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On a stochastic parabolic PDE arising in Climatology

G. Dı́az and J. I. Dı́az

Abstract. We study the existence and uniqueness of solutions of a nonlinear stochastic pde proposed by
R. North and R. F. Cahalan in 1982 for the modeling of non-deterministic variability (as, for instance, the
volcano actions) in the framework of energy balance climate models. The more delicate point concerns
the uniqueness of solutions due to the presence of a multivalued graphβ in the right hand side of the
equation. In contrast with the deterministic case, it is possible to prove the uniqueness of a suitable
weak solution associated to each given monotone (univalued and discontinuous) sectionb of the maximal
monotone graphβ. We get some stability results when the white noise converges to zero.

Sobre una ecuaci ón estoc ástica en derivadas parciales de tipo parab ólico
que surge en Climatologı́a

Resumen. Estudiamos la existencia y unicidad de soluciones de una ecuación estoćastica en derivadas
parciales de tipo parabólico propuesta por R. North y R. F. Cahalan en 1982 para la modelización de
variabilidad no determinista (como es el caso, por ejemplo, de la acción de volcanes) en el marco de los
modelos de balance de energı́a. El punto ḿas delicado se refiere a la unicidad de soluciones debido a la
presencia de un grafo multı́vocoβ en el t́ermino de la derecha de la ecuación. En contraste con el caso
determinista, es posible mostrar la unicidad de una cierta noción de solucíon d́ebil asociada a cada sección
monotona (uńıvoca y discontinua)b del grafo ḿaximal mońotonoβ. En esta nota se dan unos resultados
de estabilidad cuando el ruido blanco converge a cero.

1. Introduction

This note deals with the nonlinear stochastic pde

(Eβ,ε)

 ut − uxx +Bu ∈ QS(x)β(u) + f(x, t) + εẆ, (x, t) ∈ (−1, 1)× R+,
ux(−1, t) = ux(1, t) = 0, t ∈ R+,
u(x, 0) = u0(x), x ∈ (−1, 1),

whereB andε are positive constants,
(Hβ) β is aboundedmaximal monotone graph ofR2, i.e.m ≤ z ≤M , ∀z ∈ β(s), ∀s ∈ R.
(Hs) S : M→ R, S ∈ L∞(−1, 1), S1 ≥ S(x) ≥ S0 > 0 a.e.x ∈ (−1, 1),

u0 ∈ C([−1, 1]), f ∈ L∞((−1, 1)× R+) and the termW denotes a space-time white noise.
This kind of problems where proposed by R. North and R. F. Cahalan in 1982 ([5]) for the modeling of

non-deterministic variability (as, for instance, the volcano actions) in the context of energy balance climate
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models. We recall that the distribution of temperatureu(x, t) is expressed pointwise after a standard average
process, where the spatial variablex is given byx = sin θ andθ is the latitude. Notice that, for simplicity,
we are replacing the natural degenerate diffusion term((1 − x2)ux)x by the usual1d-Laplacian operator
and that the absence of boundary conditions for the degenerate diffusion is corrected by adding Neumann
type boundary conditions since in the degenerate model the meridional heat flux(1−x2)ux vanishes at the
polesx = ±1. The balance of energies leads to the problem ut − uxx = Ra −Re, (x, t) ∈ (−1, 1)× R+,

ux(−1, t) = ux(1, t) = 0, t ∈ R+,
u(x, 0) = u0(x), x ∈ (−1, 1),

where the termsRa andRe must be specified by means of constitutive laws (see, e.g., [5], [1] and [2]).
The absorbed energyRa depends, in a fundamental way, on the planetarycoalbedoβ representing the
fraction of the incoming radiation flux which is absorbed by the surface. In ice-covered zones, reflection is
greater than over oceans, therefore, the coalbedo is smaller. So, there is a sharp transition between zones
of high and low coalbedo. In the energy balance climate models, a main change of the coalbedo occurs
in a neighborhood of a critical temperature for which ice become white, usually taken asu = −10◦C. In
the so calledBudyko modelthe different values of the coalbedo are modeled by means of a discontinuous
function of the temperature. As usual in pde, this function can be understood in the more general context
of the maximal monotone graphs ofR2. In particular, we assume that

β(u) =

 m, if u < −10,
[m,M ] , if u = −10,
M, if u > −10,

(1)

wherem = βi andM = βw represent the coalbedo in the ice-covered zone and the free-ice zone, re-
spectively and0 < βi < βw < 1 (the value of these constants has been estimated by observation from
satellites). In contrast to the above assumption, in the so calledSellers modelβ is assumed to be a more
regular function (at least, Lipschitz continuous) picewise constant function far from a neighborhood of
u = −10. In both models, the whole absorbed energy is given byRa = QS(x)β(u) whereS(x) is the
insolation functionandQ is the so-calledsolar constant.

The Earth’s surface and atmosphere, warmed by the Sun, emit part of the absorbed solar flux as an
infrared long-wave radiation. This energyRe is represented, following the proposal by Budyko, byRe =
Bu− f(x, t). Here,B andf are obtained, again, by observation and depend on thegreenhouse effect.

The main goal of this note is to present the mathematical analysis of the model ([5] was limited to the
application of the Fourier method to the linear caseβ = 0). We recall that in the deterministic case (ε = 0)
the existence of solutions was given in [1] (see [2] for the generalization to bidimensional models). When
β is as the Sellers coalbedo this solution is unique, nevertheless, ifβ is multivalued it was shown there that
there is lack of uniqueness of solutions except in the class of the, so called,non degenerate solutions. As we
shall specify later, a curious fact is produced for problem(Eβ,ε): the presence of a stochastic perturbation
produces the uniqueness of the solutions associated to any given monotone (univalued and discontinuous)
sectionb of the maximal monotone graphβ, (i.e. a function such thatb(r) ∈ β(r), for anyr ∈ R).

In this note we use some previous results due to I. Gyöngy and E. Pardoux ([3], [4]) in order study the
stability of solutions whenε → 0. We shall show that the associated solutionuε,b converges to asolution
ub of the deterministic problem and we characterize the limit for the case of the two distinguished sections
of β.

2. The Seller colbedo case

In this section we consider the formulation corresponding to the Sellers coalbedo function. In fact, it is
useful to start with a bounded truncation of the complete deterministic source function
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F (x, t, r) = QS(x)β(r)−BTn(r) + f(x, t)

wheren ∈ N andTn(r) = min{|r| , n}sign(r). We rewrite the problem as

(EF,ε)

 ut = uxx + F (x, t, u) + εẆ, in ]− 1, 1[×R+,
ux(−1, t) = ux(1, t) = 0, t ∈ R+,
u(·, 0) = u0(·), on [−1, 1].

Notice thatF is a bounded Lipschitz function and so, in particular,

|F (x, t, r)− F (x, t, r̂)| ≤ K|r − r̂|, (2)

for some positve constantK and forx, y ∈ [−1, 1], t ∈ R+, r, r̂ ∈ R.
We recall that the notion ofweak solutioncorresponds toB([−1, 1])

⊗
P measurable and continuous

random field{uε(x, t)}(x,t)∈[−1,1]×R+
such that∫ 1

−1

uε(y, t)ϕ(y)dy =
∫ 1

−1

u0(y)ϕ(y)dy +
∫ t

0

∫ 1

−1

[uε(y, s)ϕ′′(y) + F (uε)(y, s)ϕ(y)] dyds

+ ε

∫ t

0

∫ 1

−1

ϕ(y)W(dy, ds), t ≥ 0, IP− a.s.,

(3)

for ϕ ∈ C2(] − 1, 1[) ∩ C1([−1, 1]), ϕ′(−1) = ϕ′(1) = 0. HereF (u)(y, s) .= F (y, s, u(y, s)), W is a
space-time white noiseon a filtered probability space(O,F , {Ft}t≥0, IP), B([−1, 1]) is the collection of
all theBorelsets of[−1, 1] andP is theσ -algebra of the progressively measurable subsets ofO × R+.

Theorem 1 ([6], [3]) Under the above conditions there exists a unique weak solution of(EF,ε). Moreover,
if ε ≤ ε′ the comparisonuε ≤ uε′ IP− a.s. holds. �

The following result supply some information on the stability of the solutions whenε→ 0

Theorem 2 Under the above assumptions, ifuε anduε′ are solutions of(EF,ε) and(EF,ε′), respectively,
one has

sup
x

IE
[(
uε(x, t)− uε′(x, t)

)2
]
≤ |ε− ε′|2

[√
t

2π
+

K2

4π

∫ t

0

√
s

t− s
exp

(
K2

√
s

2π

)
ds

]
, (4)

for anyt ≥ 0.

PROOF. Let G(x, y, t) be thefundamental solutionof heat equation on[−1, 1] × R+ with homogeneous
Neumann’s boundary conditions. A simple probabilistic interpretation ofG(x, y, t) involving a suitable
Brownian motion,{B(t)}t≥0, on the complete probability space(O,F , IP), shows∫

D

G(x, y, t)dx ≤ IP ({B(t) ∈ D}) , for all D ∈ B([−1, 1]).

Then it follows

G(x, y, t) ≤ 1√
4πt

exp
(
− (x− y)2

4t

)
, x, y ∈ [−1, 1], t ∈ R+,

whence inequality ∫ t

0

∫ 1

−1

G2(x, y, t− s)dyds <
∫ t

0

ds

2
√

2π(t− s)
<∞ (5)
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holds. It is a simple exercise to verify that∫ 1

−1

uε(y, t)ψ(y, t)dy =
∫ 1

−1

u0(y)ψ(y, 0)dy

+
∫ t

0

∫ 1

−1

[uε(y, s) (ψyy(y, s) + ψs(y, s)) + F (uε)(y, s)ψ(y, s)] dyds+ ε

∫ t

0

∫ 1

−1

ψ(y, s)W(dy, ds),

for everyψ ∈ C2,1
x,t (] − 1, 1[×R+) ∩ C1,0

x,t ([−1, 1] × R+) ∩ C([−1, 1] × R+), ψx(−1, t) = ψx(1, t) = 0,
t ∈ R+. Now, for any fixedt we define

ψ(y, s) = G(ϕ, y, t− s) .=
∫ 1

−1

G(y, z, t− s)ϕ(z)dz,

whereϕ is as in (3). Since by construction

G(ϕ, y, t) = ϕ(y) +
∫ t

0

G(ϕ, y, s)ϕ′′(y)ds

we deduce
ψ(y, t) = ϕ(y) and ψs + ψyy = 0.

So, the solutionuε satisfies∫ 1

−1

uε(y, t)ϕ(y)dy =
∫ 1

−1

G(ϕ, y, t)u0(y)dy +
∫ t

0

∫ 1

−1

G(ϕ, y, t− s)F (uε)(y, s)dyds

+ ε

∫ t

0

∫ 1

−1

G(ϕ, y, t− s)W(dy, ds).

SinceIE[(uε(x, t))2] is bounded in[−1, 1] (see [3, Proposition 3.1]), Fubini’s Theorem implies that(uε(x, t))2

is integrable with respect tox, a.e. ω ∈ O. Then, ifϕ approaches a delta function, ast goes to 0, it follows

uε(x, t) =
∫ 1

−1

G(x, y, t)u0(y)dy +
∫ t

0

∫ 1

−1

G(x, y, t− s)F (uε)(y, s)dyds

+ ε

∫ t

0

∫ 1

−1

G(x, y, t− s)W(dy, ds), IP− a.s. (x, t).
(6)

We note that sinceW : B([−1, 1] × R+) → IH and the Gaussian spaceIH is contained inL2(O,F , IP),
the estimate (5) gives a sense to the stochastic integral

W (G(x, ·, t− ·)) =
∫ t

0

∫ 1

−1

G(x, y, t− s)W(dy, ds).

Next, forv(x, t) = uε(x, t) − uε′(x, t) we defineV(x, t) = IE[(v(x, t))2] andV(t) = sup
x

V(x, t). Then,

from (6) we get that

V(x, t) =
∫ t

0

∫ 1

−1

IE
[(
F (uε)(y, s)− F (uε′)(y, s) + ε− ε′

)2
]

G2(x, y, t− s)dyds

≤ K2

∫ t

0

∫ 1

−1

V(y, s)G2(x, y, t− s)dyds+ |ε− ε′|2
∫ t

0

∫ 1

−1

G2(x, y, t− s)dyds,
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(see (2)) and

V(t) ≤ K2

∫ t

0

V(s)
(∫ 1

−1

G2(x, y, t− s)dy
)
ds+ |ε− ε′|2

∫ t

0

∫ 1

−1

G2(x, y, t− s)dyds

≤ K2

2
√

2π

∫ t

0

V(s)√
t− s

ds+
|ε− ε′|2

2
√

2π

∫ t

0

ds√
t− s

≤ K2

2
√

2π

∫ t

0

V(s)√
t− s

ds+ |ε− ε′|2
√

t

2π
,

due to (5). Then, applying Gronwall inequality we get the result.�

Remark 1 Notice that (4) implies the uniqueness of the solution of problem(EF,ε). �

Since we are dealing here with the caseβ Lipschitz continuous, using that the solution of(EF,0) is
bounded due to the assumptions on the data (see [1]) and the representation (6) we get

Corollary 1 We haveuε ↘ u0, as ε → 0, at least inC
(
[0,∞[: L2

(
−1, 1 : L2(O,F , IP)

))
, with the

convergence rate given by(4) for ε′ = 0, whereu0 is the unique solution of the(deterministic) limit
problem(EF,0). �

3. The multivalued Budyko coalbedo case

Consider now a maximal monotone graphβ satisfying (Hβ) and multivalued atr = −10. Given any
(univalued and discontinuous) sectionb of β, we rewrite the energy balance model in terms of(EFb,ε) with

Fb(x, t, r) = QS(x)b(r)−Br + f(x, t)

(notice that now there is no truncation in the above definition). We start by mentioning that the results of [3]
still hold. Indeed,Fb is a locally bounded andB([−1, 1])

⊗
B(R+)

⊗
B(R) measurable function verifying

theone side linear growthconditionrFb(x, t, r) ≤ c(1+r2) for a constantc independent of(x, t, r). Then,
by using suitable approximations ofFb it was proved in [3, Theorem 5.1 and Theorem 5.2]) the existence
of a unique continuous andB([−1, 1])

⊗
P measurable solution of the relative problem(EFb,ε).

Concerning the stability of the solutions whenε→ 0 we have:

Theorem 3 There is a unique continuous andB([−1, 1])
⊗
P measurable solutionuε,b of (EFb,ε). It

converges to a solutionub of (EFb,0), asε→ 0 andub is given by

ub(x, t) =
∫ 1

−1

G(x, y, t)u0(y)dy+
∫ t

0

∫ 1

−1

G(x, y, t−s)Fb(ub)(y, s)dyds, (x, t) ∈ [−1, 1]×R+. (7)

PROOF. We shall use the classicaltheory of constructible solutionsintroduced following ideas by N. V.
Krylov. In short, if h(x, t, r) is a B([−1, 1])

⊗
B(R+)

⊗
B(R) measurable and bounded function, we

construct the smooth approximation

hn(x, t, r) = n

∫
R
h(x, t, r)ρ(n(r − z))dz

whereρ ∈ C∞c (R) is a nonnegative function with
∫

R ρ(z)dz = 1, and

hn(x, t, r) = n

∫
R
h(x, t, r)ρ(n(r − z))dz
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whereρ ∈ C∞c (R) is a nonnegative function with
∫

R ρ(z)dz = 1, and

h̃n,k
.= inf

j=n,...,k
hj , n ≤ k, Hn

.= sup
j=n,...,∞

hj .

Thenh̃n,k is Lipschitz continuous inr, uniformly with respect to(x, t), and

h̃n,k ↘ Hn, ask →∞, and Hn ↗ h, asn→∞.

Now, if we apply the above procedure toh(x, t, r) = Fb(x, t, r), from [3, Corollary 3.4 and Corollary 3.5]
the solutionuε,b

n,k of (Eh̃n,k
) goes to the solutionuε,b

n of (EHn,ε), ask →∞, with

uε,b
n ≤ uε,b

n,k ≤ uε,b
n,k′ if k ≤ k′.

Moreover, similar comparison arguments show that

uε,b
n,k ≥ uε,b

m,k, n ≤ m ≤ k, and uε,b
n ↗ uε,b, asn→∞,

whereuε,b is the unique continuous andB([−1, 1])
⊗
P measurable solution of(EFb,ε). Finally, from the

convergenceuε,b
n,k ↘ ub

n,k, asε→ 0 we conclude the result.�

If b = b+ (resp. b−) denotes the section ofβ of maximum (resp. minimum) norm then by using the
method of super and subsolutions, thatb+(r) ≥ z, z ∈ β(r), and [2, Lemme 3] we get

Corollary 2 ub+ (resp. ub− ) is the maximal (resp. minimal) solution of the set of solutions of the deter-
ministic problem.�

Remark 2 Obviously, if there is anondegenerate solutionu (in the sense of [2]) of the deterministic
problem theneverysolution of the stochastic problemuε,b converges tou. �
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