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Abstract

The equations of motion of a three-body problem made of a dumb-bell (two
masses at fixed distance) moving around a central mass under gravitational at-
traction have been stablished. Linear and isosceles stationary solutions of these
equations have been studied and sufficient conditions for the stability have been

found in terms of Lyapunov’s stability functions.

1 Introduction

In this paper we study the motion of a system made of three material points My, M,
and Mj interacting by Newtonian law, under the assumption that the distance between
M, and Mj is constant, i.e., points M, and M3 form a dumb-bell. Particular cases of
this problem are equivalent to the classical restricted three bodies problem or to the
generalized two fixed centres [1].

The purpose of this paper is the study of the different stationary solutions of the
problem for arbitrary masses of the bodies and arbitrary size of the dumbell. The interest
of this study derives from the fact that it is the simplest problem about traslational-
rotational motion of the a satellite in a gravitational field and gives the generic conections
between the solution of this restricted three body problem and the classical one [2].

In the stationary solutions studied in the paper the mutual distances are constant and
the triangle M;MyM; rotates, as a rigid body, about the Gz axis passing through the
center of mass of the system.

It is shown that, when the points move on a fixed plane, there are linear solutions
in which the points are on a rotating axis. When the mass of M; tends to zero, the

stationary solution reduces to the linear Eulerian solution of the classical restricted three
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body problem [4, 5]. Necessary and sufficient conditions for stability of the solutions have
been obtained.

Other solutions considered are the isosceles, in which the distances from M; to M,
and M; are constant and equal. Now, the three points rotate around the Gz axis crossing
orthogonaly to the plane of motion through the mutual center of mass and the points are
permanently on isosceles relative position. Necessary and sufficient conditions for stability
of the solutions have also been obtained [7].

Apart from its own dynamical properties, this model may be considered as an approx-
imation for describing the motion of a binary small-body system, such as an asteroid or
a Kuiper belt object. Indeed, one of the main features of asteroids is its irregular shape,
and in particular its elongation, which at times is modelled by a finite straight segment

8, 9] or by the dumb-bell structure, among other choices.

2 Formulation of the problem

Let us consider three material points M;, M, and M3, of masses my, my and msg,
mutually attracted by the Newtonian gravitational forces. Let us assume that points M,
and Msj are rigidly connected by a segment of constant length [ and negligible mass, i.e.,
they form a dumb-bell.

Let C be the center of masses of the dumb-bell and [,, 3 the distances from M, and
M; to C. We can define a rotating frame B(C, by, by, b3) such that b is directed along the
dumb-bell towards the point M3 and by, by are two orthonormal vectors, perpendicular

to bs. In this frame, the principal moments of inertia (A, B, C') of the dumb-bell are

mains

[1 = [2 = mglg + m3l2 = l2, [3 =0.

m2+m3

Let us introduce now an inertial reference frame S(C, s1, 89, 83). The attitude of the
dumb-bell in S is given by two angles, namely nutation # and precession ¢. The angle
0 € [0, 7) is such that cosf = s3 - bs. For the precession angle, we build the nodal vector
L as s3 X by = £sin . Then, we define the precession angle ¢ as the longitude of the node

£ reckoned from s; in the plane normal to s3, that is to say,
L =51c08¢+ 8ysing, 0< ¢ <2m.
With these angles, the coordinates of points m3 and ms in the space frame are

x§ = I3bg = I3(s1sinfsind — sysinf cos ¢ + s3cosb),

x5 = —loby = —ly(s18infsin ¢ — sesinf cos ¢ + s3cosb).

According to Koning’s theorem, the kinetic energy of the dumb-bell is the sum of the

kinetic energy of the center of masses (', assuming the total mass my + mj3 is on it, plus
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the kinetic energy of rotation. To find the total kinetic energy of the three bodies, we
have to add the kinetic energy of the body M;.
The frame (C';€,bs x £,b3) (see figure 1) is made of principal axes of inertia. The

angular velocity of rotation is

Q = ¢s3+ 0L = 0€ + ¢ sinO(bs x £) + ¢ cos Obs.

S3

P

M,
by

~
~
\)|

S1 A r
Figure 1.— The reference frames

We can reduce the order of the system by taking the so called heliocentric coordinates,
that is, by referring the motion of My and M3 to the body M;. Thus, we will refer the
motion of the dumb-bell to the frame (M, s1, So, S3).

In these heliocentric coordinates, the total kinetic energy is (see e.g. Wintner [10])

_ L ma(mae + my)
2m1 + Mo + M3

1
¢§+§Q-IQ.

But taking into account the values of the angular velocity of rotation €2, and by using

cylindrical coordinates (r, A, z) for the orbital motion,
T, = rcos A8y + rsin A\S; + 283,

the kinetic energy is

1 . 1 . .
T = 5m(7’”2 + 7202+ 22) + §A(92 + ¢*sin?6), (1)
where
_ my(msy + mg) Cand A= MaMms 2 my Mo Ms 2
ml—l—m2+m3 m2+m3 m(m1+m2+m3)
The potential function is
m m
U:_gml (—2+—3),
12 13
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where mutual distances 75, for j = 2,3, are
rh =1t 20— (—1) 20 [zcos@ + rsinfsin(¢ — )\)}

From the expressions of the kinetic energy and the potential, we can derive the Hamil-

tonian ) P2 ) P2
=— P2+ 2+ P2+ — |5+ P} —),0).
H 2m< ’"+r2+ Z>+2A <sin29+ ) | +U(r, 2,0 — A, 0)

Since angles ¢ and A appear only as the difference (¢ — \), we can reduce the order of the

Hamiltonian by means of the following canonical transformation

¢:¢_)\7 PllJ:Pdh

u):>\, PMIP¢+P)\.
Indeed, with this transformation, the Hamiltonian becomes
1 (P, — Py)? 1 [ P?
- P2 w Y P2 = Y P2 0
H 2m< Pt r? + Z>+2A <511129jL o)+ U 29.0),

that is, it is reduced to four degrees of freedom. Since angle w is cyclic, its conjugate
moment P, is an integral of the motion. The Hamiltonian itself is another integral.

The equations of motion are

_ _ 2
7:’:&7 Pr: (P‘U 3P¢) _8—U7
m mr or
P b=
m 0z (2)
J_ Py b Pjcost  oU
A "7 Asin®0 00
. P,—Py P, —
V== mr? +Asin29’ by = o

Equilibria are found by zeroing this system. Thus, there results that

mr?

P.=P,=PF=0, P,—P,=—--PF,,
o =10 7 Asin?g Y
and oU ou
mr
— = ——P? — =0
or  A?sin*g" ¥’ 0z ’
8_U_Asin9(:os€8_U 8_U_0
09 mr or’ oy
We need to compute the partial derivatives of the potential U. Let us define firstly the
shorcuts l l
ms Mo msgts mato
F=gm | —+—=], G=Gm < — ) . 3
' <7“£1)’3 7’%2) ' s a0 ®)
Then, we have that the partial derivatives may be put as
a—U:FT—i-Gsin@sinw, a—U:FZ—i-Gcose,
or 0z
%—g:G(—zsine—i-rcos@sinw), g—Z:Gsianosw7
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and equations for equilibria reduce to

A sin?
P, = , 4
7 mr?+ Asin6 )
oo mr
Fr+Gsm€s1nw:mPf} (5)
Fz+ Gcosf =0, (6)

Asinfcosf (Fr 4+ Gsinfsiny) —mr G (—zsin@ + rcosfsiny) = 0, (7)
Gr sinfcosy = 0. (8)

The finding of general solution of this system is rather complicated, hence, we will
look only for particular solutions. Cases r = 0 and 6 = 0 will be excluded since they

correspond to singularities of the problem.

3 Planar motions

Let us consider that the three bodies move on the fixed plane M;s;s5. In that case,
z =0 and 6 = /2. If the bodies are at equilibrium position, then r = ry = constant.

Thus, equations (6)-(8) are only reduced to
G cosyp = 0,

that is fulfilled either when ¢ = 7/2, 37/2 or when G = 0, i.e., when rjy = ry3.

S2

M,

Figure 2.— Motion on the plane s1ss. It is achieved when z = 0 and 6 = 7/2.

3.1 Linear solution

When z =0, r =rg, § =7/2 and ¢» = 7/2,37/2, the three points are on a line on the
M, 5185 plane that is rotating about the s3 with constant angular velocity, n = w, given

(taking into account (4)) by

OH 1 1
“ oP, mnr3 (P v) mri+ A 9)
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The equilibrium must fulfill equation (5), now written as

mry o mry )
Fro+tG=—P = ——-——-P>0.
"o A2 VT (mrd4 A2 T
Writing e = £1 if ¢ = /2 and r > Il or ¢ = 37/2 and r > I3, the previous equation

particularize to

ms ma mTo 2
F G = -0 p
TO+€ gml <(T0+€lg)2+(7’0—6l2)2> (mr%—l—AP w?

or, equivalently, if v = mg/ms and p = 1/7:

v 1 p m P?
:C C :4(‘) .
(1+y+ep)2+(1+y—eup)2 0(m+ Mo s 2y’ * T Gmyimyl
Mo + M3

This equation is equivalent to a polynomical one of degree six, hence it have six roots;
for instance, for ¢ = w/2,m; = 10,my = 2 = mg3,l = 1,Cy > 4.4299, two real roots
(positives, less than 1 4+ v, so r > [3) and four complex roots appear; if Cy < 4.4298, only
complex roots appear.

The position of the points in both cases, ¢ = £1, is shown in the figure 3.

S2

My

Figure 3.— Relative positions of the bodies in the collinear solution. Left: ¢ = 7/2.
Right: ¢ = 3m/2.

3.2 Isosceles stationary solutions.

These solutions are defined by
T =T, ZIO, 9:77'/2, G:0(<:>T12:T13),

condition (5)

Fro+ Gsinfsiny = % 5,

and condition (4)
B A sin® 6
 mr2+ Asin?0

Py
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Then
1l =18 —2larosineg + 15 = riy =15 + 23 rsin + 15 =

. lg — lg 11—v 1 2 2 2 2 14 2
sinv = = —— —, Tio=Ti3 =T + 1l = + lv 10
iny 2719 21+vrg 12 = T3 =ToT 2213 =70 (1+v)? (10)
what it is only possible if
11—v [
ro > — [ and sorjg > —
21+v
Figure 4.— The isosceles solution
In the figure 4, we can see the three points at the isosceles position.
Condition (5) is now written as
mg + M3 m 2
Gm 3 (mrg+ A2 ¢ (11)

what together to relations (10) define the values of 7y and ¢y (and 712) in the equilibria.
We can note that these two condition are equivalent to the following polynomical

equation or order 4 in the variable 719

P

A ~lyls +71%))? = Dors Dy =
(A+m(=lyl3+717y)) 0712 0 G (my & my + )’

or

m? 1y — Doy +2m (A = lylsm)r?y + (A —lylsm)* =0 (12)

Taking into account the coefficients of this polynomial, the Descartes and Huat the-
orems ([3]) allow one to assure that there exist two positive real roots or none and that
there exist at least two complex conjugate roots. Lower and upper bounds for the positive

real roots ([3]) are defined by the quantities

m P? . " m P?

“*gmmm@+m@m—@@9 ’ Gm2my ((ma + ma)

besides, r12 > [/2. Hence, the Bolzano mean value theorem will help us to finally conclude

if there exist one valid positive root or none.
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The frequency of the motion of rotation about the Gz axis (see eq. (9) ) is given by

OH 1 1
oy . = —— = —F PW_P — Pw
= 0P, mrg( v) mré+ A

Taking into account expresion (10) and equation (11), we obtain

—3/2
n2:w2:le(m2+m3)%:gm1+m;+m3 14 v (i)z ’
m 3y re (I1+v)?2 r

or, equivalently,

;o\
o <1+7( v (—)2> ,  where n0:Qm1+m2+m3

no 14+ v)? ‘rg re

The relative frequency, n/ng, versus v and [/rq is shown in the figure ??. Of course,

when r — 400, n — ng.

4 Sufficient conditions for stability of the stationary solutions.

The stationary solutions are defined by the following found values:
PO = pO = 9(0) _ O,P(O),r(o), PARIONIO)

Introducing the vector v = (y1, Y2, Y3, Ya, T1, Ta, T3, T4) of variations of the coordinates
and momenta

yl:Pray2:Pzay3:Pw_P1£0)ay4:P9a
vy =17 =170 2 =229 25 =0 - 2, =000,

the Hamiltonian of the linearized perturbed problem [2] is, formaly, the same as the
nonlinearized, but with coefficients evaluated at the equilibrium solution. Consequently,
the quadratic part of the Hamiltonian of the linearized perturbed problem is the sum of
a positive defined part, the kinetic energy, and the Hessian of the potential energy. This

last part is

4
Vo=3 > Vijma, (13)
ij=1
where V; are the following second derivatives of the potential evaluated at the equilibrium
solution
Vii=U,=F+rF,+G.sinysinb, Vie=U,, =1 F, 4+ G, sinysinf

Vis =Upy =1 Fy + Gcospsind + Gy sinysind,

Via =Ug =1 Fy + GcosBsiny + Gysin sin 6

Voo=U,,=F+ zF, + G, cosb, Voz =Uyy = 2 Fy + Gy cosd

Vou =U.g = 2 Fy + Ggcos — Gsin b, Vag = Uyy = rsinb (Gy cosy — Gsiny)
Vay = Uyp = 1 costp (G cos + Gysin b))

Vg =Upg = —G(zcosO + 1 sinpsin0)—Gy (zsin @ — r cos 0 sin))
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and

F F
F. = %— = —3(Fsr+ Hssinvysind), F, = aa— = —3(F5 2+ Hscost),
- 2
F F
Fy = g_w = —3 Hsrcostsinb, Fy = 88—9 = —3 Hj (rcosfsiny — zsinf),
oG oG
GT:EIB(J5T+K5SinSin9), GZZE:?)(J5Z+K5COSH>7
Gy = g_i =3 K5rcosisinb, Gy = g—? =3 K5 (rcosfsinty — zsin0)
and we have adopted the following notation:
l l
PG (B4 50— g (54 ), (14)
T2 Ti3 12 13
l l l2 l2
Js = Gmy <275n2+ 375713>7 Ks = Gmy (_275”2+ 37;13) (15)
12 13 12 13

We will use this function as a Lyapunov function for our analysis of the statibility. In
this way, the Lyapunov’s stability of the stationary solutions follows from the fact that the
quadratic form (13) be positively defined, i.e., in agreement with the Jacobi’s criterium,

if all the principal minors of the matrix which elements are (V;;) have positive value.

4.1 Sufficient conditions for stability of stationary linear motions.

The matrix (V;;) reduce, in this case, to

Vin 0 0 0
0 Vo 0 Vo
0 0 Vi O
0 Vou 0 Vi

Y

where
Vi=F+rF +eG,,

‘/22:F7 ‘/33:_6TG7 ‘/214:_671G7 ‘/24:_G7

and conditions for Lyapunov’s stability become

Vii >0, Ve >0, Vig>0, VigVap—V5>0 (16)

Let us note that, in this case, e G < 0, so, from the definitions of quantities F' and

G in (3) and (5), we may assure that the tree first conditions are fulfilled; last condition
(16) is now written as

V44V22—V224:—67"GF—G2: —eG(rF+e€eq),

that is also fulfilled.
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4.2 Sufficient conditions for stability of the isosceles motions.

In this case, the only non vanishing elements of matrix V;; are
Vii=F+rF.+G,siny, Vi3=3rK;cosysiny,

Voo = F, Va3 = 31> K cos® ¢

and conditions for Lyapunov’s stability become now
‘/11 > 07 ‘/22 > 07 (17>
Vag Vir — Viz > 0. (18)

The second condition (17) is fulfilled, but the first one, that can be written as

Ggmy r? lomg (I3 — l3) (I3 — 15)?
Vo = 1-3.)_ 1—
11 — Til)’2 (m2 + 77L3) ( 3 7”%2> 3 7”%2 ( 47”2 ) 5

is equivalent to the following condition
3 ma 2 4
3lyme (lg — lg) + 8lymo (m— — 2)7” +8(m2+m3)r <0
3

that is never fulfilled as the signs of the coefficients explain.

Consequently, this function V is not an adequated Lyapunov function.

Nevertheless, necessary conditions for stability can be obtained by analizing the roots
of the characteristic equation of the linearized equations of motion in the neighbourhood
of the stationary solution. These equations, defined by the linearized Hamiltonian H at

the equilibria, are

=V —Vizas, ys=—Vszas— Viga,
) 1 . 1 P,
i = — I3 = e
e 3= Y mr?+ A’
. ) 1
Yo = —Va 19, Ty = — Yo,
m
. v ) 1
=—Vuz Ty = —
Y 44 T4, 4 Ay4
Hence, the charateristic equation can be separated into the following three equations:
% V
MtaX+b=0, NX2+-2=0, N4+ 2=y,
m A
where
_7“2V11+V33 _V11Vé3—V123
a=—" b= ——7"7"——=
mr? m?2 r?

and stability follows if all the roots have vanishing real part.
Since

Voo >0, Vi >0,
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the last two inequalities are fulfilled. The first one is a biquadratic equation that define

other four imaginaries roots if

18375 18380 20000 40000~ 60000 80000 100008’|ma
3.18

3.16

3.14

Figure 5.— A particular trajectory in the plane (r, P,)

If, for instance, we take the following very particular values for the constants:
my = 10,my =mg =2,1 =1, P, =914917.,G = 398585.28, (= rq = 18376.)

and the initial values

AP?

PT:O,PZ:O’Pw:m’

Py=0,r=rg—10,2=0,¢ =7, 0 =7/2,

the trajectories are bounded, as we can see in figure 5. The distance follows the typical
variation of the Keplerian motion, while the angular variable 1) grows almos linearly with
time. This shows the instability of this equilibrium point. On the contrary, if we change

the value of r to » = 100, the trajectories become unbounded.

5 Conclusions

The equations of motion of one three-body problem composed of a dumb-bell (two
masses at fixed distance) moving around a central mass have been established. Several
cases of stationary solutions of these equations have studied and sufficient conditions for

stability has been found in terms of Lyapunov’s stability functions.
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