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Abstract. We study the integrability of multivector fields in a differentiable manifold, and the relation
between some kinds of multivector fields in a jet bundle and connections in this bundle. As a particular
case, integrable multivector fields and connections whose integral manifolds are holonomic sections are
related. As an application, these results allow us to set the field equations for first-order classical field
theories in several equivalent geometrical ways.

Campos multivectoriales y conexiones. Aplicaciones a las teorias de
campos.

Resumen. Se estudia la integrabilidad de campos multivectoriales en variedades diferenciables y
la relacion entre algunos tipos de campos multivectoriales en un fibrado de jets y conexiones en dicho
fibrado. Como caso particular se relacionan los campos multivectoriales integrables y las conexiones
cuyas secciones integrales son holonémicas. Como aplicacién de todo ello, estos resultados permiten
escribir las ecuaciones de campo de las teorfas cldsicas de campos de primer orden en varias formas
equivalentes.

1. Introduction

As it is well-known, the geometric description of systems of ordinary differential equations involve vector
fields in differentiable manifolds in general. For systems of partial differental equations the analogous de-
scription can be made by using different geometrical objects. For instance, we can take multivector fields
in differentiable manifolds in general (for instance, Hamiltonian multivector fields in multisymplectic man-
ifolds [2], [1], [9]); or also connections in jet bundles [13]. In both cases, their contraction with differential
forms gives the intrinsic formulation of a system of partial differential equations locally describing the
corresponding multivector field or connection.

Therefore, two questions arise as a matter of interest. First, the analysis of the integrability of such
equations; that is, of the corresponding multivector fields and connections. Second, the study on the relation
between multivector fields and connections (in jet bundles). These questions constitute the first goal in this
work.

As an application, in the jet bundle description of classical field theories, the field equations are partial
differential equations which are usually obtained using the multisymplectic form in order to characterize the
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critical sections which are solutions of some suitable variational problem [7], [8]. Nevertheless, there are
also other attempts in order to obtain these equations in a more geometric-algebraic way (in a similar form as
in mechanics, when use is made of the contraction of vector fields with the Lagrangian and the Hamiltonian
forms). So, we can use Ehresmann connections in a jet bundle [11], [12], [13] or, what is equivalent, their
associated jet fields [5]. Moreover, an approach to set the field equations in the Hamiltonian formalism
using multivector fields is given in [10] (see also [8] as a first reference on the use of multivector fields in
the realm of field theories). The final part of this work is devoted to show these procedures.

This article is based on a recent work of the authors [6], which we give as the main reference for the
proofs and details of the constructions that we present here.

All maps are C'*°. All manifolds are real, paracompact, connected and C'*°. Sum over repeated indices
is understood.

2. Multivector fields in differentiable manifolds

Let E be a n-dimensional differentiable manifold. The sections of A™ (T E) are the m-multivector fields in
E. We will denote by X' (E) the set of m-multivector fields in E. In general, forevery Y € A" (E) and
p € E, there exists an open neighbourhood U, C E and Y7, ...,Y, € X(U),) such that

Y= > fUTYiALLAY, (1)
P1<ii<..<im<r

with fi-im € C*(U,) and m < r < dim E. Then, every multivector field Y € X™(E) defines an
antiderivation of degree —m of the exterior algebra 2(E) as follows: if Q € 2% (E) we have

i(Y)Q ST AL A YR

1<01 < ooy <1

= S M) (V)

1<i1 <. <im <1

=l

if £ > m, and it is obviously equal to zero if k£ < m.

Definition 1 A m-multivector field Y € X™(E) is said to be decomposable iff there are Y1,..., Yy, €
X(E) suchthatY =Y1 A ... A Yy,

The multivector field Y € X™(E) is said to be locally decomposable iff, for every p € E, there exist
an open neighbourhood U, C E and Y1, ...,Y,, € X(U,) such thatY’ = YIiA LAY,

Let D be a m-dimensional distribution in F, that is, a m-dimensional subbundle of TE. Obviously
sections of A™D are m-multivector fields in E. The existence of a non-vanishing global section of A™ D
is equivalent to the orientability of D. We set:

Definition 2 A non-vanishing m-multivector field Y € X™(E) and a m-dimensional distribution D C
TE are locally associated iff there exists a connected open set U C E such thatY |y is a section of A™ D).

IfY,Y' € X™(E) are non-vanishing multivector fields locally associated, on the same connected open
set U, with the same distribution D, then there exists a non-vanishing function f € C(U) such that
Y' b fY. This fact defines an equivalence relation in the set of non-vanishing m-multivector fields in E,

whose equivalence classes will be denoted by {Y }¢;. Therefore:

Theorem 1 There is a bijective correspondence between the set of orientable m-dimensional distribu-
tions D in TE and the set of the equivalence classes {Y } g of non-vanishing, locally decomposable m-
multivector fields in E.
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If Y € AX™(E) is a non-vanishing m-multivector field and U C FE is a connected open set, the dis-
tribution associated with the class {Y'} will be denoted by Dy (Y). If U = E we will write simply
D(Y).

Definition 3 Let Y € X"™(E) a multivector field.

1. A submanifold S — E, with dim S = m, is said to be an integral manifold of Y iff, for everyp € S,
Y, spans A™T,S.

2. Y is said to be an integrable multivector field on an open set U C E iff, for every p € U, there exists
an integral manifold S — U of Y, withp € S.

Y is said to be integrable iff it is integrable in E.

Obviously, every integrable multivector field is non-vanishing.

Definition 4 Let Y € X"™(E) be a multivector field.

1. 'Y is said to be involutive on a connected open set U C FE iff it is locally decomposable in U and its
associated distribution Dy (Y') is involutive.

2. 'Y is said to be involutive iff it is involutive on E.

3. Y is said to be locally involutive iff, for every p € E, there is a connected open neighbourhood
U, C E suchthatY is involutive on U,,.

The Frobenius’ theorem can be reformulated in this context as follows:

Proposition 1 A non-vanishing and locally decomposable multivector field Y € X™(E) is integrable on
a connected open set U C E if, and only if; it is involutive on U.

Note that if a multivector field V" is integrable, then so is every other in its equivalence class {Y'}, and
all of them have the same integral manifolds.

Definition 5 A multivector field Y € X™(E) is said to be a dynamical multivector field iff
1. Y isintegrable.

2. For every p € E, there exist an open neighbourhood U, C E and Y1, ...,Yy, € X(Up) such that
Yy, Y,] =0, for every pairY,,,Y,, and Y|y, = Y1 A ... A Yy, .

In this case, using the local one-parameter groups of diffeomorphisms of Y,, around p € E, we can
construct a map 7 which is called the m-flow associated with the multivector field Y (see [4] for the
terminology and notation). Then we have that:

Proposition 2 Ler {Y'} be a class of integrable m-multivector fields. Then there is a representative Y of
the class which is a dynamical multivector field.

The results here obtained can be summarized in the following table:

Integrable Inteerable m.v.f Non-vanish. m.v.f. (class) < Orientable
Orientable & g(class) o Loc. decom. m.v.f. cass distribution
distribution Involutive m.v.f. (class)

Dynamical m.v.f.
(representative)
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3. Connections in first-order jet bundles

Let 7: E — M be a fiber bundle, 7' : J'E — E the corresponding first-order jet bundle, and 7! =
ronl: JUE —s M. Denote V(r) = KerTr, V(x!) = Ker Tr!, and XV (E), XV (J1E) the
corresponding sections or vertical vector fields. Let (z#, y, v;‘) be a natural local system of coordinates
inJ'E(u=1,...,m A=1,...,N).

Definition 6 A connection in J' E is one of the following equivalent elements:

1. A global section of 7' : J'E — E, (that is, a mapping ¥: E — J'E such that ' o U = Idg). It is
called a jet field.

2. A subbundle H(E) of TE such that TE = V(r) & H(E). It is called a horizontal subbundle, and it
is also denoted D(V) when is considered as the distribution associated with V.

3. A w-semibasic 1-form V on E with values in TE, such that V*o = «, for every w-semibasic form
a € NY(E). It is called the connection form or Ehresmann connection.

Let (x#,y*) be a local system of coordinates in an open set U C E, then the local expressions of these
elements are

U o= (atyt It y?)
B o 40
H(E) = Span {@—FFM&U—A}
0 0
vV = dl’“@(au'i'rfay—A) (2)

Definition 7 Let ¥: E — J'E be a jet field. A section ¢p: M — E is said to be an integral section of ¥
iff¥oo¢=jlo (where j*¢: M — J'E denotes the canonical lifting of ¢). V is said to be an integrable
jet field iff it admits integral sections through every point of E.

If (z#,y*,v;}) is a natural local system in J'E and, in this system, ¥ = (z#,y*, I/ (z#,y*)) and
¢ = (", fA(z )) then ¢ is an integral section of W if, and only if, ¢ is a solution of the following system
of partial differential equations

aft 4

T _r

Oxk ’
Proposition 3 A jet field V: E — J'E is integrable if, and only if, D(V) is an involutive distribution
(that is, D(V) is integrable).

o 3)

i 7! . .
Now consider the second jet bundle J'J'E — J'E “» M. LetY: J'E — J'J'E be ajet field in
JU.J'E. which is associated with a connection form V on .J! E and a horizontal m-subbundle H(J' E). If
A LA A AN Tl : -
(T”, Yy vy, a,,b p”) is a natural local system in .J*.J* E/, we have the following local expressions for these
elements

= (2" yt ) Fr "yt v)), Gl (2" y™ o))
o .8 0
dx”@(a P HEl g A+Gﬂﬂav >

0 0 0
span{au F;‘BA +G4 — } 4)

wp 6,0

H(J'E)

IfY: J'E — J'J'E is ajet field then a section ¢): M — J'E is said to be an integral section of Y iff
Yoep = jhip. YV is said to be an integrable jet field iff it admits integral sections. In a natural local system of
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coordinates in J'J'E, ¢ = (x, fA(2"), g;‘ (2¥)) is an integral section of Y if, and only if, ¢ is a solution
of the following system of differential equations

dfA dgt

Now we want to characterize the integrable jet fields in .J'.J' E whose integral sections are holonomic,

1 1
that is, canonical prolongations of sections ¢: M — E. Lety € J'J'E with y i g5y S x,and
Y M — J'E arepresentative of y. Consider now the section ¢ = ' o¢p: M — F and let j'¢ be its
canonical prolongation. Then we can define another natural projection

et J'I'E — J'E
y = gt o) (T (Y))
(xu,yAval’apA,b;lp) = (xuayAva;l)

Definition 8 A jet field Y: J'E — J'J'E is said to be a Second Order Partial Differential Equation
(SOPDE), or also that it verifies the SOPDE condition, iff it is a section of the projection j'm' or, what is
equivalent, jl7t oY = Id 1 .

Proposition 4 An integrable jet field Y : J'E — J'J'E is a SOPDE if. and only if, its integral sections
are canonical prolongations of sections ¢: M — E.

Definition 9 A jetfield Y: J'E — J'J'E is called holonomic iff it is integrable and SOPDE.

In coordinates, the condition j'7! o ) = Id 1 g is expressed in the following way: the jet field Y =
(zH, yA, v;‘7 F/;‘l7 Gfp) is a SOPDE if, and only if, FpA = v;‘. On the other hand, if ) is a SOPDE then

) oA
1, _ A
Jo= (xuvf 7@

(second order) partial differential equations

is an integral section of it if, and only if ¢ is solution of the following system of

(6)

N afA) _ 32fA

POzt ) T QxrdrY

G, (x“, f

which justifies the nomenclature.

4. Multivector fields and jet fields in jet bundles

1
Let J'E = E =5 M. The multivector fields in J'E which we are going to be interested in are those
verifying the condition of transversality with respect to the projection 7. They can be characterized as
follows:

Definition 10 A non-vanishing multivector field Y € X™ (E) is said to be transverse to the projection 7
(or w-transverse) iff, at every pointy € E, (i(Y)(m*w)), # 0,for every w € 2™ (M) with w(w(y)) # 0.

Theorem 2 Let Y € X™(E) be integrable. Then'Y is w-transverse if, and only if, its integral manifolds
are local sections of m: E — M.

Definition 11 A jet field V: E — J'E is said to be orientable iff D(V) is an orientable distribution on
E.

The relation between multivector fields and jet fields is:
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Theorem 3 Every orientable jet field ¥: E — J'E defines a class of locally decomposable and 7-
transverse multivector fields {Y'} C X™(E), and conversely. They are characterized by the fact that
D(T) =D(Y).

In addition, the orientable jet field U is integrable if, and only if, so is Y, for every Y € {Y'}.

As is obvious, recalling the local expression (2), we obtain the following local expression for a repre-
sentative multivector field Y of the class {Y'} associated to the jet vector field ¥

vy=/Av.= A\ <w+rj—ay/‘>
n=1

p=1

and, in the same way as stated in section 3., ¢ = (z#, f#(z")) is an integral section of Y if, and only if, ¢
is a solution of the system of partial differential equations (3).

Next we apply the considerations in the above section to the second jet bundle J' J'E — J'E — M.
So we have a bijective correspondence between the set of m-dimensional orientable distributions D in
JLE and the set of equivalence classes { X } of locally decomposable m-multivector fields in J* E. Then
a locally decomposable multivector field X € X™(J'E) is integrable iff the distribution D(X) is also.
Thus, Theorem 2 adapted to the present situation states that, if X € X'™(J! E) is an integrable multivector
field, X is 7' -transverse if, and only if, its integral manifolds are local sections of 7' : J'E — M.

The following step is to characterize the integrable multivector fields in .JJ' E whose integral manifolds
are canonical prolongations of sections of 7. In order to achieve this, define the vector bundle projection
k: TJ'E — TE by

(g, @) = Tﬁl(y)¢(Ty7_"1(a))

where (7,7) € TJ'E and ¢ € §. If (W;z#,y*,v7}) is a local natural chart in J'E and j € J'E with

71—1

gy — y — x, then
a0 A 9

0 0 0
w_Z A_Z — — ot 7)ot ——
" (a +8 8y’4‘g+/\“ 81},‘}‘;;) @ Gan y+v“ (7)o OyA ly

Ozt |y

This projection is extended in a natural way to A™TJ' E, and so we have the following diagram

TI'E AmTJlE
TJ'E J'E A"TJ'E
X
K Tr! ml A" Trl Ak
TE E A™TE
TE AmTE

Definition 12 A 7!-transverse multivector field X € X™(J'E) verifies the SOPDE condition (we will
say also that it is a SOPDE) iff A™k o X = A™Tr! o X.

Proposition 5 Ler X € X™(J'E) be w'-transverse and locally decomposable. Then the following
conditions are equivalent:

1. X isa SOPDE.
2. i(0)X = 0 (where @ € 2 (JLE, 7**V(r)) is the structure canonical form in J'E [7]).
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3. If (Wiat, yA, v;‘) is a natural chart in J' E, then the local expression of X is

oo m o .0 0
X = /\Xu: /\f‘u <@ +’Uu—6yA +GPM_6’UA>
p=1 p=1 4

where f" are non-vanishing functions.

The relation between integrable and SOPDE multivector fields in J! E is:

Theorem 4 Let X € X™(J'E) be w'-transverse and integrable. X is a SOPDE if, and only if, its
integral manifolds are canonical prolongations of sections ¢: M — E, that is, sections v: M — J'E
such that jt (7! o ¢p) = 4.

Definition 13 A multivector field X € X™(J'E) is said to be holonomic iff:
1. X isintegrable.

2. X isa SOPDE.

Finally, we have:

Theorem 5 Every orientable jet field Y: J'E — J'J'E defines a class of locally decomposable and
7l-transverse multivector fields { X} C X™(J'E), and conversely. They are characterized by the fact that
D(Y) = D(X). In addition:

1. The jet field Y is integrable if, and only if, so is X, for every X € {X }.
2. The jet field Y is SOPDE if, and only if, so is X, for every X € {X }.

3. The jet field Y is holonomic if, and only if, so is X, for every X € {X }.

From the local expression (4), we obtain the following local expression for a representative multivector
field X of the class { X'} associated to the jet vector field )

_ A A (0 a0 a0
X:/\X”:/\ <@+F’Lay—A+GP”W>

n=1 p=1

and, if ) is a SOPDE, then a representative multivector field of { X } can be chosen such that F Ff‘ = v;‘ (see
Proposition 5).
So we have the following summarizing scheme:

7l-Transverse m.v.f. Orientable j.f.
Holonomic m.v.f. { Involutive m.v.f. } (class) { Integrable j.f. Holonomic
(class) Loc. decom. m.v.f. " SOPDE j.f. jf.
{ SOPDE m.v.f. } (class) & { Orientable j.f.
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5. The field equations for classical fields theories

At this point, our main goal is to show that the L.agrangian and Hamiltonian formalisms for field theories can
also be established using jet fields, their associated connection forms or the equivalent multivector fields.
In order to achive some of these results we must define an action of jet fields on differential forms [5].

LetY: J'E — J'J'E be ajet field. Amap V: X (M) — X(J'E) can be defined in the following
way: let Z € X (M), then Y(Z) € X (J'E) is the vector field defined as

V(Z)(7) = (Tr15)¥)(Zr1(5))

forevery § € JLE and ¢ € Y(j). Its local expression is

_ ) L0 .0
() = 1 (s o+ e

This map induces an action of ) on 2(J'E). In fact, let £ € Q™I (J'E), with j > 0, we define
i(V)E: X(M)x (™) x X (M) —s 29(J'E) given by

(GO 21, Zm) (G5 X, -, Kp) = €@ V(21), - V(Zim), Xos -, XG)

for Zy,...,Zpy € X(M) and X1,...,X; € X(J'E). Itis a C°°(M)-linear and alternate map on the
vector fields 7y, ..., Zp,.

The C*°(J!E)-linear map i()))€, extended by zero to forms of degree p < m, is called the inner
contraction of the jet field ) and the differential form &.

5.1. Lagrangian formalism

We assume that M is a m-dimensional oriented manifold and w € 2™ (M) is the volume m-form on M.
A Lagrangian density is a 7!-semibasic m-form on J! E with respect to the projection 7'. A Lagrangian
density is usually written as £ = £(7 w), where £ € C®(J'E) is the Lagrangian function associated
with £ and w. Tn a natural system of coordinates this expression is £ = £(z#,y4 )da: A...ANdx™
Then, using the canonical structures of the bundle J! E, we can construct the Pomczue Car tan (m+ 1)- form
Qp € omtl (J ) E) associated with the Lagrangian density £ [5], [7]; whose local expression is:

0L _ 0L m
= d<6 A>AdyAAdm 1x“+d<3v;}v£ £>/\d x

(where dm_lxu =9 Em d™zx ) In addition, a variational problem (called the Hamilton principle) can
x

be posed from the Lagrangian density £, and the (compact-supported) critical sections of this variational
problem can be characterized as follows:

Theorem 6 The critical sections of the Lagrangian variational problem are holonomic sections j*¢: M —
J'E which satisfy the following equivalent conditions

1. (j'¢)*i(X)Qe =0, for every X € X(J'E).
2. The coordinates of ¢ satisfy the Euler-Lagrange equations:

0oL 0 o0f

dyrlje Ozt dvitljre
3. They are the integral sections of a holonomic jet field Y : J'E — J'J'E, such that i(Y)Qz = 0.
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4. They are the integral sections of a holonomic jet field Y : J'E — J'J'E, such that i(V;)Q =
(m — 1)Qz; where N ¢ is the associated connection form.

5. They are the integral sections of a class of locally decomposable non-vanishing, holonomic multivec-
tor fields { X} C X™(J'E), such that i(X;)Qz = 0.

The conditions in the last item are the version of the Euler-Lagrange equations in terms of multivector
fields.

5.2, Hamiltonian formalism

In order to establish the Hamiltonian formalism for field theories, first we need to define a dual bundle
of JLE. The choice of such a dual bundle is not unique in the existing bibliography. We will take the
definition given in [3] for this bundle, and we refer also to this work for the details on the construction of
the Hamiltonian form.

In this way, the so-called multimomentum dual bundle is

JY“E = A"T*E/APT*E

where AT*T* E is the bundle of m-forms on E, vanishing by the action of two m-vertical vector fields, and

AZ*T*E is the bundle of w-semibasic m-forms in E. J'"*E T—1> E -5 M is an affine bundle over E, and
7l = 7ol JYE — M. The natural systems of coordinates on J**E are denoted (z*,y4, p}).

Now we can construct the Hamilton-Cartan (m + 1)-form, Q3 € 2™+ (J'™*E), (which is the Hamil-
tonian counterpart of the Poincaré-Cartan form), whose local expression is:

Qy = —dpy Ady* Ad™ ta, +dh Ad™a

where h is the Hamiltonian function. The corresponding variational problem in this formalism is called the
Hamilton-Jacobi principle, and the (compact-supported) critical sections of this variational problem can be
characterized as follows:

Theorem 7 The critical sections of the Hamiltonian variational problem are sections ¢: M — J™*E
which satisfy the following equivalent conditions

L ($)"i(X)Q =0, for every X € X(J'*E).
2. The coordinates of 1 satisfy the Hamilton-De Donder-Weyl equations:

o _on ok _ o
Az 1y opYy ly

)

Az 1y _ByA‘;/;

3. They are the integral sections of an integrable jet field Yy, : J**E — JYJ*1E, such that i(Vx)Q3 =
0.

4. They are the integral sections of an integrable jet field Yy, : J**E — J* J*™* E, such that i(V3)Qy =
(m — 1)Qy; where V4 is the associated connection form.

5. They are the integral sections of a class of integrable and 7' -transverse multivector fields { X4} C
X™(JY™E), such that i(X3)Q3 = 0.

The conditions in the last item are the version of the Hamilton-De Donder-Weyl equations in terms of
multivector fields.
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6. Conclusions and discusion

We have studied the integrability of multivector fields in a differentiable manifold and the relation between
integrable jet fields and multivector fields in jet bundles, using all of these to give alternative (equivalent)
geometric formulations of the Lagrangian and Hamiltonian formalisms of classical field theories (of first
order).

Concerning to this last aspect of the article, each one of these formulations can be used to analize
different features of these theories. For instance, the formulation of jet fields has been used in [5] for
proving a version of the Noether theorem in field theory. Using the formulation of Ehresmann connections,
in [11] is proved that, for regular Lagrangians, the critical sections solution of the Euler-Lagrange equations
are necessarily holonomic and that this solution is not unique (it depends on N (m? — 1) arbitrary functions,
at most). This formulation is also used in [12] in order to set a constraint algorithm for singular (almost-
regular) field theories. Finally, we hope that the formulation using multivector fields can serve to recover
all of these results and, in addition, will allow to study some other aspects concerning singular field theories
(for example, the geometric characterization of gauge freedom). In any case, multivector fields in the realm
of multisymplectic manifolds in general, has been used for exploring some geometrical properties of these
manifolds [9].
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