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Abstract

In this paper we review briefly a recently developed chaos indicator: the OFLI2TT,

or more friendly the OFLI2. Using this new indicator we present several sensitivity

plots for several classical problems: the Hénon-Heiles Hamiltonian system and an

Extensible Pendulum.
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1 Introduction

When we intend to analyze the behavior of a dynamical system one of the most interesting

questions is if it is possible to know if a given initial condition generates a chaotic orbit

or not. Obviously, a first question is to answer what is chaos? In the literature there

are several definitions. In physics and applied sciences people uses a notion of chaos that

captures the notion of non-mensurability and adopt as definition the sensitive dependence

on initial conditions. To prove that a system has mathematical chaos in a rigorous way

cannot be done without a carefully theoretical study of the particular problem. Therefore,

this has been done only for some important problems [11]. Thus, a numerical evidence

of the behavior of a dynamical system has become an invaluable tool in the analysis of a

problem. One of the most popular techniques is the computation of Poincaré Surfaces of

Section (PSS), which allow us to distinguish regular from chaotic orbits. This technique

was introduced by Poincaré and first used numerically to obtain sections of non-integrable

systems by Hénon and Heiles [13]. However, the Poincaré sections are useful only for

systems of two-degrees of freedom.

The last few years a large number of numerical techniques to detect chaos have ap-

peared, as the Frequency Map Analysis [15, 16], the Heliticity and Twist Angles [7, 8],

the Mean Exponential Growth factor of Nearby Orbits (MEGNO) [6], the Smaller ALig-

ment Index (SALI) [17, 18] and the Fast Lyapunov Indicator (FLI) [9, 10]. Most of the

researchers has focus their attention to the physical definition of chaos and they try to

study the sensitivity to initial conditions by using the first order variational equations.
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Obviously, these techniques do no provide a rigorous proof of chaos but they point out

where is probable to have chaotic or regular conditions.

2 A Chaos Indicator based on second order variational equations: OFLI2
TT

Most of the methods based on the first order variational equations have a drawback: how

to choose the initial conditions of the variational equations? Note that asymptotically

most of the indicators do not depend on the initial conditions of the variational equations

but we are using these techniques at a short finite time and so some dependency may

be found. Therefore, an indicator will show the dynamical behavior more easily for a

set of initial conditions than for another one at the same final time. So, for a global

picture based on an indicator we have to choose carefully our initial conditions. This fact

motivated the extension of the OFLI indicator given in [2] where the OFLI2TT or OFLI2

indicator at the final time tf was defined as

OFLI2TT := sup
t0<t<tf

log ‖{δy(t) +
1

2
δ2y(t)}⊥‖, (1)

where δy and δ2y are the first and second order sensitivities with respect to carefully

chosen initial vectors. In this case the variational equations up to second order and the

initial conditions are

dy

dt
= f(t, y), y(t0) = y0,

d δy

dt
=

∂f(t, y)

∂y
δy, δy(t0) = T0 :=

f(t0,y0)

‖f(t0,y0)‖ ,

d δ2y

dt
=

∂f

∂y
δ2y +

∂2f

∂y2
(δy)2 , δ2y(t0) = 0,

(2)

where we have to understand the equations in a componentwise manner. Note that the

vector T0 is the initial tangent vector to the flow.

The FLI and OFLI2TT behave linearly for initial conditions on a KAM tori and on a

regular resonant motion (but with different rate of growing), tend to a constant value for

the periodic orbits and grow exponentially for chaotic orbits [2, 12].

Another remark is that the definition of Eqns. (1) and (2) gives us the value of the

OFLI2TT for a particular orbit for a given initial conditions. Where the indicator plays a

more important role is not analysing just one orbit but a global set of initial conditions.

That is, we select a two dimensional manifold of initial conditions or of parameters of

the problem and we compute the OFLI2TT for all of them. Now, the OFLI2TT picture will

describes us quite well the global dynamical properties of the system. We remark that

the two dimensional manifold is a manifold of initial conditions or parameters and we not

look for any crossing of the orbits as the classical PSS method does.
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The OFLI2TT Chaos Indicator is defined by using the second order variational equa-

tions. Therefore, in order to avoid the explicit generation of such a variational equations

we have devised [3] an alternative that permits us to obtain the solution of the variational

equations without computing them explicitly. This method is based on the classical Tay-

lor method for the numerical solution of ODE [1, 4] and permits a direct calculation of

any order sensitivity, in particular the solution of the second order variational equations.

3 Some OFLI2
TT plots

In this section we present some OFLI2TT plots for several classical problems.

All the tests have been done in a standard personal computer, a PC Intel Pentium IV

2.8 GHz under Windows XP and using g77 as programming language (a GNU fortran77).

The OFLI2TT pictures are generated for a regular grid of 1000 × 1000 initial conditions.

The Poincaré sections, done for comparison, have been calculated using a symplectic and

symmetric composition method given in GniCodes [14].

From now on, in all the OFLI2TT pictures the white color is associated with a chaotical

behavior and the black with periodic or highly regular orbits, intermediate gray values

are associated with evolution from regular to chaotic orbits.

The first classical problem is the well known two degrees of freedom Hénon-Heiles

system [13] given by the Hamiltonian

H(x, y, X, Y ) =
1

2
(X2 + Y 2 + x2 + y2) + x2 y − 1

3
y3,

and so the differential system is

ẋ = X, Ẋ = −x− 2x y,

ẏ = Y, Ẏ = −y − x2 + y2.

These equations model the motion of stars around a galactic center, assuming the

motion restricted to the (x, y) plane and they where introduced in the context of analyzing

if there exists two or three constants of motion in the galactic dynamics. On Fig. 1 we

show the OFLI2TT pictures on the y vs Y plane for x = 0 and X obtained from the

constant value of the energy E = H (E = 1/12, 0.105, 1/8, 0.14865 and 1/6 for pictures

A, B, C, D and E respectively). The final time considered is tf = 300. The pictures

A, C and E are obtained for values of the energy close to the ones given in the seminal

paper of Hénon-Heiles [13] using Poincaré sections. As this system has been studied with

a great detail for a large number of researchers we present it just for illustration of the

behavior of the OFLI2TT on this system. First, we observe as when the energy is low most

of the orbits are regular as predicts the KAM theory. The chaotic zone begins to grow (B)

and several chains of islands appear. Increasing the value of the energy the chaotic sea
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Figure 1: OFLI2TT pictures for several values of the energy for the Hénon-Heiles system.
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Figure 2: PSS pictures for several values of the energy for the Hénon-Heiles system.

predominates but some regular regions persist (C and D). In the limit value of the energy

for bounded motion (E) we have just four small regular regions that decreases slowly in

size for higher values of E (but now we have unbounded admissible regions). On Fig. 2

we show the PSS pictures equivalent to the OFLI2TT pictures A, C and E of Fig. 1. We

show as the Poincaré sections and the chaos indicators give complementary results, but

the chaos indicator points out is an easier way all the dynamical structures.

The Extensible-Pendulum problem [5] describes the movement of two parametrically

coupled oscillators and it is given by the Hamiltonian

H(q1, q2, p1, p2) =
1

2
(p2

1 + p2
2) +

1

2

(
(1− c) q2

1 + q2
2 − c q2

1 q2

)
,

and the differential system

q̇1 = p1, ṗ1 = (c− 1) q1 + c q1 q2,

q̇2 = p2, ṗ2 = −q2 + c q2
1/2.

The parameter c is a non-dimensional parameter defined as c := 1−mg/kl = 1−(ωp/ωs)
2,

being m the mass of the pending object, g the gravity acceleration, l the length of the
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Figure 3: PSS (left) and OFLI2TT (right) pictures for several values of the energy for the

Extensible-Pendulum problem.
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spring at equilibrium under a static load mg, ωp and ωs are the small oscillation frequencies

of the spring and pendulum, respectively. Note that ωp ≤ ωs, and so c ∈ [0, 1].

Figure 4: Left: magnification of the E picture of the OFLI2TT plot of Fig. 1. Right: magnifica-

tion of the ’b’ picture of the OFLI2TT plot of Fig. 3.

On Fig. 3 on the left we show the PSS, taking q2 = 0 and obtaining p2 from the energy

value, for the values of the energy E = 7/800, 19/800 and 31/800 and taking c = 0.75 for

the pictures ’a’, ’b’ and ’c’ respectively. From the figures we observe as when the energy

grows the chaotic region increases its size. On Fig. 3 on the right we show the OFLI2TT

counterpart up to the final time tf = 600. Again, the OFLI2TT locates without any effort

the separatrices, the chain islands, and so on. Comparing the PSS and OFLI2TT pictures

we note how the chaos indicator gives a much better analysis, in an automatic way, when

both regular and chaotic motions appear.

On Fig. 4 on the left we show the magnification of the region y × Y ∈ [0, 0.6] ×
[−0.08, 0.08] for the Hénon-Heiles system, revealing the chain islands around the remaining

KAM tori. On the right we show the magnification of the region q1 × p1 ∈ [−0.1, 0.04]×
[−0.03, 0.04] for the Extensible-Pendulum problem.

Besides, on Fig. 5, we present, for the Hénon-Heiles problem, a parametric evolution

y vs. Energy E taking Y = 0 (we note that this picture is not possible to obtain with

the PSS). This picture gives a detailed diagram of the evolution of the dynamical system

when the parameter E changes. We observe as when the energy is low the system is

highly regular. When E reaches a value near E = 0.1486 a period doubling bifurcation

appears, changing the character of the equilibrium points. For high values of the energy

the dynamical behavior is highly complicated, appearing large chaotic regions.
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Figure 5: Parametric evolution (coordinate y vs. energy E) of the OFLI2TT for the Hénon-Heiles

system.

4 Conclusions

In this paper we review some aspects of the OFLI2TT chaos indicator in analyzing dy-

namical systems. These plots permit to complement the counterpart PSS adding new

features. Moreover, these techniques allow us to obtain pictures that show the evolution

depending parameters, pictures that a standard PSS techniques cannot obtain. The use

of second order variational equations is the main advantage and drawback of the OFLI2TT,

advantage because is the first indicator that uses them and permits faster and sharper

results and drawback due to the process of generating the equations that in some cases

may be cumbersome. This disadvantage is eliminated by using a recently proposed mod-

ified Taylor scheme [3], that permits to avoid the determination and programming of any

variational equation.
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[5] Carretero-González, R., Núñez-Yépez, H.N. & Salas-Brito, A.L. [1994] “Regular and

chaotic behaviour in extensible pendulum,” Eur. J. Phys. 15, 139–148.
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