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Deformation on Phase Space

O. Arratia, M. A. Martin and M. A. del Olmo

Abstract. We review several procedures of quantization formulated in the framework of (classical)
phase space M. These quantization methods consider quantum mechanics as a “deformation” of clas-
sical mechanics by means of the “transformation” of the commutative algebra C°°(M) in a new non-
commutative algebra C* (M ). These ideas lead in a natural way to quantum groups as deformation (or
quantization, in a broad sense) of Poisson—Lie groups, which is also analysed here.

Deformacidn en el espacio de las fases

Resumen. Eltrabajo que presentamos constituye una revisién de varios procedimientos de cuantizacién
basados en un espacio de fases cldsico M. Estos métodos consideran a la mecdnica cuantica como una
“deformacion” de la mecanica cldsica por medio de la “transformacién” del dlgebra conmutativa C*° (M)
en una nueva dlgebra no conmutativa C*° (M ). Todas estas ideas conducen de modo natural a los grupos
cudnticos como deformacién (o cuantizacién en un sentido amplio) de los grupos de Poisson-L.ie, lo cual
también serd analizado aqui.

1. Introduction

Knowledge and understanding of Nature is the object of Physics. The approach to the real world is usually
made in successive steps, in such a way that the old theory is recovered from the new one by dropping
the new effects. In practice this process is carried out by a kind of limit procedure as is illustrated in the
following concrete situations.

From the beginning of Einstein relativity theory, it is well known that non-relativistic classical mechan-
ics can be seen as the limit of relativistic mechanics when the speed of light goes to infinity. On the other
hand, the Galilei group is a contraction, in the sense of Indnii and Wigner [20], of the Poincaré group when
the contraction parameter ¢ = 1/c¢ goes to zero (Galilei and Poincaré groups are the kinematical groups of
the non-relativistic classical mechanics and the relativistic mechanics, respectively).

Another interesting example of this process relating two physical theories is given by quantum and
classical mechanics, the latter can be considered as the limit of the first one when the Planck constant,
h, goes to zero. In both examples, relativistic mechanics and quantum mechanics depend on a parameter
whose limit (¢ — 0o, A — 0) leads to a different physical theory.

Deformation can be considered as a kind of inverse procedure of the contraction of Lie groups as well
as of the above limits for physical theories. From this viewpoint, the Poincaré group is a deformation of
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the Galilei group, relativity theory is a deformation of non-relativistic classical mechanics and quantum
mechanics is a deformation of classical mechanics.

As is well known, physicists are very interested in finding procedures that allow to obtain quantum sys-
tems from classical ones, i.e., to solve the problem of quantization of classical systems, from the first days
of quantum mechanics onward. Nevertheless, the deep differences between both (classical and quantum)
theories at the level of mathematical formalism as well as physical interpretation have made impossible up
to now to solve this problem in a complete and satisfactory way.

Among all the quantization procedures, stand out those of canonical quantization, geometric quanti-
zation [22]-[36] and group quantization [1]-[2], which are related with the usual formalism of quantum
theory, as well as Moyal quantization [25], Berezin quantization [9], *—product formalism [7] and Fedosov
quantization [14] associated with the phase space framework.

The idea that quantization is deeply related with deformation was introduced by Bayen et al. in [7].
For these authors, quantum mechanics can be replaced by a deformation of classical mechanics describing
quantum systems in terms of functions defined on their phase spaces. This can be achieved introducing
a non-commutative product (x—product) of these functions that replaces the usual commutative product of
functions. The mathematical tool for this quantization procedure is the deformation of Lie algebras a la
Gerstenhaber [18]. A particular case of this kind of deformation of classical mechanics is Moyal theory
[25].

It is worthy to note that quantization in terms of x—products (or deformation) plays, with respect to
the formalism of quantum mechanics on phase space framework, a similar role to that geometric quanti-
zation plays with respect to the standard formalism of quantum mechanics, i.e, in terms of Hilbert spaces,
operators, etc.

On the other hand, this formalism is closely related with quantum groups, which are deformed (Hopf)
algebras, in the sense of Gerstenhaber, of universal enveloping Lie algebras for quantum algebras, or defor-
mation of Poisson—Lie structures for quantum groups.

In this work we review different procedures of quantization of classical systems from the point of view
of the deformation theory. Incidentally, all of them try to formulate quantum mechanics in terms of the
formalism of phase space. Also this paper shows how these ideas can be used in the theory of quantum
groups. Now, the objects to deform are a kind of Poisson structures over a Lie group (Poisson—Lie groups),
which play in some sense the role of phase spaces, and the x—product procedure can be implemented in
order to quantize or deform these objects giving rise to one of the few procedures known in the literature to
get quantum groups.

The paper is organized as follows. Section 2 presents the Moyal quantization theory. When the physical
system under study has a symmetry group one can profit this fact in order to systematize Moyal quantization
by means of the Stratonovich—Weyl correspondence, and this is the subject of Section 3. Two interesting
examples are showed to illustrate how the theory works. In the following section we present a short review
about the x—product. Last section is devoted to quantum groups. We also show the procedure to obtain
quantum groups starting from “classical” structures like Poisson—Lie groups by means of a x—product that
deforms these objects. As an example we quantize the group SL(2).

2. Moyal quantization

The kinematical description of classical physical systems can be modeled using a symplectic manifold
(M,w). The closed two-form w identifies (sections of) the tangent and the cotangent bundle on M. The
dynamical behaviour of the system is then controlled by a function H defined on the manifold through the
vector field Xz associated to its differential dH by w. This is the arena of classical mechanics, and the
object described by (M, w, H) is called a Hamiltonian classical system.

The physical description of the previous system in terms of states and observables carries a certain
mathematical “duality” implemented by M and the set of (smooth) functions C°°(M). In a more technical
language, we can say that this duality is realized by the contravariant Gelfan’d—Naimark functor, which
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shows that no information is lost if we replace the manifold M by the algebra A = C>°(M). From this
point of view every structure defined on M has a natural analogous on A, in particular w is transferred
to a Poisson bracket on A. Therefore, we can make a good definition for our system using the triplet
(A,{-,-}, H) and this formalism permits an immediate generalization: to consider algebras such that the
commutativity assumption is relaxed.

This procedure fits nicely into the problem of quantization because it is precisely what we are looking
for when we try to “quantize” a classical system. Obviously, the passage from a commutative algebra A to
a non-commutative one can be done in a large variety of ways. Usually, one considers a new algebra A,
depending on one or more parameters, and imposes that for a value of the parameter, say h = 0, the algebra
reduces to the commutative one. A far-reaching idea is to build up the new algebra over the underlying
set of the algebra A by means of a new product denoted by ;. This product allows us to define a new
deformed Poisson bracket

{fag}h:f*g_g*fa fngAa

which is a Lie algebra deformation of the original one. We will show this construction later.

The aim of Moyal formulation of quantum mechanics is to describe it as a statistical theory taking place
on a classical phase space unlike the standard formulation, which is developed by means of Hilbert space
methods. In this way Moyal obtained a theory conceptually more transparent (for more details see [16] and
references therein).

In this framework observables and states of a quantum system are considered as (generalized) functions
on a phase space M isomorphic to R2™ (again the algebra A = C°(M)). The expectation value of the
observable A in the state p is given by

_ Ju e

_fM/’7

{(4)

just like in classical statistical mechanics.

Moyal formulation unifies in a single theory two important constructions: Weyl mappings and Wigner
functions. For that reason we call this theory Moyal-Weyl-Wigner formulation.

Let us see what is the role played by Moyal work in quantization. The simplest and most usual quan-
tization procedure is canonical quantization (or principle of correspondence). This scheme works rather
well for physical systems whose phase space is isomorphic to R?", and it uses the Hilbert space L?(R") of
square integrable functions on R” with respect to the L.ebesgue measure. This method of quantization takes
advantage of the Dirac prescription [12] in order to associate functions (classical observables) with opera-
tors (quantum observables). Thus, to the position and momentum coordinates, ¢; and p;, are associated the
operators (); (multiplication by ¢;) and P; = _iha%i’ respectively. The operator linked with the function
f(qi, pi) is obtained formally replacing the classical coordinates by their corresponding operators, which
yields f(Q;, P;). However, operators @); and P; do not commute and, henceforth, the expression f(Q;, P;)
is meaningless unless we fix some ordering.

The mathematical meaning of the Dirac prescription is as follows: if the Poisson bracket of two canon-
ical coordinates is

{qup]} = 6ij7

then the commutator for the corresponding operators is
[inPj] = zhém

So, there is a faithful representation of the Lie subalgebra of (C*>°(M), {-,-}), generated by the local co-
ordinates (¢;,p;, i = 1,...,n), in the Hilbert space L?(R™). In other words, we have a homomorphism
between the Lie algebras of classical and quantum observables (Heisenberg Lie algebra). This last interpre-
tation leads to the general rule of canonical quantization
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It is worthy to note that there are many possibilities to extend the Dirac prescription to general functions
according to the ordering we select on monomials in (; and P;. The most usual ones are the normal
ordering (¢™p™ — Q™ P"), the antinormal ordering (¢"'p"™ — P™(Q™), and the Weyl ordering or Weyl
correspondence rule:

n!m!
where P are permutations with repetition of m operators ) and n operators P. Last ordering is the
most suitable for quantum formulation on phase space. Moreover, it exhibits invariance under the Galilei
and the symplectic groups.

A variant of canonical quantization is given by the Weyl postulate [32], which associates functions with

operators by
en(xPtya) o7 (xP+y Q)

where x,y € R™. Note that canonical quantization can be interpreted as a representation of the Heisenberg
algebra, and Weyl quantization corresponds to a unitary representation of the Heisenberg group.
Now, if f is a regular function on R?” such that its Fourier transform f exists, then

f(p,q) =

1 A i(x. .

This expression, together with the Weyl postulate, leads to the natural definition of the Weyl correspon-
dence, which associates the operator Wy with the function f by means of

1 s i
__ - +(xP+y-Q)
Wy Beh) Jon dxdyf(x,y) e .

The mapping W can be extended to generalized functions (i.e., distributions) on R2".
On the other hand, the function p(p, q) linked with the state operator p is given by

1 1(x- . —i(x. )
p(p,q) = W/2 dx dy e (*P+y-a) Tr[pe 7 (x Pty Q)]_
Rn

When p is a pure state, i.e. p = |[¢)(¢], last expression reduces to

p(p,q) = /ndx eRXP ¥ (g + %X)w(q— 5X),

which coincides with the expression given by Wigner [33]. Function p(p, q) is called Wigner function.
In fact, mappings provided by the Weyl correspondence rule and Wigner functions are inverse of each
other. An elegant proof of this fact uses the Grossmann—Royer operators [19, 28] defined by
260 (x
[p, @)¥](x) = 2" e P D y(2q - x).
So, the Weyl mapping can be rewritten as

1
Wr= (2rh)"

/R% dpdq f(p,q) Ap,q).

Using the complete set {|x),x € R™} of kets for Q we can define the trace of an operator A by
TrA= (x| Alx).
R’n

Computing the trace of the product of two Grossmann—Royer operators, which has a distributional meaning,
we obtain

Tr[Q(p, @)Q(p', d')] = (277)"d(p — p')d(a — ).
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Finally, given an operator A acting on L?(R™), its associated function on phase space is
W= (4) = Tr[Q(p, a)A].

As we said before, the contribution of Moyal consists in combining both Weyl mapping and Wigner
functions to construct a new product, associative but non-commautative, for functions on phase space through
the equation

-1
frg:=W(WW,).

Moyal product is stated in such a way that the the following diagram is commutative

Wy, Wy)  — Wi,
Wfl »L ~L Wfl
(f.9) — fxg

i.e., the quantum information encoded in the non-commutative product of operators (quantum observables)
is transferred via W to the space of classical observables and stored in the x—product. Note that W is a
linear continuous map, W : S'(R?>") — L(S(R™), S’(R™)). However, the Moyal product is not defined
for all pairs of elements in S’(IR2™), but there exists a maximal closed subspace M (R?") of S’(R?") where
it is well defined. This space has the structure of an algebra with respect to the sum of functions, product
by scalars and Moyal product. We have the following chain of inclusions

S(R*™) C L2(R2") € M(R*") € S*(R*™).
The x—product can be expressed through the integral formula

_ 1 L(utJv+viJwt+w!Ju
f*g—W R4ndvdwf(v)g(w)eh( ),

0 I,
-I, 0

a non local product, but it reduces to a local one in the limit & — 0.
Using the canonical Poisson bracket on R2"

where .J = < >, u=(q,p),v=1(q,p') and w = (q",p")?. As a direct consequence, * is

9f 09 _ 9f 99

g

it is also possible to write down the Moyal product in differential form by means of the exponential of IE,’

frg=fe 3Py

Thus, Moyal product can be characterized as a bilinear and associative mapping in the following way [7, 31].
Let us consider the bidifferential operator

j{.7.} . Coo(]RZn) ® COO(]R2n) — Coo(]R2n) ®C°°(]R2n)
fog = {19}

and the product in C>° (R?™) written as

fog > f9

then the Moyal product can be expressed as

‘h
x=moe 270}, (1)
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A remarkable property of the Moyal product is that it is equivariant under transformations belonging to
the symplectic or the Galilei groups, i.e.,

(fixfo)? = f] =13,

where g is a generic group element and f9(u) = f(g tu).
Moyal bracket is defined antisymmetrizing the Moyal product, i. e.,

{figtm = _Lm(f*g—g*f)

or
1 _
{f,9tm = ——th 1[va Wol.
This bracket (playing the role of commutator in standard formulation) allows us to determine the evolution
of the observable f by
df

{Haf}M: Ev

where H is the Hamiltonian of the system. In this dynamical sense we can translate some concepts of the
standard formulation of quantum mechanics to the new one. Thus, given an evolution operator U (¢), it is
possible to construct a Moyal propagator by

E(p,q,t) = WHU(t)).
If H(p, q) is a classical time-independent Hamiltonian its Moyal propagator will be

Zu(p,a,t) = Wl (e #Wn), )

The Schrédinger equation, matggt) = HU(t), can be rewritten in terms of the propagator (2) as

L0 -
zha:H(p,q, t) =H xZu(p,q,t).

We can also define the spectral projection by the Fourier transform of the Moyal propagator with respect
to the variable ¢

1 _ i
F'a(p,q,E) = ﬁ/ﬂgdt:H(p,q,t)e W

The support on E (energy) of the projection associated to H is, in a large variety of cases [7], the spectrum
of the operator Wy.

3. Stratonovich—-Weyl correspondence

Symmetry principles play a central role in the analysis of physical systems. In modern physics it is cus-
tomary, given a Lie group G, to define its associated classical elementary systems as (G-homogeneous
symplectic spaces where the group acts by symplectomorphisms. After the celebrated theorem by Kostant—
Kirillov—Souriau [21] these elementary systems are diffeomorphic to some orbit in g* (the dual of the Lie
algebra g of the group (7) under the coadjoint action. This fact has as an immediate consequence the com-
plete classification of all elementary systems whose symmetry is determined by the Lie group G. In a
similar way, quantum elementary systems for G are introduced as projective unitary irreducible representa-
tions (PUIR) of GG [34]. Picking up some ideas from geometric quantization, the link between classical and
quantum systems is provided by Kirillov theorem at least for nilpotent groups [21].

The previous definition of a quantum system fits quite well in conventional formulation of quantum
mechanics but we are interested in quantum systems from Moyal point of view. Therefore, we adopt, as
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definition for a Moyal quantum elementary system [10], the pair formed by a coadjoint orbit and a *—product
in the space of smooth functions defined on the coadjoint orbit.

Kirillov theorem can be considered as a partial answer to the problem of quantization. Information
provided by this geometric quantization can be also used to quantize a physical system according to Moyal
theory.

3.1. Stratonovich—-Weyl kernels

The tool required for passing from geometric quantization to Moyal quantization is known as Stratonovich—
Weyl kernel [30], whose definition is as follows. Given a G—coadjoint orbit O and its corresponding PUIR
U with support space the Hilbert space , the Stratonovich—Weyl (SW) kernel is an operator valued map-
ping Q : O — L(H) that satisfies the following axioms:

1. Q is injective,
2. Q(x) is self-adjoint Vx € O,
3. unittrace: Tr Q(x) =1, Vx€ O,

4. covariance:
U@Qx)U(g™!) = Qg-x), VxeO,Vged. 3)

5. traciality:
[ dutmriamemiom = o). v eo. @
o
where y is a G—invariant measure on O.

Fourth axiom is a natural requirement in view of the symmetry of the system. Traciality means that the
quantity Tr[Q(y)€2(x)] essentially works like the Dirac distribution é(y — x).
The SW kernel allows us to build up a symbol calculus. Thus, the “symbol” associated with an operator
A is given by
Wa(x) = Tr[AQ(x)], (5)

and the mapping
LH) — C*>(0)
A — Wi,

is called the SW correspondence. Observe that now the mapping )V is the inverse of the mapping W defined
in Section 2. It is worthy to note that if A — Wy is injective then expression (5) can be inverted as

A= [ antowanc.

which shows that the same kernel implements both directions A <+ Wy of the correspondence. Sometimes
it is said that 2 is a quantizer and also a “dequantizer”.

The properties satisfied by the kernel {2 have immediate consequences on the SW correspondence,
remarkable ones are:

e Symbols associated to selfadjoint operators are real,
A=A = W4 =Wy,
where the bar stands for the complex conjugate.
e The identity operator has as symbol the unit function,

Wr=1.

69



O. Arratia, M. A. Martin and M. A. del Olmo

e Covariance condition (3) leads to
Wo(g)au(g-1)(9 - X) = Wa(x).

e The trace of the product of two operators can be evaluated as an integral involving their symbols
r(AB) = / dp(%) Wa ()W ().
o
Another crucial application of the SW kernel is the construction of a non-commutative (or twisted) product

(f*g)(x /du /du L(x,y,z)f(y)y(z),

where L(x,y,z) = Tr[Q2(x)Q(y)(z)], and is called trikernel. This construction of the x—product assures
that the SW correspondence is an algebra morphism

WAB - WA % WB.

An interesting equality involving averages is

[ ant) e 120 = [ dutxisin 0
The geometrical meaning of covariance is reflected in the G—equivariance of the *—product

(fi* f2)! = fi = 13, Vg € G.

At the level of the trikernel it means invariance, i.e., L(g - x,9 -y, ¢ - 2z) = L(x,y, z).
Up to now, no general result guaranteeing the existence of 2 is available. A practical recipe to build up
a SW kernel is summarized in the three following steps:

1. Select a point 0 as “origin” of the orbit and take a section

s: 0 — G
x = s(x)-0=x,

(the orbit O is diffeomorphic to the homogeneous space G /G, where G is the isotopy group of the
origin).

2. Choose an operator A as Ansatz for the value of (2 at the origin (A = ©(0)). The kernel 2 on the
whole orbit is obtained using the covariance property (3), i.e.,

Qx) =Q(s(x)-0)
= U(s(x)Q0)U(s(x) ™) = U(s(x)) AU (s(x) 7).

3. Verify that A is indeed a “good” Ansatz checking if €2, determined in the previous step, satisfies all
the axioms required.

Obviously, the first axiom to be checked is covariance, if it fails {2 can not be defined!. For this purpose it
is useful the following lemma [3, 23].

Lemma 1 Propositions (a), (b) and (c) are equivalent:
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@ Qx) =U(9)Ux)U(g™"), V(x,9) € (0,G),
i.e., ) verifies the covariance axiom (3),

(b) Q(0) =U(9)0)U(g~"), Vg € Go,
() [U(X),02(0)]=0, VX € g
where g is the Lie subalgebra of the isotopy subgroup.

The choice for the Ansatz A is based on parity-like operators due to the form of the Grossmann—Roger
operator. Nevertheless, this choice does not successfully leads to a SW kernel in many cases. In the
following we present two examples that illustrate how the theory works (for more details see [3]-[23] and
references therein). Other examples of SW quantization have been studied in [17]-[6].

3.2. Example 1: Galilean systems in (1 + 1) dimensions

The Galilei group is the set of transformations that relate observables measured from different inertial
frames in non-relativistic mechanics. This group can also be defined from an active point of view in which
galilean transformations (time and space translations, galilean boosts and space rotations) act on the space-
time manifold. In (1 + 1) dimensions that action is given by

t',2') = (b,a,v) - (t,z) = (t + b, + a+ vt),

where b, a and v denote the parameters of time and space translations and galilean boosts, respectively. The
transformations (b, a, v) form a Lie group denoted G(1, 1), whose composition law is obtained from the
previous action

(b',a',v")(b,a,v) = (b +b,a’ +a+v'bv" +v).

Its associated Lie algebra g(1,1) is spanned by the infinitesimal generators of time (H) and space (P)
translations and galilean boosts (K'), which have the following commutation relations

[K,H]=P, [K,P]=0, [P,H]=0.

Elements of the dual space g*(1, 1) of the Lie algebra g(1, 1) are linear combinations, hH*+pP*+ kK™, in
terms of the dual basis of { H, P, K'}. The coadjoint action of G(1, 1) on g* is expressed in that coordinates
as

(r',p" k") = (b,a,v) - (h,p,k) = (h —vp, p,bp + k).

The space g*(1, 1) is then “foliated” into two kind of orbits:
1. O—dimensional (OD) orbits : points of the form hH* + kK™,
2. 2—dimensional (2D) orbits O, characterized by equation p = a.

From a physical point of view 0D orbits cannot support a dynamics and, hence, they are not interesting. In
the orbit O, a set of canonical coordinates is determined by ¢ = ék and p = h. Taking 0 = aP* (with
canonical coordinates (0, 0)) as representative point on O, we can find a maximal subordinate subalgebra,
which induces the PUIR of G(1, 1) using the Kirillov method

[Ua(b,a,v)Y](w) = e_io‘(a_b“’)zp(w — ),

realized on the Hilbert space L2(RR) of square integrable functions on the real line. The argument of these
functions can be identified with velocity.

Let us construct a SW kernel following the three steps mentioned above:

1. We had already chosen the origin 0 = aP* = (0,0). A normalized section is given by s(p,q) =
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2. As Ansatz for the kernel at the origin we take the parity-like operator
[Af](w) = 2¢(-w).
3. Tt is easy matter to check all the axioms. For instance, “unit trace”:
TrQ(p,q) =Tr[U(s(p,0)Q0,0)U(s(p,q)~")] = Tr[2(0,0)]
= [ dw (w|Q(0,0)|w) = % dw 2(w| — w)
= [% dw25(2w) = 1.

To prove covariance (3) it suffices to consider the isotopy group of 0 which is made up of space
translations G(1,1)o = {(0,a,0)}.

Let us show that, in this case, there exist many different SW kernels. Firstly, note that covariance (i.e.,
Ua(0,a,0)AU, (0, —a,0) = A) is satisfied for any operator A because the elements of the isotopy group
are represented by scalars.

To analyse traciality (4) we write the action of A as

Al = [ ! i),

this leads to the rather complicated condition

00 00
Aw’,w = 277/ dU/ dp Av+w’7w,v Av+w’7w+§,v+§ Aw’+§,w+§-
—o0 -0

However, a particular solution can be found
A w = eww)é(w + wl)7
and the associated kernel acts as

[, )0 (w) = Pl BIeinnle iy —2L)

Finally to satisfy “hermiticity” and “unit trace” it is enough that ¢ verifies o(w) + ¢(—w) € 277 and
©(0) € 277, respectively.

3.3. Example 2: The Newton-Hooke group NH(1,1)

The kinematical group of Newton—Hooke in (1 + 1) dimensions can be defined, in analogy with the case
of the Galilei group, as the set of transformations (time and space translations and boosts) acting on the
space-time as

t ot
(t',z'") = (b,a,v) - (t,x) = (t + b,z + acos — + v7sin —).
T T
The natural topology of this universe is that of the product R x S!. The parameter 7, with dimension of
time, characterizes the compact direction, and can be seen as a characteristic time of this universe. In the

definition of the action we have opted for the universal covering to obtain simpler formulas (i.e., b € R).
The group law is

b b !
(', a',v")(b,a,v) = (b' +b,a’ cos — + v'7sin — + a, v’ cos — — 9 sin 2 +v).
T T T T T
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Its associated Lie algebra, nh(1, 1), spanned by the infinitesimal generators of the above mentioned trans-
formations, H, P, K, has only two non-vanishing commutators

- L.
[K,H]=P, [PH]=-5K.

Note that this group is isomorphic to the Euclidean group of the plane.
The coadjoint action of NH (1,1)

1
(b,a,v) - (h,p, k) = (h—vp+ —2ak,pcos§ - Esiné,prsing -%Iccosg)7
T T T T T T

splits the dual nh*(1, 1) into OD (points of the form hH*) and 2D orbits (cylinders O defined by p* +
k22
7z = B).

A local chart of canonical coordinates is formed by the pair a« = arctan Tﬁp, j = th. For later use we
quote here a normalized section

S(Q,j) = (TQ,O, 0)(0707 _%)

In order to apply the Kirillov method for induced representations we take the subalgebra (P, K') which
is subordinated to the point P* € (Og. The PUIR attached to O can then be realized on the space
L?([—m, m]) of square integrable functions on the circle

[Us (b, 0, 0)](1) = ei25 costtesintly (g —p)

Note that all the orbits Og are diffeomorphic and all the PUIR’s U have the same form, hence we will take
g =1
The following parity-like operators

[AVI(t) = 2¢(=t), [API(E) = 2¢(t + 2),  [API(E) = 2¢(—t + 7),

as Ansatzs for A do not yield suitable SW kernels. The first one gives a non tracial operator and the others
do not accomplish covariance (3). To solve this problem we consider a generic operator A, which has to
verify consecutively all the axioms. An operator A acting on L?([—, 7r]) can be expressed as

A= Z Ay 5|y (s],
r,sEZ

where the ket |r) stands for the function ¢, (t) = \/%emt. To apply covariance let us note that the

isotopy group of the origin 0 = S P* contains only space translations. Therefore, according Lemma 3.1 the
covariance condition reduces to [U(P), A] = 0, whose most general solution reads

[A¢](t) = a(t)(=t) + b(£)¢ (),

with @ and b arbitrary functions on [—, 7]. Hence, the most general mapping Q : O — L(L?([—7,7])),
verifying covariance is

[0, a)l(t) = 275 Da(t — a)p(2a — 1) + b(t — a)p(D).
The following lemma is useful to improve traciality.

Lemma 2 A covariant mapping Q : O — L(L*([—=,7])) verifies traciality if and only if K (x,y) =
Tr[Q(x)Q(y)] is a reproducing kernel in the space of symbols generated by ), i.e.,

/O du(y) K (x,y)W(y) = W(y), Vx € O.
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The proof of this lemma involves only covariance of (2 and invariance of the measure y under NH (1 + 1).
In fact, last condition is equivalent to the following one

/Od,u(y)K(O,y)W(y) =W(y),

apparently weaker.
Imposing traciality and the other axioms we obtain the following family of SW kernels on the cylinder

(20, ))(1) = T Da(t — a)p(2a 1),

where function a is essentially arbitrary, only subject to the constraints a(—t) = a(t) and |a(t)|? + |a(t +
)2 = 4| cost|.

This solution solves the Moyal quantization of the cylinder. Other approaches to the cylinder quantiza-
tion can be found in [26] and [27].

4. Star products

The theory of deformations of algebras of classical observables, called the theory of *—products, was intro-
duced by Bayen et al. [7] and its mathematical foundations can be found in the works of Gerstenhaber [18]
about deformation of algebraic structures. As we said before in section 2 Moyal quantization can be seen
as a particular case of this theory.

Let A be an algebra and A[[h]] the algebra of formal power series in h with coefficients in .A. The
algebra A[[h]] is said to be a deformation of .4 with deformation parameter h if

A[[R]/ R A[[R]] = A.

Let (M, {-,-}) be a Poisson manifold, and let us consider the Lie algebra A = C°°(M). A quantization
of A is a deformation of the commutative algebra A into a non-commutative algebra A;, = A[[h]] with a
new product, x5, : A X A, — Ay, defined as a deformation of the commutative product on 4. Since the
elements of A}, are formal series

oo

f=f@n) =Y flx)h",  feC(M), veM,

r=1

the *—product is defined as
Frng = _lL(x)h",
r=0

such that /,. are polynomials on f,, g, and their derivatives, and lo(z) = fo(z)go(z). Moreover, the x—
product has to be associative.
A commutator is defined on Ay, by

[f,91={F,9%n = F*ng—g*n f =h{fo,g0} + o(h?).
Consequently
Feng=fot Sif.g +oh?),  VigeA ©

and
f*na=ax, f=af, VaeC, feA (7

In particular f %, 1 = 1%, f = f, i.e., the unit element is not quantized.
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Note that the Original Poisson bracket on A is recovered in the semiclassical limit (h — 0)
{f,g} =1 ! {f,q9}
= l1im .
9 h0 B y9sh

Additional conditions have to be added in physical situations, for instance: f x5, g = f %5 g, and
h = —ih. Therefore, after quantization real-valued classical observables go over into self-adjoint quantum
observables (operators).

In general a *p—product is defined as

frng="rfg+> Colf.9)h",

r=1

where the terms (', are Hochschild 2-cochains, i.e., bidifferential operators on A without constant term in
each argument (C'. vanishes over constants).

If the infinite series Y- C,.(f, g)h" stops at order m verifying the associativity property up to this
order, we have a deformed product up to order m. Gerstenhaber showed that the obstruction to the extension
of deformed products up to order m is the third space of the Hochschild cohomology.

There are some results about the existence of x—products based on cohomological techniques involving
the Hochschild or de Rham cohomologies. The most interesting of them proves the existence of a x—product
for any symplectic manifold [35]. Unfortunately, all these results are formal in the sense that do not give an
effective or canonical construction procedure of such x—products. As far as we know the most interesting
example of *—product quantization is Moyal-Weyl-Wigner quantization.

It is worthy to note that, from a physical point of view, in this quantization method the x—products have to
be invariant for the elements (distinguished observables) of a sufficiently large finite subalgebra Z of A (i.e.,
{a, fixfo} = {a, fi}xfo+ fix{a, fo}, a € Z,Vfi, fo € A)suchthat[a, f] = h{a, f},Va € Z, Vf € A.
These distiguished observables determine a (local) coordinate system of M in terms of a basis of this
subalgebra. For instance, in the case of Moyal product for M = R2? the polynomials of degree lesser
or equal to two in the usual coordinates (¢;,p;, ¢ = 1,...,n) constitute this subalgebra of distinguished
observables. The fact that the quadratic Hamiltonians belong to this subalgebra makes easier the study of
the temporal evolution of the quantized systems in this phase space framework.

5. Quantization of Poisson-Lie structures

Quantum groups are objects which can be seen as deformation (or quantization in a broad sense) of classical
structures related with C*°(G), where G is a Lie group (see [11] for a review).

The theory of x—products is one of the different approaches to quantum groups (the others are FRT
method [37], matrix T [15]). It tries to construct x—products on C*°((G) that quantize this algebra and
preserve in some sense its additional algebraic structure [31, 13].

The aim of this section is to quantize (or deform) the corresponding Poisson algebra of classical observ-
ables A = C*°(G) of smooth functions over a Lie group (G, which has a supplementary algebraic structure
of Hopf coalgebra. We will start by a brief review about these structures.

5.1. Poisson—-Lie groups

The Hopf coalgebra structure on A = C*°(G) (also denoted Fun(G)) is induced by the composition law
of the Lie group GG. Explicitly, there are two homomorphisms: coproduct (A : A @ A — A) and counit
(¢ : A — ©), and the antithomomorphism antipode (y : A — A) defined by

(Af)(g.9") = flag),  e(f)y=fle), DP9 = flg™), ®)
Yg,g' € G, with e the unit element of G. So, A is said to be a Hopf algebra.
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A Lie group G is a Poisson—Lie (PL) group if both structures, Poisson manifold and Hopf coalgebra,
are compatible in the following way:
1) Coproduct verifies the following diagram

{'7'}
Ax A — A
A®A ] JA
{'v'}A®A
A A A® A — A® A,

or in other words,

A({f1, f21) = {A(f1), A(f2) Lasa,
where

{1 ® fa, k1 @ koY asa = fikr @ {fa, ka} + {f1, b1} @ foko.

2) The group multiplication law, m : G x G — @, is a Poisson map.

An interesting problem is to construct PL structures over a Lie group. A solution is as follows. Let us
consider r € A?g (g is the Lie algebra of G), i.e., 7 = r¥ X; @ X; with r¥/ = —ri% in a basis {X;} of g.
If we define

re=r"X; 0 X; 01, riz=riX;®10X;, rz=r1eX;0Xj,
the Schouten bracket of r with itself can be written as
[[r,r]] = [r12,m13] + [r12, 23] + [r13, 723

We say that r is a classical r—matrix verifying the classical Yang—Baxter equation (CYBE) (or a non-
standard r—matrix) if it verifies [[r,7]] = 0. When [[r,r]] # 0 but adgm[[r7 r]] = 0, it is said that r satisfies
the modified classical Yang—Baxter equation (MCYBE) or is a standard r—matrix.

On the other hand, to every X € g there are left-invariant and right-invariant vector fields defined by

XN =L fee®), xR =L fet). ©)

dt
t=0 t=0
Using both ingredients [31, 13], a classical r—matrix and invariant vector fields, it is possible to endow
G with a structure of PL group (G, {-, -}) with the Poisson bracket defined by (Sklyanin bracket)

{fi.fo} =rI(XEAXEf, = XEAXES),  fi,fo € Cx(G). (10)

We have seen that a PL group is a Poisson—Hopf algebra, hence it is natural to look for a Hopf algebra
structure on the deformation Ay, or in other words, if it exists a coproduct A, (besides a counit and an
antipode) such that

Ap(fi *n f2) = An(f1) *n An(f2),

and, obviously, lim,_.o A, = A. The noncommutative Hopf algebra obtained in this way will be called
the quantum group associated to G (usually denoted Funy(G)).

5.2. Quantization of PL groups with CYBE r—matrix

The procedure of quantization of PL groups presents some differences according to the associated r—matrix
is standard or non-standard. The easier case corresponds to non-standard r—matrices and, consequently, we
will present firstly this case (for more details see [31, 13]).
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Although the Poisson brackets { f1, fo}r,r = r X ZL R f XJ-L7R f2 do not generate separately a PL struc-
ture on G (see expression (10)), the idea is to quantize independently both Poisson structures determined
by both Poisson brackets and after to join them to get a quantization of the PL. group.

For instance, let us consider the left Poisson bracket, and let us go to find a left G—equivariant associative
x—product verifying conditions (6) and (7), and moreover

A(fr *n fo) = Af1 *n Afo, (1)

where A is the standard coproduct on A defined by (8a). The expression for the x—Moyal product (1),
*Moyal = M © er iy, suggests to define % in the same way. So,

>|<ﬁ:mOF7

where F is a formal power series in i whose coefficients F), are linear differential operators on A ® A, i.e.,
~ i ~ ~
F=14)h"F,, F,:A0A— A0 A
n=1

The property of left-invariance for *ﬁ gives rise to
(Lg, ® Lg,) 0 Fp=F,o (Lg, ® Lg,), V91,92 € G,

where L, is the left-translation operator.

Let 77, be the representation of the universal enveloping algebra Ug by left-invariant differential oper-
ators on C*°(G) such that in terms of a basis {X;} of g takes the form 77,(X;) = X7/, then F, can be
expressed as y

Fy = (m @ m1)(Fy),

with F,, € Ug® Ug and F} = —%r. Hence, I can be written as the image by the representation 7, of a
formal power series in h with coefficients in Ug @ Ug:

F=(mpom)(F), FeUgoUg[h.

In order to get a deformation with non quantized unit and associative it is necessary to impose the following

conditions on F':
(e®@id)F = (id® e)F =1,

12)
(F @id)(Ag @ id)F = (id @ F)(id @ Ap)F,
where A denotes the coproduct in the Hopf algebra Ug, i.e.,
A(X)=10X+Xol, Xeg.
It can be shown that the x—product given by
#, =mo (rp @ m)(F)
defines a left-invariant quantization of the Poisson bracket {., .} .
Similarly, the right-invariant x—product
sB=mo(rr @ mgr)(F")
quantizes the Poisson bracket {-, -} 5.
Finally, the combination of both *£ and f?
sp=mo (r, @) (F)o (rp @ mr)(F 1) (13)
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yields an associative quantization of the PL group verifying (11).

The existence of an element F' € Ug @ Ug[[h]] verifying (12) for a nonstandard r—matrix of g has been
proved by Drinfel’d [13]. This result assures that any PL. group associated to a classical r—matrix verifying
CYBE can be quantized.

Introducing the flip operator o(a ® b) = b ® a it is possible to construct an object,

R=0(F ')F=1-hr+o(r?), (14)

satisfying the quantum Yang-Baxter equation (QYBE) which is said to be the universal quantum R—matrix
associated to the classical r—matrix. The relevance of the previous procedure is that we can get many
“concrete” solutions of the QYBE by taking different representations of the universal object R. Thus, if we
take a finite dimensional representation p of g in the algebra of n x n complex matrices M (n, C), we have

R=(p@p)(R)
which satisfies the QYBE
RiaRi3R23 = RagRi3Rao, (15)
and the unitary condition
RR° =1, (16)

where R7 = (p @ p)(c(R)). We see that this quantization procedure leads in a natural way to QYBE.
Finally, let us consider again the matrix representation p : g — M (n, C), consequently the group G
is realized as subgroup of GL(n, C). Let T = (t;;);';—; be the matrix of coordinate functions on GG

tij(9) = 9ij, 9€G.
Left and right actions of g on matrix coordinates on GG are easily described using (9) by
(Xrtij)(9) = (9X)ij = tir(9)Xkj,

VX €g.
(Xrtij)(9) = (X9)ij = Xirtrj(9),

On the other hand, let F' be the image of F' by the representation p (ie. F= (p ® p)(F)) and defining
T, =T®1land Ty = 1® T, the x—product between matrix coordinates of GG elements can be expressed in
an elegant manner by
Ty, To = F'T & TF,

applying the flip operator to both sides of this expression we get
Ty s, Ty = o(F~ )T @ To(F).
Taking into account expression (14) we obtain the relation
RTy xp, Ty = Ty %, T1 R,
which is the well known formula that gives the commutation relations between the matrix coordinate func-
tions of G defining the quantum group Funp(G).
5.3. Quantization of PL groups with MCYBE r—matrix

In this case the procedure is similar to the previous one in the sense that we again define the x—product by
expression (13). However, here the difference is that condition (12b) over F' (where F' = 1 — (h/2)r +
o(h?) € Ug®?[[h]] such that (¢ @ id)F = (id @ €)F = 1), which assures associativity, is now relaxed and
substituted by the more general [31]:

(F @id)(Ap @id)F = a(id @ F)(id ® Ag)F, o € Ug®?[[h]],
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where a formal power series in h with coefficients in Ug®? has been introduced.
The associativity of #y, is assured if a is G-invariant, i.e.,

ad’a=[loleX+10X®1l+X®1el,a =0, VX €g. (17)

Drinfel’d has proved the existence of a € Ug®?[[h]] verifying (17) and other additional conditions that we
do not display here (for more details see [31]).
Also it is possible to construct an object by

R =o(F 1)eMF,
where t is an ad?z—invaﬂant symmetric element of g @ g defined by [[r, 7]] = —[t13, t23]. The matrix
R=(p®p)R,

defined in terms of a matrix representation p of g on M (n, C) satisfies the QYBE (15), but it does not verify
the unitary condition (16).

As in the previous case, if we consider the natural representation p of g on M (n,C), and the matrix
representation of the group elements, T', then the x—product of the matrix coordinate functions of G is given
by

Ty, To=F 'ToTEF. (18)

On the other hand, T %, T} = o(F~")T @ To(F'), and from this expression and (19) one gets once more

RTl Xp, T2 = TQ Xp, TlR (19)

5.4. Example 3: Quantization of the PL group SL(2)

To illustrate all the above techniques of quantization of PL groups, we present the quantization of the PL
group SL(2).
A basis for the Lie algebra s[(2) is given by three elements X and H with commuting relations

[H,Xi] = +2X4, X+, X_]=H.
A classical r—matrix satisfying MCYBE for this algebra is
r=2X,ANX_=X,2X_-X_oX, cA%l2).
The associated Sklyanin bracket is
{f,g}=XEfxBg— xXBfxFg— XLlfxlg - XEfxlg.
A 2 x 2 matrix representation of s{(2) is given by

px= (g o) so=(10) wm=(% g).

The r—matrix in this representation takes the explicit form

0 0 0 0
o 0o 1o
0 -1 0 0
0 0 0 0

The elements of SL(2) written in matrix coordinates are
a b
=(ta)
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with the condition det T' = ad — bc = 1.
The Poisson brackets for the group matrix coordinates can be directly computed by means of

{roTy=[FToT],
which yields
{a,b} = ab, {a,c} = ac, {a,d} = 2be,
{b,c} =0, {b,d} = bd, {e,d} = cd.

Note that these relations fix the Poisson brackets for all pairs of functions in C*°(SL(2)) if we consider
them as polynomials in the variables a, b, ¢, d.
The quantization of SL(2) is performed by means of

vg 0 0 0
- _hg, 0 ' 0 0
F=e 0 v wu 0 ’
0 0 0 g
where ¢ = e?, u = # and v = %. The corresponding representation for the R—matrix is
atq
q 0 0 0
— A—1 (0_l])hA — 0 1 0 0
Rq \/aO'(F )e 2 F 0 q- q71 1 0
0 0 0 ¢

A straightforward calculation using (18) gives the *—product for coordinates a, b, ¢,d. And from (19)
one gets the usual relations defining the quantum group SL,(2):

axp b= qbxya, a*xp, C = qC *p, @, axpd—dxpa=q—q Hb*pec,
bxpc=cxpb, b*p d= qd*p b, cx*p d = qd %y, c.
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