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A note on an open problem in the foundations of statistics

Alejandro Garcia del Amo and David Rios Insua

Abstract. We study a problem in the foundations of statistics, that of modelling imprecision in prefer-
ences and beliefs within the expected utility framework. This problem is at the core of sensitivity analysis
in Bayesian statistics. We provide an answer in the form of state-dependent expected utilities.

Una nota sobre un problema abierto en fundamentos de Estadistica

Resumen. Estudiamos un problema abierto en los fundamentos de la estadistica, el de modelizar
imprecision en preferencias y creencias dentro del marco de la utilidad esperada. Este problema funda-
menta el andlisis de sensibilidad en estad{stica bayesiana. Proporcionamos una solucién en términos de
utilidades esperadas dependientes del estado.

1. An open problem in the foundations of statistics

Various axiomatic frameworks, including those of Von Neumann-Morgenstern, Savage, DeGroot and Ans-
combe and Aumann, see e.g. French and Rios Insua (2000) for a review, essentially lead to the (subjective)
expected utility model, which is at the core of Bayesian Statistics and Decision Theory and much of current
research in Economics. That various paths lead essentially to the same model is reassuring and, in a sense,
one of the main strengths of the Bayesian approach. At the same time, the axiomatic foundations facilitate
a critical analysis of the theory, by putting into question various axioms and possibly obtaining alternative
models, see Anand (1987) for a discussion.

Following that argument, in this note we explore foundations for a model of beliefs based on a class of
probability distributions, of preferences based on a class of utility functions and leading to the comparison
of alternatives through Pareto-type inequalities of their expected utilities. As explained in R{os Insua and
Ruggeri (2000), these would provide the foundations of much of recent research in robust Bayesian anal-
ysis, and is a problem yet to be solved. The essential issue is what are the consequences of dropping the
completeness axiom, and what other conditions are needed to achieve such representation.

Since its inception, see e.g. Von Neumann and Morgenstern (1944), Savage (1954) and Aumann (1962),
many authors have dwelt on the issue of complete judgements because of the difficulty of assessing beliefs
and preferences precisely, specially in presence of several DM’s. Indeed, many authors including Girén and
Rios (1980), Rios Insua (1990, 1992), Nau (1995), Seidenfeld et al (1995), Shapley and Baucells (1998)
or Dubra et al (2001), have dwelt on the problem providing partial answers (for example, by considering
precision in beliefs but not in preferences as in Dubra et al, or the other way round, as in Girén and Rios).
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The few attempts on the general open problem, see e.g. Rios Insua and Martin (1994), have used too strong
conditions.

In this note, based on conditions in Rios Insua and Criado (2000), we deal with problems of decision
making under uncertainty to obtain a novel state-dependent expected utility representation and suggest
ways to handle this general problem which, we believe, would close a long-lived issue in the foundations
of statistics. We shall use here Young measures, introduced by Young (1937; 1942) as a tool to deal with
certain problems arising in variational calculus that do not admit classical solutions because approximate
solutions show typically rapid oscillations. They are also known as parametrized measures, relaxed controls,
measurable families of probabilities, transition probabilities or stochastic kernels.

2. Basic structure and problem

We consider decision making problems under uncertainty, within Anscombe and Aumann (1963) frame-
work. In such framework, we assume that preferences are established among Anscombe Aumann acts,
which are functions from a set of states into the set of probability measures over a space of consequences.
We shall cast them in a somewhat more abstract way, by adopting a functional analytic view of the prob-
lem. Specifically, we shall view Anscombe Aumann acts as Young measures. More details on the necessary
theoretical background can be found in, e.g., Aliprantis and Border (1999).

The basic elements in our problem are a set S of states of nature, which we shall assume is a compact
subset of R” endowed with Lebesgue measure j1g, over Fg; the o —algebra of Lebesgue measurable subsets
of S, and X, a compact subset of R™, which will be the space of consequences. We shall consider the set
P(X) of all probability measures on the Borel sets Bx of X endowed with the topology of convergence
in distribution (or weak* topology). A decision maker establishes his preferences < when comparing
alternatives, which in our context will be functions f from S into P(X). Intuitively, if the state s finally
holds, we shall obtain the probability measure f5 over X.

‘We shall assume some mathematical structure over those alternatives. To wit, we shall consider the set
Y (S; X) of Young measures, which consists of all f € L2 (S;ca(X)) such that fg € P(X) ae. in S,
where ca(X) is the space of all signed measures of bounded variation on Bx and L%, (S; ca(X)) designates
the Banach space of all (equivalence classes of) weak*-measurable functions f : S — ca(X) such that

[1flloc = ess sup {||fs[| : s € S} < oo

Note that this can be identified with the topological dual of the Banach space L*(S;C'(X)) of all (equiva-
lence classes of) measurable functions g : S — C'(X) such that

lglh = /S lg(s)]] ds < oo

(Cembranos and Mendoza, 1997), where C'(X) is the set of continuous functions over X. Equivalently, a
function f : S — P(X) is a Young measure if s — [ u df; is measurable for every u € C'(X). We will
assume that Y (S; X) is endowed with the relativization o (Y (S; X), L'(S; C(X))) of the weak* topology
o(LE (S5 ca( X)), L1 (S; C(X))).

The general aim of Bayesian foundations in this context would be to obtain the representation

r2oe [ [ woio|owds< [ ][ uwdnm] o as

u being a utility function and v a density function. Conditions for this representation are well-known in
the Bayesian literature, see French and Rios Insua (2000) for further information. They all require that <
is a weak order (i.e, it is transitive and complete). However, in many applications we need to deal with
incomplete relations, suggesting a representation of the type

f<ges (/S [/X u(x)dfs(x)} o(s) ds < /S {/X u(x)dgs(x)} o(s)ds,Yu € U,v € v)
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where U is a set of utility functions and V" is a set of density functions.

We aim at providing such representation here. The type of argument we shall use is to relate a closed
convex cone with the preference order which will be a quasi order, then use a Hahn-Banach type of repre-
sentation and, finally, explore the consequences of such representation.

Recall that a reflexive and transitive (binary) relation < on a set A is called a quasi-order on A. A subset
C'in a vector space L is a wedge if C + C' C C and A\C' C C for all A > 0. Note that a wedge C' in L
determines a quasi-order < by

r<yify—xeC.

Moreover, this relation is compatible (with the vector structure of L) in the sense that z < y implies
r+z<y+zand Az < Ay forall z € L and A > 0. Conversely, if < is a reflexive, transitive and
compatible relation on L, and if we define C' = {& € L : x > 0}, then C' is a wedge in L, and < is exactly
the quasi-order induced by C'.

If F is a locally convex Hausdorff space and C' is a wedge in FE, then it is easy to see that the set
C'={2' e E':{(x,2') >0forallz € C'} is awedgein E'.

The following result will be essential in our approach. The first two equivalences may be seen in
Namioka (1957, Corollary 4.2), the other two equivalences being simple.

Lemma 1 Let E be a locally convex Hausdorff space and let < be the quasi-order induced by a wedge C'
in E. The following statements are equivalent.

1. Cis closed.

2. Ifx € E, thenx = Oifand only if (x,2') > Oforall 2’ € C".

3. Ifx,y € E, thenx < yifandonlyif (x,2') < (y,a') forallz' € C".

4. There exists a subset W of E' such that x < y if and only if {(x,w) < (y,w) for allw € W.
We shall also need the following result about Young measures (Roubicek, 1997, Corollary 3.1.7).

Theorem 1 The set of all Young measures Y (S; X) is a metrizable convex weak* compact set.

Finally, if u € C'(S) and v € C(X), we write u ® v for the function s — u ® v(s) = u(s)v, from
S — C(X). Moreover C'(S) @ C(X) is the collection of functions ZZ:1 u; @v;, where j € N, u; € C(9),
and v; € C(X). Since Y (S; X) is a weak* compact set, it follows from the denseness of C'(S) @ C'(X) in
L'(S;C(X)) (Warga, 1972, Theorem 1.5.25) that

o(Y(S; X),L'(8;C(X))) = o(Y (S5 X),C(S) @ C(X))

(Wilansky, 1978, Lemma 9-5-1).

3. A representation with state-dependent expected utilities

In this section, we provide a representation in terms of state-dependent expected utilities. We identify a class
of functions that allows us to represent a quasi order within the set of Young measures. Those functions
may be expressed as expected utilities, with utilities viewed as a weighted combination of utility functions,
the weights depending on states. Specifically, we have the following

Theorem 2 The three conditions
1. (Y(S;X), X) is a quasi-order.
2. (Independence Axiom.) Forany f,g,h € Y(S; X)andany \ € (0,1), f <X gimplies \f+(1—\)h <
Ag + (1 = N\)h.

57



A. Garcia del Amo and D. Rios Insua

3. (Continuity Axiom.) If (f) and (gi) are convergent sequences in Y (S; X ) such that fi, < gy, for
each k, then lim f;, < lim gy.

are equivalent to the existence of a class W of functions w(s,z) = 25:1 u;(s)vi(x), where u; € C(S),
and v; € C(X), such that

f=yg <:>/ {/ w(s,x)dfs(x)] ds < / [/ w(s,x)dgs(a:)} ds forallw e W.
s L/x sL/x
PROOF. Let us show the non trivial implication. To this end, consider the set

C={Mg—-f):A>0and f < g}.

It is easy to see that C' is a wedge. From Lemma 1, in order to complete the proof, it suffices to show that
C'is closed in L% (S ca(X)), which we assume to be endowed with the weak* topology. The proof is
presented in steps. The first two have been noted recently by Shapley and Baucells (1998) (on an arbitrary
mixture space); see also Dubra et al. (2001). First note that the continuity axiom allows strengthen the
independence axiom to

e Claim 1. Forany f,g,h € Y(S;X) and any A € (0,1),f <X gifand only if \f + (1 — M\)h =<
A+ (1= A)h.

As a consequence, we have
o Claim2. If f,g e Y(S;X), then f X gifandonlyifg— f € C.

We next consider two distinguishing properties of P(X). Noting that 0 € P(X) — P(X), the first one is
immediate from the convexity of P(X) — P(X).

e Claim 3. If p,q € P(X) and 0 < X < 1, then there exist two probability measures r and s satisfying
Mg—p)=s5—r

At this point, we introduce some further notation. If y is a signed measure on Bx, the positive and negative
variations of y are the measures on Bx defined by the formulae

pt(A) = sup{u(B): B € Bxand B C A}

and

p~ (A) =sup{—u(B): B € Bxand B C A}
for A € Bx. Jordan decomposition theorem shows that 4 = u* — u~. As ||(g — )| = ||(g — p) ||, we
get

e Claim 4. If p,q € P(X), then there exist two probability measures r and s such that q —p =
(g —p)*ll(s = 7).

This result can be generalized as follows.

e Claim 5. Let f,g € Y (S; X). Then, there exist r,s € Y (S; X) suchthat g — f = ||lg — f||(s — r).
Moreover, if f # g, f < gifandonly ifr < s.
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The validity of the second claim follows immediately from claim 2. On the other hand, for f = g the

conclusion of the first claim is obvious. Let us, therefore, assume that f # g.
For each k there exists a partition {S}, ..., S,;I(k)} of S such that

J(k)
hy = thXS] — h in L% (S;ca(X))
forall h € Y (S; X'), where h{; € P(X) is the functional on C'(X) defined by

1
hJ( ) = |SJ| , < v, fs> ds.

For details, see Roubicek (1997, Theorems 3.1.3 and 3.1.6). In particular, this implies

gr — fx = g—f in Lg.(S;ca(X)).

Now, we may easily verify that
llgw = fill = maxllgg. = fill < llg = £1-
By claim 4, there exist FL §fc € P(X) such that

gi—f,{ ||( fk)+||(5k_7"k)

In fact, since

o el =D (gl = FD)* ]
fi =llg—fll H — 11l (Sk Tk) and 7“9_ 7l

we can use claim 3 to obtain two probability measures r{; and si such that

€ [0,1],

— fi = llg = fll(sf, = rd)-
From this last equality, we infer that
gk — fr = llg — fll(sk — &)
with

J(k) J(k)

rL = Z Tszf and s, = Z stSJ

in Y(S; X). This allows us to use Theorem 1 to obtain r, s € Y (S; X) and subsequences (rg,) and (s

such that ry, — r and s, — s in L3 (S; ca(X)). But then,

g—f=llg—flils—r),

and the proof of the claim is finished.

e Claim 6. C'is closed in L. (S; ca(X)).

ki)
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Since C(X) is separable, it is only necessary to verify that C' is sequentially closed in L% (S5 ca(X))
(Wilansky, 1978, p. 192): If (f), (gx) are sequences in Y (S; X) such that f, < g and if (\;) is a
sequence in (0, 0o) such that g (gx, — fr) = hin LS (S; ca(X)), then we have to verify that h € C.

By the uniform boundedness principle, the fact that A (gx — fi) — hin LSS (S; ca(X)) implies that
(Ae(gr — fr)) is strongly bounded, that is, there exists some M > 0 such that ||\ (gr — fx)|| < M for
each k. Next, from claim 5 it follows that we can choose v; > 0 and r, s € Y(S; X) with 7, < sy and
||8k — ’I‘k“ = 1such thatgk — fk: = Vk(sk — Tk). Thus

IMe(ge = fi)ll = 1Ay (se — ri)ll = Ay < M

for each k, so we can assume (by passing to a subsequence if necessary) that Ay — A. On the other hand,
by Theorem 1, there are r, s € Y (S; X) such that (by passing to a subsequence if necessary) r, — r and
sp — sin L% (S;ca(X)). Hence h = A(s — r) with r < s (use the continuity axiom), and the proof is
finished. W

4. Discussion

We have provided a solution to an open problem in the foundations of statistics in terms of state dependent
expected utilities. We should check whether similar results may be provided for state independent utilities
(or, at least, some substantial part of the set of expected utilities). We could also explore cases in which
there is imprecision in beliefs, but not in preferences, and the other way round. We have based our analysis
in Anscombe Aumann framework. Savage framework should be also explored. Finally, updating of the
involved class of probabilities in terms of Bayes type of rules should be studied. This will be the subject of
further work.
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