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Stationary vector subdivision: quotient ideals,
differences and approximation power

Thomas Sauer

Abstract. The paper considers stationary vector subdivision schemes, that is, subdivision schemes act-
ing on vector valued sequences by using a matrix valued mask, and derives the analog of the well-known
“zero condition” for an arbitrary number of variables as well as arbitrary expanding dilation matrices.

Subdivision vectorial estacionaria: ideales cociente,
diferencias y potencia de aproximacion

Resumen. Se consideran esquemas de subdivisién vectorial estacionaria, esto es, esquemas que actian
sobre sucesiones vectoriales usando una mascara matricial y se generaliza la conocida “condicién del
cero” a un nimero arbitrario de variables asi como a matrices de dilatacién expansivas arbitrarias.

1. Introduction

A stationary subdivision scheme is an iterative way to construct a surface by computing a sequence of
discrete functions defined on a nested sequence of finer and finer grids. The “standard” case in this respect,
as considered in [1] begins with a sequence

c=c=(cqa : €T

and uses a finitely supported mask a € log (Z) to perform the iteration

=8, = Zaa_ggCg T €7, reNp. (1)
BEZ

Associating the coefficients cJ, to the abscissae 27 "a, a € Z,r € Ny, one can investigate the convergence
of this process to a limit function, either in L, (R), 1 < p < oo, or in C,, (R), the space of uniformly
continuous functions defined on R. Much interest in stationary subdivision operators arose from their
connection to wavelet analysis, in particular, their connection to refinable functions. In fact, whenever the
subdivision scheme converges, then there exists a function

(p:Sgo(S(), 50:(60,a ZCMEZ)7
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which solves the refinement equation

P=> aap(2-—a). )

a€EZ

There have been various generalizations of this concept: stationary subdivision schemes can appear with any
number, say s, of variables, als already done in [1], one can use expanding matrices as dilation factors, cf.
[10], and consider vector valued data in addition, that is, matrix valued masks, see [4]. In this paper, we will
consider this most general situation of stationary vector subdivision with respect to an arbitrary expanding
dilation matrix, and characterize those subdivision schemes which possess polynomial eigensequences in
terms of a difference operator.

We fix some notation. For n € N we denote by Z,, the set Z,, := {0,1,...,n — 1}. Matrices A €
RM*N will be indexed as

A:[Ajk : jGZM,kEZN]
and, analogously, vectors ¢ € RV as
C:[Cj : jEZN].

Moreover, the Kronecker product A @ B of two matrices A € RM*N B ¢ RP*Q | defined as

A®B=[Aj;,B : j€ Ly, k€ ZLy] € RMPXNQ

will turn out to be a useful notation. For facts about the Kronecker product and the calculus associated to
it, see for example [18].

2. Stationary subdivision with expanding matrices

Recall than an expanding matrix M € Z°*?is an s X s integer matrix all whose eigenvalues have modulus
strictly larger than one, or, alternatively, a matrix which has the property that
lim ||M~"| =o0. €)
n—oo
In particular, m := det M > 1. The name “expanding” stems from the fact that for any such matrix and
any bounded set Q C R® there exists an index n’ € N such that @ € M™ [0,1]° for any n > n'.
By (M*N (7,%) we will denote the set of all M x N-matrix—valued sequences, conveniently written as

“discrete” functions C' : Z* — RM*N By Eg/[ *N (7:5) we denote the Banach spaces of those sequences

whose p—norm
1/p

Icl,:=={ > > > ICu@| , 1<p<e,

€L JELN KEL M

ICll = sup 3 3 1Ce(a).

JEZN KEZ M

or

is finite. In the same fashion, we denote the space of vector valued sequences by (N (Z*) := (N *1 (Z?*) and
(N (Z?) := (5% (Z*), respectively, and also use (50 *™ (Z*%) C (A*N (Z#),1 < p < o0, for the subspace
of sequences of finite support, i.e., those sequences C' € (M >N (Z,%) such that

s (C) := #supp C < o0, suppC :={a € Z° : C(a) #0}.
A similar notation will be used for functions. Here we use

S\ . — LP(IRS)v 1§p<oo,
H““”‘{cmwm p= oo,
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Stationary vector subdivision

where C), (R®) denotes the uniformly continuous and uniformly bounded functions on R®. In accordance
with this, we write H2*N (R*) for the M x N-matrix valued functions F with components in H,, (R®)
and with norms

1/p
IFl, := / DY IFp@Pde| , 1<p<oo,
R jezmrezy
and
IFll = sup Y > |F(@)l,
TER? el kEL N
respectively.

The stationary vector subdivision operator S4 = Sy, 4 based on an expanding matrix A/ and a finitely
supported matrix valued mask A € (5™ (Z) is defined, for any ¢ € (5(Z),as

Su,ac:i=Axpyc:= ZA(~—M,8) c(B). 4)
BezZs

The matrix M is considered to be fixed throughout this paper, because of which I will drop the subscripts
referring to M in order to keep the notation uncluttered.
Since
A s el < s5(A) [ Allg llell, 5)
which follows immediately from (4), the p—operator norm satisfies
1Sall, < s(A) [ Al < o0 ©)
aslongas A € 6(%XN and so S 4 is a continuous linear operator from éfDV (Z#) toitself forany 1 < p < oc.

In order to approach a limit function, the subdivision operator is iterated, starting with ¢® = ¢ € éfDV (Z#)
and generating a sequence

=8 e:=Sac" = Axy c, reNy. 7

In fact, we can iterate the vector subdivision operator not only on N—vectors but even on N x M—matrices,
M € N, producing the sequence

C":=S,C, reN, C’=cC e (7). ®)

Note that (8) could also be understood as applying the iteration (7) to the columns of C” separately and
then to rearrange the results as column vectors into the matrix C" .

The perceptive, geometric idea behind the stationary subdivision process is that for a € Z? the value
c"(a) or C"(«), respectively, corresponds to the abscissa M ~"« and since M is expanding, (3) ensures
that these points form a denser and denser grid in R® which makes it reasonable to speak of convergence
of the subdivision process towards a limit function. For the purpose of a rigorous definition, we recall the
notion of a fest function from [4], see also [12, 13].

Definition 1 A scalar valued function ¢ € L, (Z?) is called a test function if
1. ¢ has compact support,
2. ¢ is stable, i.e., there exist constants A, B > 0 such that
Allell, < lloxcll, < Blcll,,  ce€t,(Z7),
where, for ¢ € H (Z.%) and c € ( (Z*) we define

prei= 3 6(-—a) cla),

Q€Zs

whenever this sum converges,
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3. ¢x1=1, where 1 € ((Z?) denotes the constant sequence: 1(a)) = 1, a € Z5.
Finally, we introduce the mean value operator of level r € N, written as u : H, (R®) — ¢, (Z*) by
W(f)=m / £(2) dt, ©)
+M-r[0,1]°

which is normalized such that ;" (1) = 1. As was pointed out in [4], these operators are bounded, more

precisely,
" ()l 2
7l = sup =t = Y,
170 e, s

and that for any test function ¢ and any f € H, (R®) we have that
Tim [1f = 6% " (F) (M7 = 0. (10)

Obviously, one can easily extend (9) and (10) to matrix valued functions by letting " act on the components
of the matrix separately. Now we are in position to define the convergence of the subdivision operator.

Definition 2 We say that A € E(%XN (Z.%) admits a p—convergent stationary subdivision scheme if for any
initial vector ¢ € (Y (Z.°) there exists a vector field f. € H) (R®) such that

1. for any test function ¢ € H, (R®) one has that

Tim [|f, — 6% (Sh ) (M|, = 0. (a1
2. one has that
lim m ™"/ ||u" (f ) = S ell, =0, (12)

and that f . # 0 for at least one ¢ € (1Y (Z).

It is worthwhile to mention that the two limit processes (11) and (12) defining convergence serve as an
alternative, the first one being a definition in terms of convergence of functions, that is, taking norms in
H év (R#), while the second one works in the sequence space 4}\7 (Z#). Their equivalence has been proved
in [4] together with the fact that the actual choice of the test function appearing in (11) is irrelevant: if the
limit is zero for one test function, it is zero for all test functions.

If A admits a p—convergent subdivision scheme, then it converges in particular for the sequences ¢ e},
J € Ly, where § € lyg (Z®) is the scalar valued sequence defined by §(ca) = a0, and e; € RN denotes
the j—th coordinate vector, j € Z n. Hence the matrix sequence 1 € K(%XN (Z*) converges to a function
F ¢ HéVXN (R%), ie.,

lim ||F —¢*(SadI)(M")|| =0.

r—0o0

We call this function F' the canonical limit function associated to the stationary subdivision scheme induced
by A. Some immediate consequences of convergence are recorded in the following result, cf. [4] which we
prove for the reader’s convenience.

Proposition 1 Supposethat A € &%XN (Z*) admits a p—convergent subdivision with associate canonical

limit function F € H*N (R?).

1. Foranyc € éjpv (Z*), the limit function f . takes the form

_fc:F*c:ZF(-—a)c(oz).

a€EZ
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2. The function F' is M-refinable with respect to A, that is,

F=F+«AM)=> F(M--a)A(a).
a€Zs

PROOF. The first statement follows immediately from writing
c=0Ixc= Z 0(-—a) Ic(a)
a€EZS
and using the linearity of the subdivision operator, while the second statement follows from observing that
forr € N
|F — Fx AM-)]|, < ||¢* SRoI (M) — ¢+ SEH L (M) ||
+|IF = 6% Suol (M|, + | F x A(M:) = 6 S5TT (M),

where the first and the second term on the right hand side converge to zero as r — oo since the subdivision
scheme converges and because of

Asy 6I=Y A(-MP)s(B)=A=> 6(-—B) A(B)=6xA=0IxA,
B

BEZs cZs

the third term can be rewritten as
||F*A(M')_¢*A*M"'*MA*M(SI(MT+1~)||p

= mTVP||(F — ¢ SuoI (M) x All, <m™Ps(A) | Ally, |1F —é*SasI (M),

which also converges to zero forr — co. W

In order to give a classification of vector subdivision schemes, we have to introduce some more notation.
For a square matrix A € RV*N we denote the right eigenspace of A with respect to an eigenvalue \ by

E(AN)={0£yeRY : Ay=)\y}.

Using, moreover, E = M [0,1)® N Z? as the usual standard representer set of the finite group Z*/MZ*, we
can define the matrices
Ae::ZA(e—%—Ma), €€k,
a€EZS
and the vector space
Qa:=[)€(Ac1) CRY,

e€FE

whenever A € éé\(f]XN (Z*). We will classify stationary vector subdivision schemes with respect to the
number n = dim Q 4 and we will see that this quantity is a fundamental property of the stationary vector
subdivision scheme. In particular, we will speak of rank I subdivision schemes if dim Q 4 = 1 and of a full
rank subdivision scheme if dim Q@ 4 = N. In fact, there is no convergent “rank zero” subdivision scheme,
as the following result shows.

Proposition 2 Suppose that A € Ké\(f]XN admits a p—convergent subdivision scheme with canonical limit
function F. Then

1. we have that
(I-A)F =0, ee b, (13)

which holds true in the sense of HX*N (R®).
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2. QA 75 @, i.e.,
1<dimQa < N. (14)

3. there exist exactly n = dim Q 4 constant linearly independent eigenvectors c; € N(Z), j € L, of
the subdivision operator S g with respect to the eigenvalue 1, i.e.,

Sacj=c;j, and cjla)=c¢;(B), a,pel’ jE L.

PROOF. The crucial point of this Proposition is equation (13) which is due to [4]. Since (13) means
that every column vector of F' is an eigenvector of every A., ¢ € E, for the eigenvalue 1 and since the
nontriviality condition for a convergent subdivision scheme requests that F' # 0, it follows that there is a
nontrivial joint eigenspace of the matrices A, € € E, and thus we obtain (14). Moreover, note that

dim Q4 > dim R (F), (15)

where R (F), the range of F, is the smallest linear subspace of RV which contains the columns of F' for
(almost) all z € R?, the “almost” depending on whether 1 < p < oo or p = .
Next, let y, j € Znp, be a basis of Q 4 and set ci(-) = Y;>J € Zin. Then

SACjZA*MCjZZA('—M/@)Cj(ﬁ): ZA('—Mﬁ) y; =y; =¢;(")
BEZS® BEZ®

since the rightmost sum is of the form A, for some ¢ € E. Consequently, these constant vectors c¢;,
J € Zy, are eigenvectors of S4 with respect to the eigenvalue 1 which implies that there are at least n such
eigenvectors. On the other hand, let ¢ € ¢(Z?®) be any constant eigenvector, of Sa, say ¢(-) = y, and set,
for R > ms(A),
CR ‘= X[-mR,mR]* C.
Then it follows by a standard argument for any test function ¢ and any sufficiently large value of R we have
that
Fxcr(z) = lim ¢xShe(M'z) =y, xz € [-R, R},
n—oQ

hence, letting R — oo, we can conclude that F' x ¢ = ¢(0). Consequently, it follows that ¢ € R(F') for
any ¢ € (N (Z?®) such that ¢ = S ¢ and therefore the dimension of this eigenspace of constant vectors is
< dim R(F). By (15) this implies, however, that the dimension of this eigenspace must be exactly n. W

3. Factorization

In this section, we will connect convergent stationary subdivision schemes to a factorization property which
will be expressed in terms of appropriate difference operators, but also in terms of quotient ideals. These
results generalize the well-known fact that preservation of constant data by a scalar, univariate stationary
subdivision operator is equivalent to the associated mask having a zero at z = —1, that is, the mask contains
a factor (z + 1). The counterpart of this result in univariate vector subdivision are the matrix factorizations,
given in [16] for the case that dim Q@ 4 = 1 and in [12, 13]; except the full rank case where dim Q4 = N,
those factorizations consist of multiplying matrices from the left and the right. It was, however, shown in
[13] that the common background behind all these factorizations was the existence of a subdivision operator
S such that
DSA =SBD,

where D denotes an appropriate difference operator. This interpretation of factorizations, both in the scalar
and vector case, turned out to be useful for the determination of convergence and the regularity of (stable)
refinable vector fields.
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Stationary vector subdivision

Also in the multivariate case, even with arbitrary expanding scaling matrices, part of this is already
known, especially in the scalar situation N = 1, see for example [1, 3, 5, 10]. The vector case has been
addressed recently in [7], but with techniques significantly different from those used here. Also, we will
not make use of the method of invariant subspaces and joint spectral radius which has been initiated by Jia
and collaborators, cf. [6, 8, 9], see also [11, 14] for the connection between matrix subdivision schemes,
joint spectral radii and stationary subdivision schemes.

The approach presented here will combine the classification of vector subdivision schemes with respect
to the number n := dim Q 4, as developed in [13] with the quotient ideal methods which have been
introduced in [17] for the case M = 21, and were elaborated further in [15]. This approach will turn out to
be appropriate for the treatment of multivariate stationary vector subdivision schemes.

Let a sequence A € ()%™ (Z*) be given such that

1<n=dimQa =dim [ £(A,1), A=) A(c+Ma), e€cE.
eEFE QELS

According to Proposition 2, all “reasonable” stationary subdivision schemes are of this form. Let V €
RV*N pe any orthogonal matrix, that is, viv = vvT = I, such that the first n columns of V' span
Qa, thatis,

R’n
QA=V{0 ] (16)
N—n
where, for &, ¢ € N, we use the notation
0 ... 0 1 ... 1
Ope=| - .. € RF*E, Tpe= | - € RF¥¢, 0 =0p1, 1p=141.
0O ... 0 1 ... 1

With the help of this matrix V, the matrices A, € € E, are partially jointly diagonalizable. In fact, we
have
In On,an

VvIAV = 0 4 ., A e RN-XN-n (17)
N—-n,n €

To keep the notation uncluttered, we will drop the subscripts of the matrix blocks in decompositions like
the one above whenever their dimension will be clear from the context.

Recall that an element of the ring A = C [zj7 zj_l 1 JEZ S] of all finite linear combinations of z¢,

o € 75, is called a Laurent polynomial. To our sequence, the mask A € E(%XN (Z%), we define its
symbol A* € AN*N as the the matrix valued Laurent polynomial or, equivalently, the matrix of Laurent

polynomials,
=Y A(a)z*, zeCy,
Q€L

where Cx = C\ {0} denotes the units of C. With the subsymbols

Al(z ZAe—kMa) 2%, ec B, zeC,
a€ZLS

we the obtain the well-known decomposition

ZZAe-{—Ma E+M“-Zz ZAE-{—MO( :ZZEA:(ZM). (18)

ecE a€els ecE a€Ls eckE

From this convenient formula we almost immediately get the following result.
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Lemma1 If A € K%XN (Z*) has the property 1 < n = dim Q4 and V is any orthonormal matrix
satisfying (16), then

1
VTA*<zo)V=m[IO" f:] w=| | (19)
1

and

T A* 0nn O —2xiM~T¢ ! ’

ViA* (20)V = o x| Ze = € , € € E"\ {0}, (20)
where E' = M [0,1)° N Z* are the standard representers of 7./ M ' Z.
PROOF. By (18), we obtain for zg = (1,...,1) that
A* (2) = Z:A;k (z") = ZAC’
eckE ecE
from which (19) follows immediately. For (20) we first note that
1
M = (6727riM_Te')M — 6727riMTM_Te' — 67271'1'6' — = zo,
1

and so, with (18) and (17),

VIA )V = Y 2VIAL () VI =) 20VTAVT

eeFE ecE
In 0 € € On’n 0
= |: 0 0:| <ZZ€/>+ZZ€/|: 0 z€:|
< ecE

and since
Zz:, =mde o, €e€E,
e€EFR

cf. [10, Lemma 1], we obtain (20). W

Consequently, all the Laurent polynomials in VT A*V except those in the “lower right corner” of size
N —n x N —n vanish at the points z./, ¢ € E’\ {0}, and the off-diagonal entries among them even vanish
at zg in addition. Since the sets of all Laurent polynomials satisfying this type of zero conditions form an
ideal in A, we can describe these properties in terms of ideals. For that purpose, let us recall some concepts
from ideal theory.

A subset I C A of the ring A is called an ideal if it is closed under addition, thatis I + I = I, and if
I - A C I. Particular ideals are those which are generated by a finite set 7 C A as

(F)=3> arf :qseN fEF
feF

In fact, for any ideal I C A there exists a finite set 7 C A such that I = (F); this is Hilbert’s famous
Basissatz. Since the ring A is structurally different from the ring C[z; : j € Zj] of all polynomials with
complex coefficients (in contrast to the ring of polynomials, A is spanned by finite linear combinations of
units), there are some more elaborate arguments necessary, for example in the construction of “good” ideal
bases. Nevertheless, these aspects are discussed and resolved in [15]. The crucial concept in what follows
is that of a quotient ideal, cf. [2].
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Definition 3 Given rwo ideals I, J C A, their quotient ideal or colon ideal I : .J is defined as
I:J={feA . f-JCI},
where obviously I C I : J.

Let M = [m; : j € Z), where m; € Z* denotes the j—th column column vector of M. In what follows,
we will consider two particular ideals, namely

(M—1) =™ —1: j€Ly,

and
(z=1)y:=(2;—1: j€ELy.

These two ideals describe the polynomials which satisfy the zero conditions at the points z., € € E’, or
e € E"\ {0}.

Theorem 1 [15, Theorem 2, Proposition 3]  For f € A we have that
fze) =0, €€eE =  fe{zM-1), 1)

and
f(ze) =0, €e€E\{0}, <= felZM-1):(z-1). O (22)

Remark 1 To my knowledge, the equivalence (21) has first been proved in [10]; a different, algorithmical
proof based on the Smith factorization for matrices and Grébner bases was later provided in [15, Lemma 1].
The second statement, (22), reflects the geometric fact that, loosely spoken, the quotient of two ideals
corresponds to the difference of the associated varieties, cf. [2], and since the variety associated to the
radical ideal (z — 1) consists just of the point zy, this geometric operation precisely consists of releasing
the zero conditionat z = zo. W

Combining Lemma 1 with Theorem 1, we thus obtain the following result.

Corollary1 If A € &%XN (Z*) has the property 1 < n = dim Q4 and V is any orthonormal matrix
satisfying (16), then

|a o

VTA*Ve{IO” g](<zM—1>:<z—1>)+[1”’”1_I” (1)]<ZM—1>+{0’6’” (1)

Our goal will be to rewrite this relationship in terms of a difference operator. For that purpose we let §;,
J € Zys, denote the j—th backwards partial difference operator, that is
djc:=c(-—ej) —c(), cel(Z?). (23)
We combine these operators into a matrix valued difference operator
A, o (NN (78 o (NN (7.9
which we define with the help of the matrix V" as

D,
A,:=D, V" .= : vl D;= {

] , JELs. (24)
Dsfl

This difference operator plays the key role in our considerations.
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Theorem2 If A € E(%XN (Z*) has the property 1 < n = dim Qa and V is any orthonormal matrix

satisfying (16), then there exists B € (5°* N (Z*) such that

A, Sa=SBA,.

(25)

For the proof of this theorem, we need an observation about the symbols of operators which are obtained
by convolving matrix sequences, taking into account the slantedness of subdivision operators. For the
readers convenience we give this result, which can also be found in [15] in a more detailed form, together

with its simple proof.
Lemma 2 Let A € (5™ (75) and B € ()N (7). Then
(Ax B)" (2) = A*(2) B*(2), (Axy B)" (2) = A*(2) B* (M), z€eC.
PrROOF. Straightforward computations yield
S UY A-9 BB | 2= 3 Ala-p) 27 B():" = A*(:) B ()
a€Zs \BEL® a,BeZs

and

(26)

SUD A(-MB)BB)| = Y A(a-Mp) >~ B():M = A*(2) B* (z)

«€Zs \BELS® o,BEZ*
whichis (26). N

PROOF OF THEOREM 2  In view of Corollary 1, we write

T axvr | F* G
viav=[&
where
Frel, ((zM-1):(z=1))+1pn—1I,) (M -1), H* €A,
as well as

Gi€lyn_n (ZM=1),  Gi€ln_pn, (zM-1).
For j € Z 4 we have that

* _ (Zj — 1) In 0 s
Dj(z) = [ 0 Ino. | z € C,.
Therefore, by Lemma 2, we have for z € C3, that
. Dg(2) P e
* * . Z
C*(z) = (D * (VTSAV)) ()= D(z) VT A*(2)V = : G H(-
D.:—l(z)

(20 — 1) F*(2) (20 — 1) G7(2)
G5 (2) H*(z)

(oot = 1) F*(2) (2001 — 1) Gi(2)
G3(2) H(2)
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hence,
* 1n,n 1 M On,n 0
Cels®<[ 1 0](2 —1>+[ 5 1]A>.

Thus, there exist Laurent polynomials

Bi, €A™ B;e AN e,

such that s
(5= 1) F(:) =3 (™ 1) B,(:),  j€Zs, 29
k=1
and s
Gi(z) =3 (=™ — 1) By(=). (29)
k=1

Taking (28) and (29) into account, we therefore obtain for z € C3, that

Bio(z)  22Gi(2) ... B, () 2Gi(2)
B, LH*() ... B, , LH*(2)
C*(z) = : : : : X

B;NL*O(Z) %GI(Z) B;Nl,*sfl(z) %GI(Z)

B, TH*(2) ... B, | LH*(2)
(zm0 —1) I, 0
0 Ian
X : :
(zms-1—1)I, O
0 Ian

=: B*(2) D* (:M) = (Bxy D)" (2) = (S D)" (2), (30)

where B € AN$*Ns by another application of Lemma 2. Thus,
DV'SsV = SgD
and multiplying this from the right with V7 yields (25). H

Next, let us make some comments on Theorem 2 and its proof.
Remark 2

1. Note that Theorem 2 is constructive in the sense that the finitely supported sequence B € Eé\(]fx Ns(z%)
can be determined by computing the symbol B*(z) via (30), where the Laurent polynomials in (28)
and (29) can be obtained, for example by using Grobner bases or H-bases for the ideal I = <2M — 1>.
This is straightforward if M € N;** has only nonnegative entries and thus I is a polynomial ideal.
Otherwise one has to make use of a basis of the polynomial part P(I) as described in [15].

2. The sequence B above is in no way unique. Besides the fact that there usually will be ambiguities
in (28) and (29) due to the appearance of syzygies, even the choice of B*(z) in (30) is clearly
not the only one possible. For example, one can distribute arbitrary multiples \; (z1 — 1) G (%),
J € Zs, over the even indexed entries of the first block row of B*(z), the only requirement is that

ez A =1
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3. Aspointed outin [17] for the case NV = 1 and M = 21, one can choose the sequence B in such a way
that it has smaller support than A. This is due to the fact that by choosing an appropriate reduction
process in (28), the polynomial coefficients appearing there can be chosen to have strictly lower total
degree than those of A*. As (30) indicates, this property carries over to the full rank case n = N,
but for n < N an increase of support will be unavoidable in general as the appearance of the terms
(z; — 1) Gi(2), j € Zs, shows which are of strictly greater degree that G7.

4. Theorem 2 also has a partial converse: if there exist n > 1 and an orthogonal matrix V' € RV*N
such that (25) holds true, then we have, for any vector y € span{vy,...,v,} that

ON = Any = SB Any = AnSAy7

hence
Say € ker A, = span{vy,...,v,},

that is, S4 maps any such constant sequence to another constant sequence in the same vector space.

5. Theorem 2 also plays a crucial role in the description of convergence of the subdivision operator.
Indeed, convergence is equivalent to the existence of the above B and its contractivity, that is, the
(restricted) spectral radius condition

Spe
mP > p, (Sp,Ay) := limsupsup{” 5 el ceeN Y (Zs)}.

r—so0 llell, ?

We will not give such a proof here since it is lengthy and tedious, but refer to [10] where the case
N =1and p = o is elaborated. W

The explicit formula for B in (30) allows for a first observation on Qpg.

Proposition 3 Assume that the assumptions of Theorem 2 are satisfied, let B be as defined in (30) and let

weonn ([, ])"

Then there exists w' € RN~ such that

PROOF. Let

0 . 0 * .
e~[[5] el ]) memn e

belong to Qp, thatis, Spw = w. With w*(z) = w, z € C5, we thus get from the definition of B in (30)
that for z € C5,

w = w(z)=(Spw)" (2) = (B*xyw)" (2) = B*(z)w* (:") = B*(2)w
(20 — 1) G§(2) 0,
H*(Z) Wo
= : dowi=|
(23—1 - 1) szl(z) JeLs 0,
H*(Z) Ws—1

which implies that
wj:H*(z)Zwk::w', 2e€Cy, jeZs N
keZ,
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4. Polynomial reproduction and approximation power

In this section, we will use Theorem 2 to describe when a subdivision operator S4 preserves polynomial

sequences of a certain total degree. To that end, we let V be a subspace of RV of dimension n > 1, and let
V € RV*N be an orthogonal matrix such that

]:Rn

V=V .

ore ]

Such a matrix V' whose first n columns span ) will be called V—generating. By Il = R[z; : j € Z,] we

will denote the ring of all polynomials with real coefficients and by II,., r € Ny, the vector space of all

polynomials of zotal degree at most < r. Moreover, we denote by I19 the vector space of all homogeneous
polynomials of degree r. The vector space of all polynomials with coefficients in V will be written as

H[V]:{f(z): Z Vo 2% UQEV}

a€Zs

where, as usually, only finitely many of the coefficients v,, are nonzero. From this, the definition of IL,[V]
and II%[V] are immediate; also note that Iy [V] = V.

Definition 4 Let A € (J)*™ (Z%) and V C RN . We say that S o has approximation power - with respect
oV if
SAHk[V] = Hk[VL k€Z,. 3D

The vector space V will be called maximal if any subspace YW C R" that satisfies (31) is also a subspace
of V, W C V, and if (31) cannot be satisfied for any true superspace W of V such that V C W C RV .

In order to formulate our main result of this section, we need to introduce some more notation.

Definition 5 Forr € Nwe setT', = {a € N§ : |a| = r} and define the r—th order backward difference
operator as

, oI, O a_ aj
D’ =[D, : a€l,], Da::{ 0 INn]’ 5_.]'[5].7 (32)
JEZs
and
AT :=D'v7T, (33)
Here, D!, and A!, are operators that map (8}, (Z°) to €5," (Z.%), where d, := ("**) is the dimension of
II,.

Moreover, we define for a matrix T' € R4 "% conveniently written as
T=[Tu.p : o,feT,], Top € RV,

the matrix J € Rir NxdrN g

T ~ T, 0
Jr = I:Tﬁ,oz : 0476€Frjlv TOé,B:|: ()’B 0, BINf

Remark 3 Note that though D!, and A" are not the r—th powers of D,, and A,, which map ¢} (Z?) to

(35" (Z*), they are equivalent to them. This is due to the fact that, just like derivatives, the difference
operators commute. W
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We now are in a position to describe the existence of polynomial eigenfunctions in terms of a factoriza-
tion property.

Theorem 3 Suppose that A € &%XN (Z.%) satisfies 1 < n = dimQa and let V. € RN be a Qa—
generating matrix. Then

Sall [Qa] =10} [Qa]. k € Zy, (34)
if and only if there exist B € é(%deNdj (Z®) and Tj € R4 "*4in, j € 7, such that
A} Sa =Jr, Sp,AJ, (35)
and
Op, = (VTQA)dj = [ 051; ] ® 8 [ ojljin ] : (36)
s
Remark 4

1. For the univariate case it was observed in [13] that the dimension of Q 4 forms an invariant under
factorization. As (36) shows, this essentially holds true also in the multivariate case, however, now
the dimension grows by a factor s with each single factorization step, which is exactly the growth of
the matrix B itself. In other words: the ratio dim Q B, /dj, j € Zryq, remains an invariant under
factorization.

2. The factorization condition (35) should be interpreted in a twofold way: one part is the existence of
such a factorization, that is, of a mask B such that A7S4 = S 5 A7 (which is the “algebraic part”
of this result, see also Proposition 6), the other part is a proper normalization of this mask by left
multiplying each entry of the sequence B with the matrix Jr. W

The proof of Theorem 3, which is the purpose of the remainder of this section, will proceed by induction
on r. In order to do so, we will first consider case » = 0 for which (34) ist satisfied trivially, then the start
the induction by proving case r = 1 which will also serve as an illustration of the general concept used in
the end.

We begin with the following observation on the maximal subspace which is preserved by S 4, which is
even stronger than what would be needed for the case r = 0.

Proposition 4 For A € Eé\gx N (Z*) the subdivision operator S o has approximation power O with respect
to a maximal subspace V C RN ifand only if Qq = V.

PROOF. Since Spy = y fory € Q 4, the maximality of V implies that @ 4 C V. On the other hand, we
have for any v € V that v = S 4w, in particular, for e € E,

v =v(e) = (Sav) (¢) = Z A(e— Ma)v(a) = A v, 37
a€EZS

hence, v € Q 4, thatis, V C Q4. Conversely, V = Q 4 is obviously a subspace with respect to which S 4
has approximation power 0, and maximality again follows from (37). W

Next, we point out the simple way how the matrix T', € R% "*4r" is obtained.

Lemma 3 If the mask A € ()%™ (Z°) satisfies (34), then there exist matrices To 5 € R™*", a,f € T,,
such that

Sa (V[ In ] (-)a> - vrl;()? €l,_1[Qa], acl, (38)

ON-n Ber

and the matrixT = [T 3 : «,f € I'}] is nonsingular.
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PROOF. The monomials m; o(2) := v; 2% v; = Ve;, a € Iy, j € Zy, span the vector space Hg [Qal.
By (34), their images f; , := Sam;, belong to IL,. [Q 4] and therefore can be written as

Fia2)=9(2)+ Y > VerTap,r’=g(2)+ Y ’VT] e, geT, 1[Q4],
BET» kEZR BeT,

where T g = [Ta.jk © J,k € Zy]. Written in matrix form, this gives (38) by comparing coefficients of
highest degree. Since
Sall? [Qa] + 11,1 [Qa] =11, [Qa],

the matrix T = [T, 5 : «, € I',] must be nonsingular because otherwise there would exist a vector
y=[y, : a€cl,]ecR¥""such that

0=T"y= lz TZ’Bya : ﬂGI‘T].
a€cl,

But then

Fz) = ZV[ofi“n } = ZV[Oi"n ] Yo o €T07[Qa]

acl', acl',

has, by (38) the property that
Saf = D VTisya () =5af -V ) (Z T: 5 y) ()’ = Saf
a€el', Bel, Ber, \a€l'y

belongs to II,._; [Q a] which contradicting the fact

dim (SAT[04] 0 (I, [Q4]\ T1,-1 [0a)) = dim 2 [04] =n (" T 7)

which follows directly from (34). W

Let us now turn to the case » = 1 which we record in the following proposition.

Proposition 5 Suppose that A € (5*" (7.°) satisfies 1 < n = dim Q4 and let V. € RN be a Q-
generating matrix. Then

Sall1 [Qa] =111 [QA] (39

if and only if there exists B € E(%SXNS (Z*) and T € R"**™5 such that
T S
AnSa=JrSeA.  Qp=(V'Qa) . (40)

PROOF. By Theorem 2 there exists B € ()N (Z#), such that

ApSa = SgAn. 41)
Now assume that (39) holds true. For arbitrary vectors v; = V [ Oyj ] € Qa, Y; € R™, 7 € Zg, let
N—n
f € 111 [Q 4] denote the linear polynomial
fle)==> vz, zeC. (42)

JELs
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as well as the associated sequence f € (¥ (Z*) Then it follows from

5] (')k:('_ej)k_(')k:_(sj]m jakeZ87
that

_ Tgp_ _ ~ T N = v — Yj .
Af=D, VI f=_-D, z;v v; () _[V v; .jGZS]—[[ONn] .Jezn].
]:

Moreover, let T' be the matrix from Lemma 3, then the polynomial
9(zx)= > VTjy;z  €T{[Q4]
J.kEZ s
satisfies Saf — g € Qa = ker A,,. Moreover,
— T . —_ 7T R — Y; .
A,g = Z [Tjkyj : kEZs] =T [y]- : ]EZS] _JT[[ON]—n ] : jEZn].

JEZLs

Therefore we get, substituting the above identities into (41), that
V7, V7T,
Jr :Ang:AnSAf:SEAnf:SB
VT’US,1 VT’US,1

and defining B = J,}l ﬁ, that is, A, Sa = JrSA,, a left multiplication with the nonsingular matrix
J7! results in

[Vij = ZS] =SB [Vij D jE€ Zs],

that is (VTQ A) C @p. Suppose that O D (VT Q A) . This assumption implies that there exists a

nonzero vectorw € Qgn <[ Rgﬁn ]) which, by Proposition 3, must be of the formw = 1,® { 2}7 ]

for some w' € RV—™. Thus,

w=D, [zﬁ]anvTV[fv’i]zAnV[fj],

which yields, taking into account (17), that

w

0, 0, 0,
Jrw=JrSg A,V { w ] =A,SAV { o ] =D, VTS,V { o ]

= oM L e LA

and thus the contradiction that

0, | 0, . 0,
{w']_{Zw']’ ie., V{w,]EQA.

The converse is easy: since any polynomial f € II; [Qy] can be written in the form (42), (40) implies
that

AnSaf =JrSe [Vij : jeZs] —Jr [Vij : jeZs] —A,g,
thatis, Saf —g €kerA, = Q4. N

The next result is of technical nature.
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Lemmad4 Forr € Nandv, € Qa, a € T',, define the homogeneous polynomial
f(z) = Z vo 2* € [Qa]II]
a€cl,
Then
AL f=(-1) [a! Viv, : a€ F,«] ) (43)

PROOF. Since

4.a:._e<a__a:aj_ k[ &5 .a—kej_.a:aj_ k[ O Na—ke;
50" == =" = S () 0t - 0n = St () o
it follows by iteration that

which yields (43). N
Finally, we define for r € N the permutation matrix
-
IN—n
I,

W, = . In € RNdr xXNd, (44)
- -n

IN—n

| " _

which is obviously orthogonal as all its rows or columns have disjoint support, respectively. We now have
all tools available which are needed to complete and finish the proof of Theorem 3.

PROOF OF THEOREM 3  Suppose that Theorem 3 has been verified for some > 1. We prove that it is
also valid for r + 1.
Suppose that, for all £ € Z,1, we have that

Sally [Qa] =111 [Qa4]. (45)

Since this means, in particular, that (45) holds true for k = r, we conclude that

d, R» -
ArTSa=Jdr, S, A}, O, = (VTQA) - <[ On_ D )

nd,
With W := W, we have that O = W [ 0 R } , thatis, W is Q g, —generating. Defining
dr.(N—n)
~ ~ ~ ;1 0
— .o T . jLd,.n .
A—[D].]EZS}W7 DJ._[ K IdT(N—n):|’ j ez,

Theorem 2 implies that there exists Be Egg"N *sdr N (7.8) such that AS B, =295 E&. Using the abbreviation
T =T,, we next compute

o~ o~ T .T
DWTJT:D[TO 0 }WT:H‘SJT 0 }:jeZs]WT

AJ
T L. (N—n) 0  Ii(n—n

_ T 0 ~ 7 T ~
- <13®[ 0 Tuixon D DW _(13®W JTW) A

(Low™) (I, 0J1) (I, o W) A,
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which yields that
AA'Sy=AJg, Sp AT = (Is ® WT) (I, © Jr) (I, © W) SgA A" (46)

With the help of the identity
~ ~ ~ [T, : a€el,] O4nnN— T
AAr=DWTDIvT =p | "I " PR I %
" " [ 04, (N—n),n g, @IN-—n
= |: [ [5a+e]- I, : «a€ Fr] 0d,n,N—n

ez vT = (1 ®WTD’")D vT
Odr(N—n),n ldr QR In_p, :| J S:| s n n

(13 ® WT) (I, ©D")D,VT = (IS ® WT) X ATH
which holds true with the rearrangement matrix X € {0,1}¢N*dr+1N defined as
X =[Xjps ¢ ()) €T @ Ly BET ], X(aj),s = date; 5 IN 47)
and satisfying (I, ® D) D,, = X D", we obtain from (46) that
XA, = (I, @ Jr) (I, W) Sg (1s ® WT) XA 48)

It follows by a straightforward computation from the definition (47) of X that X7 X = sT dvr N and
setting

1 _
B:=-X"(I,0Jr) (I,oW) B (Is ® WT) X e (I NxdaN (s 49)

we obtain from (48) that

1
Sp ATt = ;XTXA;;HSA =ATT1S,,
and so the mask B, := J,}iﬂ B satisfies ATt Sy = Jr,,, Sp,,, AT, The containment of Qp, _,
dr
in (VT Q A) ™ is now easily obtained by making use of the preservation of all homogeneous polynomial

sequences
f(z)= Z Vo 2%, Vo € Qa, 2€C,
a€l 41

dry1
of degree r+1 by S 4 and Lemma 4. To show that QBTJr1 = (VT Q A) , we again assume the existence

drt1
ofw € <[ ]Rl(\)fri” ]) such thatw = Sp, ., w = Spw. By (49) this means that

1 1
X" (I, e Jp) Xw=w= X" (I, Jr) (I, © W) Sg (Is ® WT) X w,
hence, defining x = Xw,
1
“X" (1,0 J7) (2 - (I,e W) S (I, o W) z) =0,

By (30), z := (I, ® W) Xw is an eigensequence of Sz and by Proposition 3 it must be of the form

= (
1,®y,y € [ Rd?éi;\}rin) ] ,hencez =1, ® WT'y. Moreover, since KSBT = Sgﬁ, it follows that WTy
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is an eigensequence of Sp_, an inductive repetition of the above argument gives that wly = 1, @ w',

w' € [ ]Rg’in ],and thus

X'w:(Is®WT) 1s2y) =1 (14, @ w'), ie., w=1q ,, ®w'

But then

" _ 1 _ +1,,,0 +1 !
ldTJrlw _SBT‘+11d7’+1w _SBT+1A; w —AIL SAw

again yields the contradiction that S g w’ = w’. This proves that approximation power implies the existence
of a factorization with the described properties. The converse is proved just like in thecase r = 1. W

To end this section, we give an ideal theoretic interpretation of the factorization in Theorem 3.

Proposition 6 Ifthe mask A satisfies (35) and (36), then

VAV € [I” 0] (M =1): (2= 1) 4 [ 1”’”0_ I 0} M) oy

0 O 0
" { 03’n (1)] (M =1) (e =1)) + [ 07{’" 8] (M -1y (50)
Onn O
+{ 0 1 ] A

Conversely, if (50) is satisfied, then there exists a factorization of the form (35). 0O

The statement of Proposition 6 becomes particularly simple provided that we are considering a full rank
scheme where n := dim Q@ 4 = N; the most important case of such schemes is of course when N = 1.

Corollary 2 If A € E(%XN (Z*) is of full rank and has approximation power r, then
A eIy (=M - 1>TJrl -1 Ay — In) (M — 1>TJrl Sz =1)".

PROOF. Let B € ()Nt (7,5) be defined by A7 S, = SgAj,. Since B is only a renormalization

of B, i.e., all entries of the sequence B are multiplied with the same diagonal matrix, the existence of B
follows from the validity of (35). Using again the abbreviation W = W ., the computation

b I @ a€ Fr] 0d,n,N—n

wrar=| !
" { 04, (N=n),n 1g, ®IN—p

] vi=DVT = £7
implies that

ASa=W"ALSa =W SzAL =W SzWWTA, = (W' SzW) A,

hence,
D (VTSAV) - (WTSBW) D, 51)
or, in terms of symbols,

~ x

D) VTAV=wTB :))WD" (M), :eC\{o0}. (52)

By (36) and Corollary 1, we get that

WIB (:)W = { g}:(z) ] : (53)
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where
P eIy, ((zM-1):(z-1)+ Lamndn — In) (M = 1) (54)
and
Qe (M -1y L gre (M -y NTHER R g A (N emxdn(Nom) (55
Noting that
~x =141 a€el 0 o o
D(Z):[[( " ! eIy, | D =I1GE-DY acl,

JEZs

and substituting this identity and the decomposition (27) from the proof of Theorem 2 into (51), we thus
obtain that

[ [(z=1D)*F*(z) : a€l}] [(z—=1D*Gi(z) : a€l,] :|
1d,,®G; ldT®H*

. {P* (M =1)" I, : a€l,] Qf1ls ®@In_n ]
T @ [(M-1)"1, ael,] R'1g,0In,

If we write the block components of (53) as
P =[P,;:a,feT,], X 5 € A
and respective representations for Q7, Q3 as well as R*, we first obtain that

(:—-1"F(z)= 3 Pisx) (M -1)", ael, :eC,
Ber,

which yields, by (54), that

r

(2= 1) F e (L (M= 1) (5= 1)+ (Lo — L) (M = 1)) (M = 1),
that is, by the properties of the ideals (s — 1), (z — 1) and their quotients, cf. [15],

F el ((=" =1): (2 = 1)"" 4+ (Lo = L) (M = 1) 2 = 1)7). (56)
In the same fashion we also obtain

QrezM—1):(z-1), Qie(M-1)". (57)

Since (56) and (57) are precisely (50), this proves the necessity of that condition.
For the converse, assuming that (50) holds true, we take any representations of VI A*V with respect
to the given ideals and follow the above argument in reverse order to arrive at (35). W
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