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Goal-oriented error estimation for transient parabolic problems

Giovanni CALDERÓN and Pedro DÍEZ

Abstract

This work focuses on controlling the error and adapting the discretization in the context
of parabolic problems. In order to obtain a sound mathematical framework, the time domain
is discretized using a Discontinuous Galerkin (DG) approach. This allows to formulate the
time stepping procedure in a variational format. The error is measured in the basis of an
output of interest of the solution, defined by a linear functional. A dual problem, associated
with this linear output is introduced. The dual problem has to be solved backward in time.

An error representation is introduced, based on the weak residual of the primal error
applied to the dual solution. Two different alternatives are studied to estimate the error in
the dual solution: 1) recovery based error estimators and 2) implicit residual type estimators.
Once the error assessment is performed implicitly in the dual problem, the obtained estimate
is plugged into the primal residual to obtain the error in the quantity of interest. The
implementation of the estimator is drastically simplified by using the weak version of the
residual instead of the strong version used in previous works.

Thus, the output error is assessed using a mixed technique, explicit for the primal problem
and implicit for the dual. In the framework of adaptive computations of transient problems,
this approach is very attractive because it allows using first the implicit scheme for the
dual problem and then integrating the primal problem, estimating the error explicitly and
eventually adapting the space-time grid. Thus, at every time step of the time marching
scheme, the estimate of the dual error is injected into the primal residual (explicit estimate
for the primal problem).

1 Introduction

The modelling of transient diffusive phenomena leads to second order parabolic PDEs. This

is the case of the transient heat equation, which is extensively used to simulate the thermal

behavior of mechanical devices and structures. For instance, in the context of structural analysis

of bridges, the loads induced by thermal effects have a significant influence in the final design.

From a practical viewpoint, the thermal load is characterized by the temperature gradient in a

characteristic cross section of the bridge. The temperature gradient is a simple postprocess of

the temperature distribution in the cross section at a given instant T , say u(x, T ). Thus, the

quantity of interest is described by a linear functional J
(
u
)
.

The assessment of the error in a given quantity of interest is performed introducing a dual

problem in which the linear functional J
(
·
)

appears in the right-hand side of the governing

equation and thus plays the role of an external load. In the context of elliptic problems, the
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combination of standard energy error estimates for both the primal and the dual problems allows

to assess the error in the output of interest [1, 2]. In the parabolic setup, the work of Machiels

[3] follows the same idea neglecting the error introduced by the time discretization. Also for

parabolic problems, Rannacher and co-workers [4] explicitly express the output error in terms of

residuals associated with the strong form of the primal problem and the (unknown) dual solution,

following the pioneering work of Eriksson, Johnson and coworkers [5, 6].

Here, the error in the quantity of interest is represented explicitly in terms of the dual solution

using the weak residual. Using the weak residual instead of the strong one simplifies the imple-

mentation because there is no need of computing flux jumps across the element edges. Thus, once

the error in the dual solution is estimated, it can be directly injected into the primal residual to

easily obtain a sharp approximation of the error in the quantity of interest.

The assessment of the error in the dual problem is performed using two different approaches:

recovery type estimates and implicit residual type estimates. The recovery estimates are extremely

simple to implement and prove to be very accurate in the application examples. The implicit

residual type approach requires solving local problems in the space-time elements, involving a

larger programming complexity. The latter approach is however interesting if the dual solution

is non-smooth. This lack of smoothness may be caused by a number of factors. For instance, the

presence of discontinuities in the data (different materials) or sharp variations in the source terms

produce non-smooth (only C0, not C1) solutions. The residual type estimates allow capturing this

kind of non-smooth error functions, while the recovery type estimates obviously fail in these

situations. The performance of the two approaches is compared in the numerical examples.

The remainder of the paper is structured as follows. The model problem, the space and time

discretization and the quantities of interest under consideration are presented in Sect. 2. Sect. 3

introduces the error equations and the representation of the error in the quantities of interest in

terms of the primal and the dual errors. The adopted error estimation strategies for the dual

problem are described in Sect. 4. Finally, the numerical tests demonstrating the performance of

the proposed methodology are shown in Sect. 5.
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2 Problem statement

2.1 Model problem

Let Ω ∈ Rd be a bounded d-dimensional open domain, where d is equal to 1, 2 or 3. The problem

to be solved is stated as follows: find u(x, t), with x ∈ Ω ∈ Rd and t ∈ I :=]0, T [ such that

u̇−∇ · (α∇u) = f in Ω× I (1a)

u(x, 0) = u0(x) for x ∈ Ω (1b)

u(x, t) = 0 for x ∈ ∂Ω, t ∈ I (1c)

where f is the source term, the coefficient α accounts for the thermal conductivity (the capacity

and density terms affecting the u̇ term are set to 1) and u̇ stands for ∂u
∂t . The homogeneous Dirich-

let boundary condition (1c) is adopted in the presentation for the sake of simplicity. Accounting

for different boundary condition types as Dirichlet non-homogeneous, Neumann or Robin does

not introduce any additional conceptual difficulty. The numerical examples presented in Sect. 5

use actually different types of boundary conditions.

2.2 Space discretization

Problem (1) is discretized using standard Finite Elements (FE) in space. The discretization is

associated with a mesh of characteristic size H inducing the functional space VH ⊂ H1
0(Ω). The

dependence on time is left to the coefficients (nodal unknowns) of uH in the FE basis:

u(x, t) ≈ uH(x, t) =
npoin∑
i=1

ui(t)Ni(x) = uTN (2)

npoin being the number of nodes in the FE mesh discretizing Ω, u := [u1(t) u2(t) · · · unpoin(t)]T

and N := [N1(x) N2(x) · · · Nnpoin(x)]T.

Thus, a semi-discrete form is obtained: find uH(t) ∈ VH such that(
u̇H(t), v

)
+ a

(
uH(t), v

)
= l

(
v
)
, for all v ∈ VH , (3)

where

a
(
u, v

)
:=

∫
Ω

α∇u ·∇v dΩ, l
(
v
)

:=
∫

Ω
fv dΩ

and
(
·, ·

)
stands for the usual L2 product in Ω. Equation (3) results in a system of ODEs for the

time dependent coefficients (nodal unknowns) of uH . Equation (3) is rewritten in matrix form

Mu̇ + Ku = f , (4)
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where M is a mass (or capacity) matrix, which is the discrete form of
(
·, ·

)
in the basis of VH ,

K is a stiffness (or conductivity) matrix discretizing a
(
·, ·

)
and f is a force vector, which is the

discrete counterpart for l
(
·
)
.

The most common approach for solving (3) or (4) is to introduce a time discretization

{t0, t1, . . . , tN} and to use any time marching scheme yielding approximations un to the nodal

values vector in the corresponding times, un ≈ u(tn) for n = 0, 1, . . . , N .

In order to properly introduce the error assessment in some quantity of interest, the time dis-

cretization must be derived in a variational format. The Discontinuous Galerkin (DG) approach

on time is usually adopted to fulfill this requirement [3, 4].

2.3 Time discretization. Discontinuous Galerkin formulation

As previously mentioned, a time grid is introduced: 0 = t0 < t1 < · · · < tn < · · · < tN = T . The

time slabs In :=]tn−1, tn] and their measure 4tn = tn − tn−1 (time steps) are also introduced for

n = 1, 2, . . . , N . Let 4t denote the characteristic time step of the time grid. A discrete functional

space on the time interval I is defined associated with the time discretization:

V4t := {v : I → R; v|t∈In ∈ Pq(In)} ,

where Pq(In) stands for space of the polynomials of degree less than or equal to q in In. Note

that, in general, the functions in V4t are discontinuous at the points of the time grid, tn for

n = 1, 2, . . . , N − 1.

A discrete functional space on Ω×I is introduced combining the space and time discretizations,

VH and V4t:

VH
4t :=

{
v : Ω× I → R

∣∣∣∀t ∈ I v(·, t) ∈ VH and ∀x ∈ Ω v(x, ·) ∈ V4t.
}

From a practical viewpoint, taking uH in VH
4t is equivalent to choosing the coefficients ui in V4t,

see (2).

The DG solution is uH ∈ VH
4t such that

B
(
uH , v

)
= L

(
v
)
, for all v ∈ VH

4t, (5)

where

B
(
uH , v

)
:=

N∑
n=1

∫
In

{(
u̇H , v

)
+ a

(
uH , v

)}
dt +

N−1∑
n=1

(
JuHKn, v(·, tn)

)
+

(
uH(·, 0+), v(·, 0)

)
(6)
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and

L
(
v
)

=
∫

I

(
f, v

)
dt +

(
u0, v(·, 0)

)
. (7)

The notation JuHKn denotes the jump of uH at tn, that is

JuHKn := lim
ε→0

uH(·, tn + |ε|)− uH(·, tn − |ε|).

Using the superscripts “-” and “+” for, respectively, left and right limits, the jump is described by

JuHKn := uH(·, tn+)− uH(·, tn−).

The jump at t0 is also included in (5). The value of uH in t0− is replaced by the initial

condition given in (1b), u0. The term including u0 is in the right-hand-side of (5) because it is

part of data. Once it is computed, the value of uH in t0+ is different than u0 up to the error

introduced by the discretization in the numerical scheme.

Note that the broken character of VH
4t (discontinuous at every tn) decouples the computation

of uH in every time slab. Once uH is known at “t(n−1)−”, this value is taken as an initial condition

for the time slab In and the following equation has to be solved:∫
In

{(
u̇H , v

)
+ a

(
uH , v

)}
dt+

(
uH(·, t(n−1)+), v(·, tn−1)

)
=

∫
In

(
f, v

)
dt+

(
uH(·, t(n−1)−), v(·, tn−1)

)
(8)

for all v in the restriction of VH
4t to the time slab In.

2.4 Exact and reference solutions

The continuous counterpart of VH
4t is

V :=
{

v : Ω× I → R
∣∣∣∀t ∈ I v(·, t) ∈ H1

0(Ω) and ∀x ∈ Ω v(x, ·) ∈ L2(I)
}

The exact solution of (1) is also the solution of the following continuous weak equation: find u

such that ∫
I

{(
u̇, v

)
+ a

(
u, v

)}
dt +

(
u(·, 0), v(·, 0)

)
=

∫
I

(
f, v

)
dt +

(
u0, v(·, 0)

)
, (9)

for all v ∈ V. Note that u is continuous along time and therefore its time jumps are zero.

Consequently, equation (9) may be written as a particular case of (5). That is, u is such that

B
(
u, v

)
= L

(
v
)
, for all v ∈ V, (10)
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where the definition of B
(
·, ·

)
given in (6) is still valid because, for u continuous, the jump term

vanishes.

From a practical viewpoint, the error estimation strategies are formulated in the basis of a

reference solution, much closer to u than the approximate solution uH . In the remainder of the

paper we will use a reference solution uh associated with a finer spatial mesh of characteristic

size h and a time grid of characteristic time step δt. It is assumed that h � H and δt � 4t.

The reference time grid is denoted as 0 = t̃0 < t̃1 < · · · < t̃n < · · · < t̃Ñ = T . The time

slabs Ĩn :=]t̃n−1, t̃n] and the time steps δtn = t̃n − t̃n−1 are denoted in the same fashion. The

corresponding functional space is denoted as Vh
δt. Thus, the reference solution uh ∈ Vh

δt is such

that

B
(
uh, v

)
= L

(
v
)
, for all v ∈ Vh

δt, (11)

where the definition of B
(
·, ·

)
must be modified

B
(
uh, v

)
:=

Ñ∑
n=1

∫
Ĩn

{(
u̇h, v

)
+ a

(
uh, v

)}
dt +

Ñ−1∑
n=1

(
JuhKn, v(·, t̃n)

)
+

(
uh(·, 0+), v(·, 0)

)
(12)

Usually, the reference time grid is taken as a refinement of the original time grid. That is, for

every n = 0, 1, 2, . . . , N there exists ñ such that tn = t̃ñ . In this case, the definition of B
(
·, ·

)
introduced in (6) is a particular case of the definition of (12) (they coincide for any function in

VH
4t).

Thus, in the following, the bilinear form B
(
·, ·

)
is taken as described in (12), that is including

the jumps in all the points of the refined time grid. This definition is the most general in the

sense that it unifies the writing of the equations for uH , u and uh, (5), (10) and (11) respectively.

2.5 Quantity of interest and dual problem

Our goal is to assess the error in some quantity of interest. We restrict ourselves to the functional

outputs of the form

J
(
u
)

=
(
j, u(·, T )

)
, (13)

that is, we are interested on a quantity depending on the solution at the final time t = T . The

function j(x) in (13) is in L2(Ω) and stands for the Riesz representation of the linear output.

Alternatively, it is also possible to consider an output accounting for the behavior of the



Goal-oriented error estimation for transient parabolic problems 81

solution all along the time, namely,

J
(
u
)

=
∫

I
w(t)

(
j, u(·, t)

)
dt, (14)

where w(t) is a weight function modulating the contribution of every time to the quantity of

interest. For the sake of simplicity we will keep the form described in (13). However, the

generalization given in (14) does not introduce any additional difficulty.

Thus, the Dual Problem is introduced as an auxiliary problem to assess the error in the

quantity of interest. Let ϕ ∈ V be such that

B
(
v, ϕ

)
= J

(
v
)

for all v ∈ V. (15)

Recall that the jump terms in B
(
v, ϕ

)
are null for v ∈ V, then (15) reads∫

I

{(
v̇, ϕ

)
+ a

(
v, ϕ

)}
dt +

(
v(·, 0), ϕ(·, 0)

)
=

(
j, v(·, T )

)
for all v ∈ V. (16)

After time integration by parts, (16) yields∫
I

{
−

(
ϕ̇, v

)
+ a

(
ϕ, v

)}
dt +

(
ϕ(·, T ), v(·, T )

)
=

(
j, v(·, T )

)
for all v ∈ V. (17)

Comparing (17) with (9) and (1), it is easily shown that this weak form of the dual problem is

equivalent to the following strong form:

ϕ̇ + ∇ · (α∇ϕ) = 0 in Ω× I (18a)

ϕ(x, T ) = j(x) for x ∈ Ω (18b)

ϕ(x, t) = 0 for x ∈ ∂Ω, t ∈ I (18c)

Note that the initial condition (18b) is given at t = T . The time integration must therefore be

performed backward in time. The problem is still physically and mathematically sound because

the sign of the diffusion term, ∇ · (α∇ϕ), has changed with respect to the primal problem (1).

The cost of approximating ϕ is the same as approximating u. In the following the approxi-

mation to ϕ in VH , ϕH is considered.

3 Error representation

3.1 Primal error equation

The error e := u−uH is inserted in (10) and the following weak equation for the error is derived:

find e ∈ V such that

B
(
e, v

)
= L

(
v
)
−B

(
uH , v

)
=: RP

(
v
)
, for all v ∈ V, (19)
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where RP
(
·
)

stands for the weak residual in the primal problem. Using (6) and (7) the expression

for RP
(
·
)

is

RP
(
v
)

:=
∫

I

(
f, v

)
dt +

(
u0, v(·, 0)

)
−

(
uH(·, 0+), v(·, 0)

)
−

N∑
n=1

∫
In

{(
u̇H , v

)
+ a

(
uH , v

)}
dt−

N−1∑
n=1

(
JuHKn, v(·, tn)

)
.

Note that for any v in V, RP
(
v
)

is explicitly computed once uH is available. It is worth noting

that the expression for RP
(
v
)

does not require computing any spatial jump (across element

edges). The only jumps required, JuHKn are the jumps in time, which are in this context very

easily computed.

Comparing (10) and (5) and using VH
4t ⊂ V, the following orthogonality result is found:

B
(
e, v

)
= RP

(
v
)

= 0, for all v ∈ VH
4t. (20)

The reference error eh := uh − uH is the solution of the discrete counterpart of (19)

B
(
eh, v

)
= RP

(
v
)
, for all v ∈ Vh

δt. (21)

Moreover the orthogonality condition (20) is also verified replacing e by eh (recall VH
4t ⊂ Vh

δt ⊂ V).

The global error equation (19) or its discrete form (21) are computationally unaffordable.

The error estimation strategies based on solving these equations locally (restricted to an element

or a patch of elements) yield local approximations of e (or eh) that can be used to evaluate

energetic quantities. Generally, in order to evaluate J
(
e
)
, the approximation to e resulting from

the standard estimates is useless. However, a proper combination of energetic estimates in both

the primal and the dual problems allows assessing the error in the quantity of interest, J
(
e
)

or

J
(
eh

)
.

3.2 Using ϕ to assess J
(
e
)

The solution of the dual problem given by (15) and (18), ϕ, allows representing the error in the

quantity of interest using the residual.

Recall that ϕ is in V and therefore v can be replaced by ϕ in (19), that is,

B
(
e, ϕ

)
= RP

(
ϕ
)
. (22)
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Moreover, e is in V and therefore v can be replaced by e in (15), that is,

B
(
e, ϕ

)
= J

(
e
)
. (23)

An error representation follows from (22) and (23):

J
(
e
)

= RP
(
ϕ
)
. (24)

This error representation gives the error in the quantity of interest, J
(
e
)
, as an explicit function

of ϕ and uH . Recall that the residual RP
(
·
)

depends on uH , see (20). The residual is defined

by integrals over Ω × I. Thus, using the error representation (24), the error in the quantity of

interest may be easily split into local contributions, from each element and time slab.

Using the orthogonality given by (20), the r.h.s. term of (24) may be modified by adding (or

subtracting) any function in VH
4t, that is

J
(
e
)

= RP
(
ϕ− vH

)
. (25)

In the following we are interested in using vH = ϕH , where ϕH is the DG approximation of

ϕ in VH
4t, and vH = ΠHϕ, where ΠHϕ is the nodal interpolant of ϕ in VH

4t. Obviously, ϕ and

ΠHϕ are not known but ϕH can be computed in the same fashion as uH . However, once ϕH is

obtained, a standard error estimate can be used to approximate ε := ϕ − ϕH . The estimate for

ε is supposed to approximate RP
(
ε
)

properly because the computation of RP
(
·
)

involves only

energetic quantities.

Thus, the error representation (25) suggests using an implicit error estimation strategy for

estimating the error ε in the dual solution or, possibly, for ϕ − ΠHϕ. Once ε or ϕ − ΠHϕ are

fairly approximated, the error assessment for the quantity of interest is purely explicit, see (20)

and (25).

The same rationale applies if the reference solution ϕh, in the refined space Vh
δt, is considered

instead of the exact solution ϕ. In this case the error to be evaluated (in the quantity of interest)

is eh, represented by

J
(
eh

)
= RP

(
ϕh − vH

)
, for all vH ∈ VH

4t. (26)

Then, the reference error, J
(
eh

)
is evaluated as a function of εh := ϕh − ϕH or ϕh − ΠHϕh.

The next section introduces an error estimation strategy yielding approximations for εh and

ϕh −ΠHϕh.



84 Giovanni CALDERÓN and Pedro DÍEZ

4 Error estimation

4.1 General strategy and requirements

As already noted, we are concerned with approximating the solution of the dual problem. From

a practical viewpoint, we focus on approximating the reference solution ϕh rather than the exact

solution ϕ. Obviously, computing ϕh is equivalent to compute the reference error, εh := ϕh−ϕH .

The global computation of ϕh solving equation (15) in Vh
δt would result in a prohibitive

computationally cost. The error estimation procedures we present in this section provides an

approximation ϕ? to ϕh, obtained after local computations and using the coarse solution ϕH .

In this section two different strategies are proposed to obtain ϕ?. First, ϕ? is obtained by

a simple postprocessing of ϕH . A recovery procedure is used following the ideas of Wiberg

and coworkers [7]. A second approach is used, based on the philosophy of the residual type

estimators with the simplest local boundary conditions [8]. As previously noted, this is equivalent

to obtaining the corresponding error version, ε? := ϕ? − ϕH .

Actually, due to the local assumptions needed to compute ϕ?, the approximation ϕ? ≈ ϕ (i.e.

ε? ≈ εh) is not always properly satisfied. That is, the estimated error is not a good approximation

for εh (i.e. ε? 6≈ εh). Nevertheless, ε? is found to be a proper approximation for ϕh − ΠHϕh,

that is ϕ? ≈ ϕh −ΠHϕh + ϕH . This is because ϕ? is computed from the nodal values of ϕH and

therefore the values of ϕ? at the nodes of the H-mesh are very close (or coincide) with the values

of ϕH . Recall that this is enough to obtain a good estimate for J
(
eh

)
.

4.2 Recovery estimates

The first idea is to recover a function ϕ? in Vh
δt from the solution ϕH based on local computations.

The goal is to obtain ϕ? such that ϕ? ≈ ϕh, that is to enhance the quality of ϕH .

Recall that ϕ? is required to evaluate RP
(
ϕ?

)
, see (20). Therefore, ϕ? must be used as an

argument of the L2(Ω) product. Thus, recovering fluxes is not sufficient. Using the mechanical

language, we require displacements and not only stresses.

Previous work on recovering of displacements is due to Wiberg and coworkers [7], where the

recovered solution is obtained in an enriched finite element space from the approximation in VH
4t

by a least squares approximation.

We adopt here the same philosophy. However, some peculiarities of the present approach

must be pointed out:



Goal-oriented error estimation for transient parabolic problems 85

xi-2                    xi-1                     xi                    xi+1

ϕΗ

Figure 1: Illustration of the space recovery procedure in 1D. Every element of the mesh ]xi−1, xi[
is associated with a patch ]xi−2, xi+1[ and the corresponding nodes of the H mesh (marked with
•). A polynomial is fitted to the values in the •-nodes. This polynomial is evaluated to obtain
the enhanced values in the refined h-mesh (nodes marked with �).

• We assume that the selected reference space is “h-refined” both in space and time. That

is, there is some refinement factor r (r = 2, 3, 4 . . . ) such that h = H/r and δt = 4t/r.

We are not considering so far the possibility of enriching the reference space using the “p”

approach, that is, increasing the order of interpolation.

• The time and the space recoveries are performed independently.

• The space recovery is performed locally, in patches of elements, centered in every element

of the mesh. The values of ϕH at the nodes of the H-mesh are used as the input data and

a higher order polynomial is fitted. Once the polynomial is obtained it is evaluated in the

nodes of the h-mesh to describe ϕ?.

• The time recovery is also performed locally, using a patch of three time slabs. That is, to

determine ϕ? in In we use ϕH in In−1
⋃

In
⋃

In+1.

4.2.1 Space recovery

The space recovery procedure is defined for the solution freezed at some t ∈ I. This procedure is

used to recoverer an approximation ϕ?(·, t) in Vh from ϕH(·, t). The dependence on t is omitted

in the following to simplify the presentation. Thus, the main idea, following [7], is to smooth

out ϕH locally (in some patches of elements). Every element of the mesh generating VH , Ωk for

k = 1, . . . , nelem is associated with the patch ωk of elements surrounding Ωk, see figures 1 and 2.
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Figure 2: Illustration of the space recovery procedure in 2D. Every element of the mesh Ωk (a)
is associated with a patch ωk (shadowed in b). A polynomial is fitted to the values in the nodes
in ωk using a least squares criterion (b). This polynomial restricted to Ωk and it is evaluated to
obtain the enhanced values in the refined h-mesh (c).

tn-2                    tn-1                     tn                    tn+1

u

uH

tn-2                    tn-1                     tn                    tn+1

ϕ

ϕΗ

Figure 3: Illustration of the superconvergence property of DG. Forward integration of the primal
problem (top) and backward integration of the dual problem (bottom).

tn-2          tn-1         tn           tn+1

ϕΗ  

In

Figure 4: Illustration of the time recovery procedure. For every time slab In, the previous and
next time slabs are also considered to interpolate a cubic polynomial using the 4 values (in tn−2,
tn−1, tn and tn+1) that are assumed to be more accurate (for backward integration, the right
limits).
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In the simple 1D case represented in Fig. 1, the patch of elements involves 4 nodes of the

H-mesh (for interior elements). In this case a cubic polynomial is interpolated using the four

values of ϕH in these nodes to set the values of ϕ? in the nodes of the h-mesh.

In the 2D case, a quadratic polynomial is fitted to the nodal values of ϕH in ωk using a least

squares criterion. Following Fig. 2, the values of ϕH in the 16 nodes of the H-mesh in ωk are

used to fit a quadratic polynomial (6 d.o.f. in 2D). Once this polynomial is fitted, we evaluate

it in the nodes of the fine h-mesh in Ωk. The average of all the computed values is used for the

nodes of the h mesh involved in different patches (internal boundary of Ωk).

4.2.2 Time recovery

The time recovery procedure is defined for the solution located at some x ∈ Ω. It consists on

building up an enhanced approximation ϕ?(x, ·) in Vδt from ϕH(x, ·). The dependence on x is

omitted in the following to simplify the presentation.

The time recovery strategy proposed here exploits a well known superconvergence property of

the DG scheme. In the DG approximation the approximation in tn− (left limit) is much better

than the approximation in tn+. Obviously, if the time integration is performed backwards, the

accurate value is tn+. This property is standard for time DG schemes and it is illustrated in

Fig. 3.

Thus, using this fact, the restriction to the time slab In of the recovered function ϕ? is obtained

by a procedure similar to the 1D spatial recovery. This procedure is illustrated in Fig. 4. A cubic

polynomial is found interpolating the values of ϕH at the times tn−2, tn−1, tn and tn+1. Once the

polynomial is determined it is evaluated at the points of the refined time grid (generating Vδt) in

In to define the restriction of ϕ? to In.

4.3 Residual estimates

The reference error in the dual problem εh := ϕh − ϕH is the solution of the discrete residual

equation, analogous to (21),

B
(
v, εh

)
= RD

(
v
)
, for all v ∈ Vh

δt, (27)

where the residual in the dual problem is defined in the same fashion as RP
(
·
)

: RD
(
v
)

:=

J
(
v
)
− B

(
v, ϕH

)
. An alternative approach to build up a proper approximation to εh is to solve

locally the residual equation (27).
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The main difficulty for this kind of estimates is to set proper boundary conditions to the local

problems.

Here, we present a simple approach based on solving the restriction of (27) to every element

of the space-time mesh, that is to every Ωk × In for k = 1, 2, . . . , nelem and n = 1, 2, . . . , N .

In this case we need both initial conditions at Ωk×{tn} (recall that for ϕ the time integration

is performed backwards) and boundary conditions on ∂Ωk× In. Here we have made the following

choices:

• Initial condition at Ωk × {tn}. We assume, as in 4.2.2, that at t = tn, ϕH(·, tn+) is much

more accurate than ϕH(·, tn−). Thus we recover an approximation ϕ?
0(x) from ϕH(·, tn+)

using exactly the same procedure described in Sect. 4.2.1. ϕ?
0(x) is used as initial condition

for the local problem.

• Boundary conditions on ∂Ωk × In. For the sake of simplicity we set Dirichlet type boundary

conditions. We also extract the boundary conditions from a recovery procedure. Now, for

every node in ∂Ωk, we smooth out the restriction of ϕH to this node, using the recovery

strategy described in Sect. 4.2.2.

Once the initial and boundary conditions are set, the local problem is solved using a fine local

discretization (the restriction of Vh
δt to Ωk × In).

Note that this can be done either using ϕ? or ε? as unknowns. This is because the equations

for ϕh and εh are respectively (21) and (27). Recall that both ϕ? and ε? can be used as input of

RP
(
·
)

and the same estimate for J
(
e
)

is obtained.

4.4 Remarks on the implementation of an adaptive process

The definition of a proper adaptive strategy is beyond the scope of this paper. However, it is

worth noting that a reliable estimate using this approach will be extremely useful in an adaptive

process. The scheme of the implementation of this process may be summarized as follows:

• Set prescribed error values (tolerances). Compute ϕH integrating backwards. Estimate ϕ?.

• Start computation of uH . Loop on time steps.

– After each time step, compute the contribution to RP
(
ϕ?

)
of every element in the

time slab In.
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Figure 5: Example 1: Representation of the primal solution uH (bottom) and the dual solution
ϕH (top)

– Check if some of these contributions are too large and, if needed, refine either the

spatial mesh (reduce H) or the time grid (reduce 4t).

• End loop on time steps.

5 Numerical examples

5.1 Example 1: 1D synthetic problem

J
(
u
)

J
(
uh

)
J
(
uH

)
J
(
e
)

J
(
eh

)
0.3369 0.3367 0.3361 8.09× 10−4 6.09× 10−4

Table 1: Example 1: Values of the quantity of interest for the solutions and errors

RP
(
·
)

RP
(
·
)
/J

(
e
)

RP
(
·
)
/J

(
eh

)
ϕ?

1 (recov.) 6.09× 10−4 75.3% 100.1%
ϕ?

2 (resid.) 6.07× 10−4 75.0% 99.8%
ϕh 6.09× 10−4 75.2% 100.0%
ϕ 8.09× 10−4 100.0% 110.4%

Table 2: Example 1: Residuals giving approximations to errors in the quantity of interest. Ref-
erence solution with r = 2. Effectivity indices.

We consider the 1D spatial domain Ω :=]0, 1[ and time interval I =]0, 0.2[, i.e. T = 0.2. We

solve Problem (1) with α = 1 and f such that the exact solution is

u(x, t) := e−π2(t+t2) sin(πx),
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Figure 6: Example 1: Error distribution along time. Contributions to the error from every time
slab corresponding to exact error �, reference error M, estimated error with the recovery approach
O and estimated error with the residual approach ?. Note that the latter three (reference error
and two estimates) are practically identical

see Fig. 5. The solution u is such that (1b) is verified and the initial condition is set such that

the solution holds, that is u0(x) = u(x, 0). The quantity of interest is defined according to (13)

taking

j(x) = eπ2T sin(πx),

namely, the quantity of interest is a weighted average of the solution at the last time, at t = T .

The approximations uH and ϕH are computed with a uniform mesh of 30 two-noded linear

elements. The time grid is uniform with N = 20 and therefore 4t = T/N = 0.01. The solutions

uH and ϕH are displayed in Fig. 5.

The reference mesh is both determined by a refining factor of 2 (r = 2), see Tab. 2, and 6

(r = 6), see Tab. 3. Recall that h = H/r and δt = 4t/r.

For each value of r, two different recovered solutions, ϕ?
1 and ϕ?

2, are obtained, both in Vh
δt.

The first one is computed following the strategy described in Sect. 4.2 (recovery) and the latter

following the strategy introduced in Sect. 4.3 (residual).

The numerical results are summarized in tables 1, 2 and 3. It can be noted, comparing tables

1 and 2, that J
(
e
)

= RP
(
ϕ
)

and J
(
eh

)
= RP

(
ϕh

)
, as expected.

The estimates associated to ϕ?
1 and ϕ?

2 have similar quality. It is noted that both of them

are extremely good approximations of the reference error. This is the best one can expect from

solutions belonging to the reference functional space Vh
δt. Fig. 6 shows the values of the contri-
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butions to the error from each time slab. The coincidences between ϕ?
1 and ϕ?

2 and the reference

error are confirmed there. Moreover, if r increases the reference solution gets closer to the exact

solution. The estimates follow the same behavior as shown in Tab. 3.

RP
(
·
)

RP
(
·
)
/J

(
e
)

RP
(
·
)
/J

(
eh

)
ϕ?

1 (recov.) 7.86× 10−4 97.1% 99.7%
ϕ?

2 (resid.) 7.87× 10−4 97.3% 100.0%
ϕh 7.87× 10−4 97.3% 100.0%
ϕ 8.09× 10−4 100.0% 102.8%

Table 3: Example 1: Residuals giving approximations to errors in the quantity of interest. Ref-
erence solution with r = 6. Effectivity indices.

5.2 Example 2: 2D synthetic problem

J
(
u
)

J
(
uh

)
J
(
uH

)
J
(
e
)

J
(
eh

)
0.2601 0.2601 0.2597 0.463× 10−3 0.356× 10−3

Table 4: Example 2: Values of the quantity of interest for the solutions and errors

RP
(
·
)

RP
(
·
)
/J

(
e
)

RP
(
·
)
/J

(
eh

)
ϕ?

1 (recov.) 3.46× 10−4 74.8% 97.2%
ϕ?

2 (resid.) 4.26× 10−4 92.0% 119.6%
ϕh 3.56× 10−4 76.9% 100.0%
ϕ 4.60× 10−4 100.0% 129.4%

Table 5: Example 2: Estimated errors associated with different approximations of the dual
solution ϕ and effectivity indices with respect to the exact and the reference solutions.

We consider the 2D spatial domain Ω :=]0, 1[×[0, 1] and time interval I =]0, 0.2[, i.e. T = 0.2.

We solve Problem (1) with α = 1 and f such that the exact solution is

u(x, y, t) := 100e−10t−800(x−xm)2(y−ym)2 sin(πx) sin(πy)2,

where xm = ym = 0.1. The solution u is such that (1b) is verified and the initial condition is set

such that the solution holds, u0(x, y) = u(x, y, 0). The quantity of interest is defined according

to (13) taking

j(x, y) =
1
40

exp(2π2T ) sin(πx) sin(πy).
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Figure 7: Example 2: Representation of the solution uH at different times ( t = 24t, t = 84t,
t = 164t and t = 204t = T , from top to bottom)
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Figure 8: Example 2: Representation of the solution ϕH at different times( t = 24t, t = 84t,
t = 164t and t = 204t = T , from top to bottom)
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Figure 9: Example 2: Error distribution at t = 164t. Distributions estimated by recovery
approach (top), estimated by residual approach, exact error and reference error (bottom). All
are practically identical

The approximations uH and ϕH are computed with a uniform mesh of 30×30 four-noded quadri-

lateral elements. The time grid is uniform with N = 20 and therefore 4t = T/N = 0.01. The

solutions are displayed in figures 7 and 8.

The reference mesh is determined by a refining factor of 2 (r = 2). Thus, h = H/2 and

δt = 4t/2.

As in the previous example, the estimates ϕ?
1 and ϕ?

2 are computed, both in Vh
δt. The recov-

ery estimate ϕ?
1 follows the strategy described in Sect. 4.2 and the residual estimate ϕ?

2 follows

Sect. 4.3.

The numerical results are summarized in tables 4 and 5. It can be noted, also in this example,

comparing tables 4 and 5, that J
(
eh

)
= RP

(
ϕh

)
and J

(
e
)

= RP
(
ϕ
)
, as expected. Some examples

show a tiny difference between J
(
e
)

and RP
(
ϕ
)
. This is due to the error introduced by the

numerical quadrature in the integration of the exact solution, which is not a polynomial. Here,

this error is below the threshold of accuracy used for displaying the results.

The behavior of the recovery estimate is, in this example, similar to the previous one. The

effectivity corresponding to the reference error is very good (97.2%). The residual estimate is not

so sharp, presenting an effectivity index of approximately 92.0% w.r.t. the exact solution and
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119.6% w.r.t. the reference solution.

Fig. 9 shows the spatial error distribution at a given time (at different times the results are

similar). The exact, reference and estimated (both with the recovery and the residual approaches)

error distributions are practically identical, both in shape and values. The space distributions

depicted in Fig. 9 are the local restrictions (to Ωk and the corresponding time slab) of the residual

RP
(
·
)

evaluated in ϕ, ϕh, ϕ?
1 and ϕ?

2, respectively for the exact error, the reference error, the

recovery estimate and the residual estimate.

In this example, the recovery estimate performs extremely well, both for the value of the

quantity of interest and the local contributions to the error. Moreover, recall that the recovery

estimate is computationally less costly than the residual estimate.

These results motivate the use of the recovery estimate in the following example.

5.3 Example 3: thermal effects on a bridge cross-section

The evolution of the temperature distribution in a bridge cross-section is analyzed. The geometry

of the cross-section is displayed in Fig. 10. The thermal parameters are set to the following values

corresponding to concrete:

• thermal conductivity κ = 1.5 W / m oC

• density ρ = 2500 kg / m3

• specific heat c = 960 J / kg oC

This implies solving the model problem (1) with α = κ/(ρc) = 6.25× 10−7 m2/s and f = 0 (no

heat production in the concrete body). In this example, the Dirichlet boundary condition (1c) is

now replaced by a Robin type boundary condition

(κ∇u) · n = I + hc(uA − u)

where I stands for the heat flux induced by the solar radiation (it is of course a function of time

and it acts only in the top part of the boundary, Γ1), hc is a coefficient representing the convection

(it is taken uniform all along the boundary and equal to 15 J / m s oC) and uA is the external

temperature (varying with time).

The evolution of I and uA as functions of time is described by

I(t) =

{
2W
T0

sin2( π
T0

(t− ta)) for ta ≤ t ≤ ta + T0,

0 otherwise
and uA(t) = uM+

∆U

2
sin(

π

12
(t−tm)),
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Figure 10: Example 3: geometry of the bridge cross-section, lengths expressed in meters

where T0 is the duration of the day light (it is set to 10 hours), ta is the time of dawn (it is set

to 8:00 am) and W accounts for the total amount of energy given by the insolation per length

unit (it is set to 7000 J / m ), uM is the average ambient temperature, ∆U is the temperature

range (difference maximum minus minimum temperatures) and 12 stands for the duration of a

half day (in these expressions time is expressed in hours). Note that the natural time unit is the

hour and consequently, the magnitudes involving time (e.g. α) must be properly expressed in

terms of hours, that is α = 6.25× 10−7 m2/s = 2.25× 10−3 m2/ hour .

The mechanical load induced by the thermal effects is characterized by the so-called tempera-

ture gradient, which is the slope of a plane fitting the actual temperature distribution, see Fig. 11.

This temperature gradient is considered as the quantity of interest, that has to be assessed accu-

rately. Formally, the linear function uL(x, y) equivalent to the temperature distribution u(x, y)

(at a given time t) is obtained using a least squares fitting. Once uL(x, y) = a0 + axx + ayy is

determined, the quantity of interest is precisely the coefficient ay.

An orthogonal basis of the linear polynomials in the domain Ω is obtained in order to easily

compute ay as a direct function of u. Let P0(x, y) = 1 and P1(x, y) and P2(x, y) be obtained

using a Gram-Schmidt orthogonalization from the family {1, x, y}, that is

P1(x, y) = x−
∫
Ω xP0 dΩ∫
Ω P0P0 dΩ

P0 = x−
∫
Ω x dΩ
measΩ

= x− x̄

and

P2(x, y) = y −
∫
Ω y dΩ
measΩ︸ ︷︷ ︸

ȳ

−
∫
Ω y(x− x̄) dΩ∫
Ω(x− x̄)2 dΩ

(x− x̄),

where (x̄, ȳ) is the center of gravity of the cross-section. Thus, uL is explicitly computed as

uL =

∫
Ω uP0 dΩ∫
Ω P0P0 dΩ

P0 +

∫
Ω uP1 dΩ∫
Ω P1P1 dΩ

P1 +

∫
Ω uP2 dΩ∫
Ω P2P2 dΩ

P2
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Figure 11: Example 3: illustration of the quantity of interest.

and, ay coincides with the coefficient affecting P2, that is

ay =

∫
Ω uP2 dΩ∫
Ω P2P2 dΩ

Note that the quantity of interest is J
(
u
)

= ay for a given time t = T (we will adopt T as the

end of the computation). Thus, the definition of the functional output describing the quantity of

interest is precisely

J
(
u
)

=
∫

Ω
u(·, T )j dΩ where j =

P2∫
Ω P2P2 dΩ

,

which is exactly the form given in Eq. (13).

If the geometry is symmetric with respect to the y axis, the expression is further simplified

since

x̄ = 0, P1(x, y) = x and P2(x, y) = y − ȳ.

In this case

j(x, y) =
y − ȳ∫

Ω(y − ȳ)2 dΩ
.

The computation starts at midnight, when the temperature is assumed to be uniform and it

is carried out for 63 hours (T = 63 hours). That is, the last time is 3:00 pm of the third day.
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From a practical viewpoint, after two day cycles the solution is assumed to be independent of

the initial conditions and therefore not polluted by the errors introduced by setting u0. At 3:00

pm the quantity of interest is assumed to reach its maximum (and therefore critical) value. The

time evolution of the temperature gradient is described in Fig. 12 both for the solution uH and

the reference solution uh. It is worth noting that the maximum is indeed reached daily around

3:00 pm Fig. 13 shows the distribution of temperature at the end of the computation. The

output of interest is precisely the gradient associated with this distribution. Note that the high

temperatures are concentrated at the top of the cross-section, due to the effect of solar radiation.
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Figure 12: Example 3: evolution of the temperature gradient both for uH and uh

Figure 13: Example 3: temperature distribution at time t = T (end of computation)

Here the error is estimated using the recovery estimate introduced in Sect. 4.2. The error

assessment is performed for the solution obtained with the two meshes displayed in Fig.14 ( of

168 elements and 368 elements) and with the following values for 4t (in hours): 4t =0.02; 0.1;

0.2; 0.7; 1; 1.5 and 3 (corresponding to 3150, 630, 315, 90, 63, 42 and 21 time steps, respectively).

Moreover, the error assessment is performed for two reference meshes, with half element size and
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Figure 14: Example 3: Meshes used in the computation, with 168 elements (top) and 368 elements
(bottom)

time step (r = 2) and with r = 4. The estimated errors are computed in all cases, however the

computational cost of obtaining the reference solution is prohibitive for r = 4 and 4t = 0.02 and

also with the mesh of 368 elements for r = 4.

4t Mesh 1 Mesh 2
168 elements 368 elements

0.02 16.79108 16.48149
0.1 16.79108 16.48149
0.2 16.79113 16.48153
0.7 16.79268 16.48292
1 16.79544 16.48539

1.5 16.80692 16.49591
3 16.85808 16.53685

Table 6: Example 3: Values of J
(
uH

)
for all computations

The results are summarized in the following tables. Tab. 6 shows the values of J
(
uH

)
in

all the test cases. Tab. 7 displays the reference error in all cases where it could be computed,

that is, the values of −J
(
eh

)
/J

(
uh

)
(we introduce a minus sign because all values are originally

negative). Tab. 8 shows the estimated error in the quantity of interest, RP
(
ϕ?

)
, both for r = 2

and r = 4. Finally, the effectivity indices computed for all cases where the reference error is

computationally affordable are shown in Tab. 9.

It is worth noting from Tab. 6 that the error introduced by the time discretization is negligible

for 4t = 0.1 and 4t = 0.02. This is confirmed in Tab. 7, moreover for mesh 1 (168 elements),

the time error associated with 4t = 0.2 is also negligible with regard to the error introduced by

the mesh.

The results in Tab. 7 indicate also that the reference error is proportional to the exact error

by a factor (the ratio exact/reference error) that depends on the refining index, r. For large r,
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Mesh 1 Mesh 2
4t 168 elements 368 elements

r = 2 r = 4 r = 2 r = 4
0.02 2.402% – 0.934% –
0.1 2.402% 2.954% 0.934% –
0.2 2.402% 2.954% 0.935% –
0.7 2.410% 2.964% 0.942% –
1 2.425% 2.980% 0.955% –

1.5 2.490% 3.050% 1.015% –
3 2.722% 3.357% 1.190% –

Table 7: Example 3: Values of the reference relative error, −J
(
eh

)
/J

(
uh

)
, – if not available

Mesh 1 Mesh 2
4t 168 elements 368 elements

r = 2 r = 4 r = 2 r = 4
0.02 0.42161 0.52636 0.16813 0.21016
0.1 0.42162 0.52638 0.16814 0.21016
0.2 0.42172 0.52649 0.16821 0.21024
0.7 0.42501 0.53021 0.17112 0.21350
1 0.42941 0.53506 0.17477 0.21746

1.5 0.44187 0.54772 0.18563 0.22821
3 0.51574 0.51574 0.17062 0.21208

Table 8: Example 3: Values of the estimated error, −RP
(
ϕ?

)
the reference error is practically equal to the reference error. For the values of r that result in a

non-expensive local description of the error, the ratio exact/reference depends on the convergence

rates and may be fairly approximated using the principle of Richardson’s extrapolation, see [8].

The estimated errors are displayed in Tab. 8. The behavior of the estimated error quantities

is consistent, for a given mesh the error increases with 4t. The only anomaly is detected for

mesh 2 (368 elements) and 4t = 3, where the error is reduced from 4t = 1.5. This is due to the

fact that the dependence of the quantity of interest with time is far from being monotonic. Thus,

the large time steps (3 hours!) may yield errors with different signs.

Tab. 9 shows the effectivity indices w.r.t. the reference solution. Obviously, these values are

available only in the cases where the reference solution is computed. The values of the effectivity

index range from 88 to 112%, that is the difference between the exact error and the estimated

error is lower than 12% in all cases.
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Mesh 1 Mesh 2
4t 168 elements 368 elements

r = 2 r = 4 r = 2 r = 4
0.02 107.1% – 110.2% –
0.1 107.1% 109.3% 110.2% –
0.2 107.1% 109.3% 110.2% –
0.7 107.5% 109.7% 111.2% –
1 108.0% 110.1% 112.1% –

1.5 108.2% 110.1% 112.0% –
3 94.2% 94.2% 87.8% –

Table 9: Example 3: Values of the effectivity index w.r.t the reference error, RP
(
ϕ?

)
/J

(
eh

)
, – if

not available

This good behavior stands also locally, both in space and time, as shown in Fig. 15 and Fig. 16

The distribution of the contributions to the error in every time slab (accumulated in space) is

assessed very accurately. In Fig. 15 the results demonstrate that the estimated values of the time

contributions are very good approximations to the reference errors. Only two of the test cases

are displayed, the behavior being similar for the other studied cases.

The space distribution is the restriction to every element Ωk of the residual, see Eq. (25) and

Eq. (25). That is, the contribution of every element of the mesh to the error in the quantity of

interest, accumulated in time. This spatial representation of the error is obviously not unique: the

local representation of the r.h.s term of Eq. (25) depends on the selected vH . Different options for

vH lead to different error distributions. The choice of the optimal vH in order to properly drive an

adaptive procedure is beyond the scope of this paper. Thus, Fig. 16 shows the distribution of the

local effectivity index associated with such spatial quantities, that is the estimated value divided

by the reference values. The local effectivity indices are all close to one and the distribution

is quite uniform. Fig. 16 demonstrates that the proposed error estimator produces also sharp

estimates for the spatial error distributions, which is a key aspect in an adaptive framework. The

accuracy of the spatial error assessment is also similar for all other test cases.

6 Concluding remarks

The paper introduces a straightforward and efficient methodology to estimate the error in the

quantities of interest for second order parabolic problems. The main idea is to produce a recovery

estimate for the dual solutions and to plug it into the residual of the primal problem. This
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Figure 15: Example 3: Time-distribution of the contributions to the error in the quantity of
interest. Contribution from every time slab to the error. Both the reference values (◦) and the
estimated values (+) are represented for two cases: Mesh 1 (168 elements), 4t = 1 and r = 4
(top) and Mesh 2 (368 elements), 4t = 0.02 and r = 2 (bottom).

approach is especially interesting in view of an adaptive procedure.

An alternative residual estimate is also considered, which increases the computational cost

and the complexity of the implementation. In the studied examples the residual estimator does

not show any advantage, the results being of the same level of accuracy. However, the residual

estimator is expected to be much more efficient than the recovery estimator in problems with

singular features (material discontinuities, sharp loads...) where the solution is not regular.

The results in the analyzed examples, both academical and practical, demonstrate the per-

formance of the proposed approach.
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