × N matrices such that

(ρ2 − ρ1)(λT
2 − λT

1 ) = 0 (3)
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as m × m matrices. Then the probability measure

μ = tδ(ρ1,λ1) + (1 − t)δ(ρ2,λ2)

is a div-curl Young measure for all t ∈ [0, 1].
If ν1 and ν2 are two div-curl Young measures with barycenters (ρ1, λ1) and

(ρ2, λ2), respectively, such that (3) holds, then

μ = tν1 + (1 − t)ν2

is a div-curl Young measure too for any t ∈ [0, 1].

2. The variational reformulation

We start this section by stating the genuine variational reformulation of the original
optimal design problem. To that end, consider the integrands defined by

W (ρ, λ) =

⎧⎪⎨
⎪⎩

aα|λ|2, if ρ = αλ,

aβ |λ|2, if ρ = βλ,

+∞, else,
V (ρ, λ) =

⎧⎪⎨
⎪⎩

1, if ρ = αλ,

0, if ρ = βλ,

+∞, else.

Then it is an elementary exercise to see that the initial problem can be reformulated
in the following terms

Minimize in (F, u) :
∫

Ω

W (F (x),∇u(x)) dx

subject to

F ∈ L2(Ω;Mm×N ), u ∈ H1(Ω;Rm),

div F = 0 weakly in Ω, u = u0 on ∂Ω,

∫
Ω

V (F (x),∇u(x)) dx = t0|Ω|.

This equivalent formulation suffers from the same troubles as the initial problem, so
that it is in need of relaxation. Because this variational problem has been formulated
in a local fashion, its relaxation can be examined by means of Young measures as
is typically done for variational problems ([3, 9, 15, 22]). In this way, we are led to
understand Young measures corresponding to sequences of pairs {(Fj ,∇uj)} with
div Fj = 0 in Ω. These are div-curl Young measures. If we expect to gain something
by looking at the relaxed formulation in terms of this family of measures, it is necessary
to know them better. We have already stated many of their general properties in the
preceding section. We now specialized some of those properties to the situation of
our design problem.

Suppose that {χj} is a sequence of admissible characteristic functions for our initial
optimal design problem, so that if the sequence of fields Fj is given by (1), then the
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Young measure ν = {νx}x∈Ω associated with the sequence of pairs {(Fj ,∇uj)} is a
div-curl Young measure as defined in the previous section. Because of the specific
relationship between Fj and ∇uj , it is also elementary to conclude as in (2) for
a.e. x ∈ Ω. In this way, each individual νx is a homogeneous div-curl Young measure
supported in the union of those two linear manifolds. The main contribution in this
section is the converse of this statement.

Proposition 2.1. A family of probability measures ν = {νx}x∈Ω corresponds to a
sequence of pairs

{([αχj(x) + β(1 − χj(x))]∇uj(x),∇uj(x))} (4)

where χj is a sequence of feasible characteristic functions for our original optimal
design problem, if and only if:

• Each νx as such is a homogeneous div-curl Young measure supported in the
union Λα ∪ Λβ, and there is t : Ω → [0, 1] such that∫

Ω

t(x) dx = t0|Ω|, νx = t(x)νx,α + (1 − t(x))νx,β

with each νx,γ supported in Λγ .

• There exists a divergence-free vector field F in L2(Ω;Rm), and a field u ∈
H1(Ω;Rm) such that

F (x) =
∫
Mm×N

ρ dν(1)
x (ρ), ∇u(x) =

∫
Mm×N

λ dν(2)
x (λ).

Proof. The proof amounts to showing that if we have a family ν = {νx}x∈Ω of prob-
ability measures verifying the conditions on the statement, then there is a sequence
of feasible characteristic functions {χj} so that ν = {νx}x∈Ω is precisely the div-curl
Young measure associated with the pairs in (4). Notice that this is essentially what
Lemma 1.4 says. What is at stake is the fact that the sequence of generating pairs
in (4) should take on values on the two manifolds everywhere, and not only “approx-
imately.” This sort of arguments were used in a careful way in [2], but we include
here the main idea of the proof in the context of div-curl Young measures.

Assume, then, that we have a family of probability measures ν = {νx}x∈Ω such
that the conditions on the statement hold. By Lemma 1.4, there exists a sequence
of pairs {(Fj ,∇uj)} such that theirs squares are equiintegrable in Ω, div Fj → 0 in
H−1(Ω;Rm), and its corresponding Young measure is precisely the family ν. This
implies that for a.e. x ∈ Ω, and for j large, the pairs {(Fj ,∇uj)} have to be close to
one of the two manifolds Λα or Λβ . More precisely, put

φj(x) = min
{|Fj(x) − α∇uj(x)|2, |Fj(x) − β∇uj(x)|2} .
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This function measures the distance from the pair (Fj ,∇uj) to the union of the two
manifolds. It is clear that there is a characteristic function χj(x) such that

φj(x) = |Fj(x) − (χj(x)α + (1 − χj(x))β)∇uj(x)|2 (5)

and ∫
Ω

χj(x) dx → t0|Ω|.

Because of the integrability of {|∇uj |2}, we can modify a bit this characteristic func-
tion, in a small subset of negligible measure as j → ∞, so that∫

Ω

χj(x) dx = t0|Ω|,

and still {φj} is equiintegrable in Ω. For this sequence of functions the representation
in terms of the Young measure ν holds (because of the integrability just mentioned)
and

lim
j→∞

∫
Ω

φj(x) dx =
∫

Ω

∫
RN×RN

min{|ρ − αλ|2, |ρ − βλ|2} dνx(ρ, λ) dx = 0, (6)

because each νx is supported in the union of the two manifolds where one of the two
terms in the minimum vanishes while the other is positive.

Let μ = {μx}x∈Ω be the Young measure associated with the sequence of pairs{(
(χjα + (1 − χj)β)∇vj ,∇vj

)}
, Hj = (χjα + (1 − χj)β)∇vj ,

where vj are the solutions of

div[(χjα + (1 − χj)β)∇vj ] = 0 in Ω, vj = u0 on ∂Ω.

We claim that vj − uj converges strongly to zero in H1(Ω;Rm). Indeed, if we put
γj = χjα + (1 − χj)β, we have∫

Ω

α|∇uj(x) −∇vj(x)|2 dx ≤
∫

Ω

〈γj(x)(∇uj(x) −∇vj(x)),∇uj(x) −∇vj(x)〉 dx.

The right-hand side can be rewritten as∫
Ω

〈γj∇uj − Fj ,∇uj(x) −∇vj(x)〉 + 〈Fj(x) − Hj(x),∇uj(x) −∇vj(x)〉 dx.

Because div Fj → 0, div Hj = 0, and uj − vj → 0 on ∂Ω, the second term converges
to zero as j → ∞. By using Hölder inequality in the first term, we arrive at

α‖∇uj −∇vj‖L2(Ω) ≤
∫

Ω

|γj∇uj − Fj |2 dx.
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Conclude by (5) and (6). In a similar way, by using the reverse inequality∫
Ω

β|∇uj(x) −∇vj(x)|2 dx ≥
∫

Ω

〈γj(x)(∇uj(x) −∇vj(x)),∇uj(x) −∇vj(x)〉 dx,

and using the same identities as above, conclude that

‖Fj − Hj‖L2(Ω) ≤ β‖∇uj −∇vj‖L2(Ω).

Hence Fj − Hj converges strongly to zero in L2.
It is well-known (see [15]) that the strong convergence just shown implies that the

Young measures corresponding to the two sequences of pairs

{(Fj ,∇uj)}, {(Hj ,∇vj)}
is in fact the same family of measures. In addition, the sequence of pairs {(Hj ,∇vj)}
can be shown to be equiintegrable in L2(Ω). This concludes the proof.

As a direct consequence of this proposition, it is clear that our main concern is
to deal with probability measures ν (no dependence on x) supported in the union
Λα ∪ Λβ that are div-curl Young measures. Our strategy is therefore to reformulate
the relaxation of the initial optimal design problem in terms of this class of measures.

We turn to the situation of our design problem where m = 1 so that the state u
is a single function, and ∇u(x) and F (x) are vectors in RN . The relaxation of the
original optimal design problem in terms of this family of measures reads as

Minimize in ν :
∫

Ω

[
aαt(x)

∫
RN

|λ|2 dν(1)
x,α(λ) + aβ(1 − t(x))

∫
RN

|λ|2 dν
(1)
x,β(λ)

]
dx

subject to

ν = {νx}x∈Ω , νx = t(x)νx,α + (1 − t(x))νx,β is a div-curl Young measure,

supp νx,γ ⊂ Λγ , γ = α, β,

∫
Ω

t(x) dx = t0|Ω|,

F (x) =
∫
RN

ρ dνx(λ, ρ), div F = 0 weakly in Ω,

∇u(x) =
∫
RN

λ dνx(λ, ρ), u = u0 on ∂Ω.

To proceed further with the analysis of this relaxed formulation, we regard x ∈ Ω as
a parameter, and put

ν = νx, ρ = F (x), λ = ∇u(x), t = t(x).

If we let CQW(t, ρ, λ) stand for the minimum of

aαt

∫
RN

|x|2 dν(1)
α (x) + aβ(1 − t)

∫
RN

|x|2 dν
(1)
β (x)
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under the constraints

ν = tνα + (1 − t)νβ is a div-curl Young measure, supp νγ ⊂ Λγ , γ = α, β,

ρ =
∫
RN

y dν(x, y), λ =
∫
RN

x dν(x, y),

then, basically because of the localization property of div-curl Young measures, we
find a relaxed formulation at the level of the first moments of div-curl Young measures,
namely,

Minimize in (t, F, u) :
∫

Ω

CQW (t(x), F (x),∇u(x)) dx

subject to

0 ≤ t(x) ≤ 1,

∫
Ω

t(x) dx = t0|Ω|, div F = 0 weakly in Ω, u = u0 on ∂Ω.

See [17] for more details on this passage. The notation CQW comes from the term
“constrained quasiconvexification.”

It is also of the greatest relevance to detect an optimal feasible measure μ(t,ρ,λ)

furnishing the optimal value CQW(t, ρ, λ), because once we find optimal triplets
(t, F,∇u) for this last variational problem, the family of measures

νx = μ(t(x),F (x),∇u(x)) (7)

will be optimal for the previous relaxation in terms of measures, and hence will provide
the information to build optimal microstructures for our optimal design problem. Our
task is to explore and compute CQW(t, ρ, λ), and detect at least one optimal div-curl
measure μ(t,ρ,λ).

3. Relaxation

Let ν be a div-curl Young measure supported in the union

Λ = Λα ∪ Λβ

where
Λγ = {(x, y) ∈ RN × RN : y = γx},

a linear manifold in RN × RN . We can decompose ν = tνα + (1 − t)νβ where νγ

is a probability measure (most likely not a div-curl Young measure itself) supported
in Λγ .

Let us look at the first moment of ν

(λ, ρ) =
∫

Λ

(x, y) dν(x, y) = t

∫
RN

(x, αx)ν(1)
α (x) + (1 − t)

∫
RN

(x, βx)ν(1)
β (x),
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where ν
(1)
γ is the projection of νγ onto the first copy of RN of the product RN ×RN .

If we put

λγ =
∫
RN

x dν(1)
γ (x),

then
λ = tλα + (1 − t)λβ , ρ = tαλα + (1 − t)βλβ .

From these two identities, we can express λγ in terms of λ and ρ. Namely,

λα =
1

t(β − α)
(βλ − ρ), λβ =

1
(1 − t)(β − α)

(ρ − αλ).

On the other hand, the commutation with the inner product Lemma 1.3 yields∫
Λ

x · y dν(x, y) = λ · ρ.

But the integral on the left-hand side can be written

tα

∫
RN

|x|2 dν(1)
α (x) + (1 − t)β

∫
RN

|x|2 dν
(1)
β (x).

We will consider the variables

sγ =
∫
RN

|x|2 dν(1)
γ (x) ∈ [0, +∞).

By Jensen’s inequality we must enforce the constraints

sγ ≥ |λγ |2.

Let us turn to the cost functional and check that it can be explicitly expressed in
terms of these variables sγ as well. Indeed, the cost functional is

aαtsα + (1 − t)βsβ .

Altogether, we would like to solve the linear programming problem in the variables
(sα, sβ)

Minimize in (sα, sβ) ∈ R2 : aαtsα + aβ(1 − t)sβ

subject to the constraints

λ · ρ = tαsα + (1 − t)βsβ ,

sα ≥ 1
t2(β − α)2

|βλ − ρ|2, sβ ≥ 1
(1 − t)2(β − α)2

|ρ − αλ|2.
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A first issue is to realize that the set of vectors for which the constraints yield a
non-empty set takes place if

[α(1 − t) + βt]|ρ|2 + αβ[β(1 − t) + αt]|λ|2 − [2αβ + t(1 − t)(β − α)2]λ · ρ ≤ 0.

This inequality can be rewritten, after some elementary algebra, in a more transparent
form as follows ∣∣∣∣ρ − 2αβ + t(1 − t)(β − α)2

2[α(1 − t) + βt]
λ

∣∣∣∣ ≤ (β − α)2t(1 − t)
2[α(1 − t) + βt]

|λ|. (8)

In the variable ρ, this condition represents a certain ball in RN with center and radius
depending on λ, t, α, and β.

When this relationship between λ and ρ holds, then the feasible set for the above
linear programming problem is non-empty, in fact it is a bounded segment in R2.
Thus, the optimal solution will be attained at one of its two vertices, depending on
the particular values of the coefficients aα and aβ . In fact, it is elementary to check,
by using the linear relationship between the variables sα and sβ , that if αaβ−βaα ≥ 0
then the optimal value corresponds to taking

sβ =
1

(1 − t)2(β − α)2
|ρ − αλ|2,

while if αaβ − βaα ≤ 0, then the optimal value is found at the vertex with

sα =
1

t2(β − α)2
|βλ − ρ|2.

It is then easy, but a bit tedious, to perform the computations for any specific choice
of these two coefficients.

It is also important to check that all of the feasible triplets (t, λ, ρ) are achievable
by div-curl laminates. This is again an elementary computation that must be however
performed with some care. The version we need here is purely a translation of the
same computations in [16]. These can also be found in [17]. Before the precise
statement, we introduce some notation. Set

g(λ, ρ) = α2β2|λ|4 + |ρ|4 + (α2 + 6αβ + β2)(λ · ρ)2 − 2αβ|λ|2|ρ|2
− 2(α + β)(αβ|λ|2 + |ρ|2)λ · ρ,

ri =
1
2

+
1

2(β − α)λ · ρ
[
αβ|λ|2 − |ρ|2 + (−1)i

√
g(λ, ρ)

]
, i = 1, 2

z =
1

t(β − α)
(βλ − ρ), wi =

−1
(β − α)(1 − ri)

(αλ − ρ),

wj =
−rj

t(β − α)(1 − rj)
(αλ − ρ), si,j =

(1 − ri)[t(1 − rj) − (1 − t)rj ]
t(1 − rj) − (1 − ri)rj

, i = j.
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Lemma 3.1. The triplets (t, λ, ρ) associated with the vertices of the admissible seg-
ment above correspond to second order div-curl laminates in which three pairs of
vectors participate. In particular, for the vertex corresponding to

sα =
1

t2(β − α)2
|βλ − ρ|2,

it is given explicitly by

νi,j = si,jδ(wi,βwi) + (1 − si,j)
(

t

1 − si,j
δ(z,αz) +

1 − si,j − t

1 − si,j
δ(wj ,βwj)

)
,

for i = j.

The proof of this lemma is nothing but to check some algebra with the set of
formulae given before the statement of the lemma. Namely,

(z − wj) · (αz − βwj) = 0,

(wi − zi,j) · (βwi − Zi,j) = 0,

zi,j =
t

1 − si,j
z +

1 − si,j − t

1 − si,j
wj , Zi,j =

t

1 − si,j
αz +

1 − si,j − t

1 − si,j
βwj ,

(λ, ρ) = si,j(wi, βwi) + (1 − si,j)
(

t

1 − si,j
(z, αz) +

1 − si,j − t

1 − si,j
(wj , βwj)

)
.

These div-curl Young measures (and the similar ones for the other vertex) are the
optimal measures μ(t,ρ,λ) providing the exact value for CQW (t, ρ, λ). They should be
used to build optimal microstructures when we have an optimal solution (or a suitable
approximation of it) of the relaxed problem in terms of first moments (F,∇u).

We have thus proved that CQW (t, λ, ρ) is the minimum of the preceding linear
programming problem, namely the minimum of

Minimize in (sα, sβ) ∈ R2 : aαtsα + aβ(1 − t)sβ

subject to the constraints

λ · ρ = tαsα + (1 − t)βsβ ,

sα ≥ 1
t2(β − α)2

|βλ − ρ|2, sβ ≥ 1
(1 − t)2(β − α)2

|ρ − αλ|2.

Notice that CQW = +∞ if (8) does not hold. Then, based on the comments at the
end of the last section, we can write down an explicit relaxation as follows.

Theorem 3.2. The variational problem

Minimize in (t, u, F ) :
∫

Ω

m(t(x),∇u(x), F (x)) dx
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subject to

0 ≤ t(x) ≤ 1,

∫
Ω

t(x) dx = t0|Ω|,

u ∈ H1(Ω), u = u0 on ∂Ω, F ∈ L2(Ω), div F = 0 weakly in Ω,

is a relaxation of the initial optimal design problem in the sense that it admits optimal
solutions, its minimum coincides with the infimum of the original problem, and op-
timal solutions encode, in the sense of Young measures, the optimal microstructures
for the design problem.

As an illustration, take aβ = 1, aα = 0. Then the optimal solution in the linear
programming problem defining CQW is achieved for

sβ =
1

(1 − t)2(β − α)2
|ρ − αλ|2,

and the value of the minimum is

CQW(t, λ, ρ) =
1

(1 − t)(β − α)2
|ρ − αλ|2

if (8) holds. If not, then the infimum is +∞ as the feasible set for the mathematical
programming problem is empty. For this particular choice of the coefficients aα, aβ ,
we therefore have

CQW(t, λ, ρ) =

{
1

(1−t)(β−α)2 |ρ − αλ|2, if (8) holds,

+∞, else.

4. A final transformation for the relaxed problem

The form of the relaxed problem in Theorem 3.2 is somewhat inappropriate, as it
does not show a similar structure as the optimal design problem it comes from. The
main drawback is that we do not have a state equation as such. We now elaborate a
bit that relaxation in order to write it in a more familiar form.

We introduce an additional design variable s ∈ B where B is the unit ball in RN .
The relationship between t, s, λ, and ρ comes from (8). Indeed, if we put

s =
2[α(1 − t) + βt]

t(1 − t)(β − α)2|λ|ρ − 2αβ + t(1 − t)(β − α)2

t(1 − t)(β − α)2
λ

|λ| , (9)

then s ∈ B. So that

ρ =
2αβ + t(1 − t)(β − α)2

2[α(1 − t) + βt]
λ +

t(1 − t)(β − α)2

2[α(1 − t) + βt]
|λ|s. (10)
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Revista Matemática Complutense

2007: vol. 20, num. 1, pags. 239–255



Pablo Pedregal Div-curl Young measures and optimal design in any dimension

Put even further

ϕ(t, s, λ) =
2αβ + t(1 − t)(β − α)2

2[α(1 − t) + βt]
λ +

t(1 − t)(β − α)2

2[α(1 − t) + βt]
|λ|s.

Since ρ is the variable for F in Theorem 3.2, we are led to consider the state equation

div ϕ(t(x), s(x),∇u(x)) = 0 in Ω, u = u0 on ∂Ω.

This is a non-linear, regular elliptic equation because it comes from a relaxation of
a well-posed elliptic problem (for each fixed χ). After some elementary algebra, the
cost density can be written in the particular case aβ = 1, aα = 0, as

ψ(t, s, λ) =
(1 − t)

4[α(1 − t) + βt]2
∣∣(2α + t(β − α))λ + t(β − α)|λ|s∣∣2.

In general ψ and CQW are related through (9) and (10). Therefore, our final relaxed
problem, through which we can understand optimal microstructures for our initial
optimal design problem, is precisely the one stated in Theorem 0.1. Once we have
solved this new relaxed optimal design problem in the form (t(x), s(x),∇u(x)), opti-
mal div-curl laminates are found by first using (10) to find F (x)(= ρ(x)), and then
by putting

νx = μ(t(x),F (x),∇u(x))

according to (7) and Lemma 3.1.
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