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Representation of multilinear operators on C (K, X) spaces

l. Villanueva

Abstract. We present a Riesz type representation theorem for multilinear operators defined on the
product of C'(K, X)) spaces with values in a Banach space. In order to do this we make a brief exposition
of the theory of operator valued polymeasures.

Representacén de operadores multilineales sobre espacios C'(K, X)

Resumen.  Probamos un teorema de representacién de tipo Riesz para operadores multilineales
definidos en el producto de espacios C'(K, X). Para poder hacer esto exponemos unas breves nociones
de la teorfa de polimedidas con valores en un espacio de operadores.

1. Introduction and notation

In a series of papers, Dobrakov developed the theory of polymeasures, in order, among other things, to
obtain several kinds of Riesz type representation theorems for multilinear operators defined on the product
of spaces of continuous functions (scalar of vector valued) and taking values in Banach spaces. Thus, he
obtained in [7] a representation theorem for multilinear operators acting on the product of C'(K) spaces,
and in [8] a similar theorem for multilinear operators acting on the product of C'(K, X') spaces. However,
as pointed out in [2], there is a mistake in the first of those theorems, which he carries along to the second
theorem. Using the representation theorem we obtained in [2] for multilinear operators on the product of
C'(K) spaces, we obtain here a representation theorem for multilinear operators on the product of C (K, X)
spaces. As in [2], the representation is done in terms of Borel polymeasures, whereas, using Dobrakov’s
techniques, it is not possible to go beyond Baire polymeasures. This theorem has been applied in [13] and
[3] to obtain information about those multilinear operators.

In this paper, n will denote a natural number, Y, X, X; will be Banach spaces and X* denotes the
topological dual of X. We write £L(X1, ... X,; Y )for the space of the multilinear operators from X; x
-+ X Xy into Y with the usual norm. If n = 1 or Y = K, we do not write them.

X:1©...©X, is the complete projective tensor product of X7,...X,. We suppose well known that
LX) ..., Xp;Y) is isometric to £(X;&...5X,;Y). We use the notation I, to mean that the i
coordinate is not involved.

K, K; denote compact Hausdorff spaces. C'(K, X) is the space of the continuous functions defined on
K with values in X. We write suppf for the support of a function f.

If

A Y — L(X;Y)
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1. Villanueva

is a finitely additive set function, we say that \ is an operator valued measure, and in that case we consider
its semivariation |A| : ¥ — [0, +00] to be defined by

IAI(A) = sup Z)\(Aj)(%')

where (A;)72, is a X-partition of A, z; € X and [|z;|| < 1.

If || is bounded, we write A € ba(X; £L(X;Y)). If A is a measure or an operator valued measure, we
denote its variation by v(\); it is well known, and very easy to check, that if A : ¥ — X* is an operator
valued measure, then |\| = v(A).

2. Operator valued polymeasures

If F' is a Banach space and ¥4,..., X, are o-algebras, following [6], we say that a set function I" : ¥; X
-+ x ¥, — Fis a polymeasure if it is separately finitely additive. If F = £¥(X ..., X,,;Y) then we
say that I is an operator valued polymeasure. In this last case, we define its semivariation

IT|: %) x -+ x X, — [0, +o0]

by

ID[(Ar, -y Ap) =sup Q[ - > DAy oy Ak ) (@1 - Tk )

Jj1=1 Jn=1

where (A; ;) is a ¥;-partition of A; (1 < i < k), x;5, € X; and [|z;;|| < 1. Tt is trivial to check
that this definition generalizes the above mentioned semivariation of an operator valued measure. |I'| is
separately monotone and subadditive.

Similarly to the case of measures, we have that ||T|| < |T'| < v(T"), where ||T'|| and v(T") are the scalar
semivariation and variation of ', whose definitions can be seen in [6] or [11]. If X; = K (1 < i < k) then
|IT|| = |T'|. Notice that, opposite to the case of measures, if £k > 1 and Y = K, it is not necessarily true that
IT| = o(T).

We denote by pm(3q, ..., X,; X) the set of polymeasures from ¥y x - -+ x X, into X. We say that
T e pm(Zy,...,3,; X) is countably additive (resp. regular) if it is separately countably additive (resp.

separately regular), that is, if for every i € {1,...,k} and every (41, 4,) € ©;x m xY,, the

measure

F(Al,...7Ai_17-7Ai+1,...,An):Ei — X

is countably additive (resp. regular). In that case we write I' € capm(Xq,...,%,;X) (resp. T €
reapm(Xq, ..., 3n; X)).
If T' is an operator valued polymeasure defined from ¥; x --- x Y, into

LM(X1,...,Xn;Y) then, forevery (z1,...,2,) € X1 X --- x X, we define the polymeasure ', . €
pm (..., 2, Y) by

FIl,---Jn (Al, e ,An) = F(Al, e ,An)(l'l, e ,fL’n)
and, for every y* € Y*, we can also define the operator valued polymeasure
Ty € pm(S1,. .., S L(X1, ..., X3 K))

by
Cye (A1, Ap) (1, oy xn) = (T(Ar, - Ap) (@1, - ), U7).
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Representation of multilinear operators on C'(K, X)) spaces

If D C Y™ is a subspace norming Y, then

D= swp [0l
y*€D,[ly*||<1

LetI' : ¥y x---x%,, — L"(X4,...,X,) bean operator valued polymeasure. If, forevery (x1,...,x,) €
X1 x -+ x Xy, the polymeasure I'y, . @ ¥; X .-+ x ¥, — K is regular, then we say that I" is
weak™ regular. We shall use analogous notation for measures. For definitions, notation and basic concepts
concerning polymeasures, see [2], [6] or [12].

From now on, ¥, ¥; will be the o-algebras of the Borel sets of K, K;. S(X) will be the normed space
of the scalar ¥-simple functions defined on K endowed with the supremum norm and S(X, X') will be the
normed space of the X -valued X-simple functions defined on K endowed also with the supremum norm.
B(X) and B(X, X) denote the completion of S(X) and S(X, X) respectively.

Ifs; = Z;L:1 XA, Tij: € S(¥4, X;) then, for every operator valued polymeasure

Tepm(Se,..., S0 L%Xy, ..., X0 Y)),

the formula

ni Nn
TF(Sl, e ,Sn) = Z s Z F(Ale,. .. ,Ak,jn)(l'le, e 7xk,jn)
Jji=1 Jn=1
defines a multilinear map
Tr: S(S1,X1) X X S(Sh, Xp) = Y

such that || Tp|| = |T|(K 1, . .., Kn) (" (D).

So, if |T'| < o0, i.e., if T has finite semivariation, then Tt can be uniquely extended (with the same
norm) to B(¥;, X;) x --- x B(Z,, X,,). We still denote this extension by Tt and we write also

de
Tr(grs. .- gn) < /(917~~.7gn)dF-

Conversely, if T : B(2,,X;) X --- x B(Z,,,X,) — Y is a multilinear operator, the set function
Cp:3 x - x X, — L%Xq,...,X,;Y) defined by

I‘T(141 X+ X An)(xlv e '7xn) = T(£1XA17 s 7anA'n,)
is an operator valued polymeasure which verifies |T'r| = ||T||. So, we have proved the following

Proposition 1 The correspondence T’ < Tt is an isometric isomorphism between the space

bpm (S, .., S0 L7(X 1y e, Xp V)

of all L"(X1,...,X;Y) valued polymeasures of finite semivariation, endowed with the semivariation
norm, and the space L"(B(X1,X1),...,B(Zn, Xn);Y) endowed with the usual multilinear operator
norm.

For a quite exhaustive presentation of the integral with respect to polymeasures, see [8] and the refer-
ences therein. See also [9], [10] and [5] for integration with respect to certain particular classes of poly-
measures.

The next lemma is a multilinear generalization of a well known linear result. We will need it later on.
To simplify the proof we introduce some notation. Let us choose a multilinear operator 7' : B(Xq, X;) x
-+ X B(Z,, Xn) — Y with representing polymeasure I'. If we fix (¢1,...,9x) € B(Z1,X1) X -+ X
B(Xg, Xk), 1 <k <n)thenT,, g isthe polymeasure representing the multinear operator Ty, . o, :
B(Zpt1,Xpt1) X - X B(Ep, Xy) — Y givenby Ty, o (Grt1s -, 9n) =T(g1,- -, 9n)-
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1. Villanueva

Lemma 1 Let X1,...,X,,,Y be Banach spaces, K1, ..., K, Hausdorff compact spaces and T" : ¥; X

X X, = L™Xy,..., X Y) a polymeasure such that, for every (x1,...,x,) € X1 X --- x X,
and for every y* € D C Y*, where D is a norming subspace, the scalar polymeasure Uy, 4.y =
is regular and such that the vector valued polymeasure 'y, . ..  has bounded semivariation for every
(z1,...,7n) € X1 X -+ X X,. Then, forevery (A1,...,Ap) €1 X -+ x X,

|F|(A177An) = Sup{‘

/ (fl,...7fn>drH  fi e O @ Xa, 1 filla, < 1},
Ap Ay

where || f[|a = supie 4 I (D)]]-

PROOF. We reason by induction on k. For & = 1 the result is known (see, e.g., [1, Proposicién II1.1.9]).
Suppose it true for £ — 1 and let T" be as in the hypothesis. Let us fix € > 0. According to the definition,

IT|(Ay,...,A,) = sup{‘

/ (gl,...,gnmrH s € S(S0, X0), lgilla; < 1}.
Aq,..,Ap

So, for1 <i <k, letg; € S(¥;, X;), with ||g;]

/ (glv7gn)dFH+€
Ay XX Ay

4; <1 be such that

Dl(Ar. . Ay) < ‘

Now,

/ (9177gn)dr = / (glv"'7gn—1)dF9nXAn7
Ap XX Ap Ap XX Ap_q

and we use the induction hypothesis to find (f1,..., fn—1) € C(K;) ® X1 X --- x C(K,—1) @ X,,_1 as
in the statement of the lemma such that

|F9nXAn|(A17"'7Anfl) < + €.

/ (Fireees fo )Ty cn,
ArX--XAp_1

So,

|F|(A177An)g + 2¢

/ (flv"'vfnfl)d]-—‘gnxAn
Ay X--XAp_1

+ 2¢.

Now we use the linear version of the result to find f,, € C'(K,) ® X,, as in the statement of the lemma such
that

/ (f17~~~7fn—lvgn)dFH +2e = H/ gndeIXA17---7fn—1XAn—1
A1><---><An An

+ €,

|Ff1XA17---7fn—1XAn |(An) < HL fndeIXA17---7fn—1XAn

and we finally get that

|F|(A1,...,An)§‘ +3e=

/A fndeIXA17---7fn—1XAn—1

/ (fl,...,fn)dFH +3¢. W
Al x--xXA,
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Representation of multilinear operators on C'(K, X)) spaces

3. The representation theorems

We state next the representation theorem for multilinear forms.

Theorem 1 Let T € L™ (C (K1, X1),...,C(Kn, Xp)). Then T has one only extension
T € L"(B(Z1,X1),...,B(Zy, X,)) with the same norm and separately weak* continuous (the weak*
topology we consider in B(ZZZ7 X;) is the one induced by the canonic isometric inclusion B(%;, X;) <

(C(K3, Xi))™).

Moreover, if we define the operator valued polymeasure
r:¥; x---x3, —),Cn(Xl,,Xn)

by
F(Ala"'vAn)(xlv"'axn) = T(£1XA17"'7anAn)

then we have:
i) T has bounded semivariation and |T| = ||T||.
ii) T is weak* regular.
iii) For every f; € C(K;, X;) (1 <i<k),

T(frvosfa) = [ )il
Conversely, given a weak* operator valued polymeasure with bounded semivariation
MY x-x¥, — LMX1,...,Xp)
the formula given in (iii) defines a multilinear form

T:C(Ki,X1) % - x C(Kp, X,) — K

for which (i) holds.
So, the correspondence between T and T defines an isometry between the space of the weak* regular
operator valued polymeasures with bounded semivariation defined on X1 X --- x X, and with values in

LM Xq,...,X,), endowed with the semivariation norm, and the space L™(C (K1, X1),...,C (K, X,)).

PROOF. LetT € L"(C(Ky,X1),...,C(K,,X,)). Given (zq,...,2,)€(X1,...,X,) we can define
the multilinear operator
Toyooown : C(Kq) x - - x C(K,,)) — K

by
Tzl,...,zn ((1517 sy @n) = T(xl(;ﬂla ce 7xn99n)

Let
Lotz €rcapm(Eq, ..., 5,)(~ (C’(Kl)® . ®C’(Kn))*)

be its representing scalar polymeasure (see [2]). For every (A;,...,A,) € ¥; x --- x X,, we define
[(Ay,...,A,) € L(X,y, ..., X,) by

F(Ah .. .7An)(5617 e ,JUn) = th___’mn (A17 .. 7An)

I is well defined and weak* regular. Moreover I verifies the hypothesis of Proposition 1, therefore

IT|(Ky,...,Kp) :sup{H/(fl,...7fn)dF ;

€ O © Xu il < 1}
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= sup{[|T(f1,-.., f)ll: fi € C(K3) @ Xy, [ fill <1} = |IT']],

since C'(K;) ® X; is dense in C'(K;, X;). T' has bounded semivariation, so we can define the integral
J(fi,..., fn)dT forevery f; € C(K;, X;). We know that

T(fis-- o fa) = /(f17~~~7fn)dr forevery f; € C(K;) ® X;,

S0,

T(ievocfa) = [[(rse o ST orevery fi € O, X0

Letnow T € L"(B(31,X1),...,B(Z,, X,)) be the operator associated to I by Proposition 1. We
have ||T'|| = ||T'|| = ||T||. To see that it is separately weak* continuous, it suffices to check in the last vari-
able, since the others behave similarly. So, letus fix (g1,...,9n-1) € B(X1,X1) X -+ x B(Zp—1, Xpn—1)
and let (¢%)aca C B(X,, Xp) anet weak* converging to g, € B(Z,, X,,). We consider the measure

r : ¥, — X given by

g15--gn—1

Fgl,---79n—1 (An)(xn) = T(glv sy Gn—1, anAn)~

It is easy to check that I'y, ., , € rcabv(Z,, X)) ~ (C(Kn,Xy))* and that, for every g, €
B(Z,, Xn).

/gnngl,...7gn_1 = /(917---7gn)dF =T(g1,---,9n)-

Therefore,
/gzdrm,---,gnﬂ - /gndrgl,,,,,gn,l,

which means that

T(g1,---,95) = T(g1,-- - gn)-

Conversely, if I’ : &) x --- x ¥, — L£"(Xy,...,X,,) is a weak™ regular operator valued poly-
measure with bounded semivariation, then, Proposition 1 assures that I' gives rise to an operator 7' €
L"B(%1,X1),...,B(Z,, X)) through the formula

T(g1,---,9n) = /(gl,...,gn)dl".

By restriction, we get ' € L™(C(K1,X1),...,C(K,,X,)). The equality ||T|| = ||T'|| follows from
proposition 1. l

Note that, in general, not every operator from C'(K;, X;) into C(K;, X;)* is weakly compact, so a
multilinear operator T' € L"(C (K1, X1),...,C(K,, X,)) need not have a separately weak* continuous
extension to the product of the biduals (see [4]). The previous result tells us that T does have a separately

weak* continuous extension to B(3q, X1) x -+ x B(X,, X,,). Note also that the extension morphism is
linear, so we can extend the result to the case of vector valued multilinear operators.

Theorem 2 Let T € L"(C(Ky, X1),...,C(Kn, X,);Y). Then T has one only extension
T e L"B(X1,X1),...,B(Zn, Xn); Y**) with the same norm and separately weak* to weak* continuous.
Moreover, if we define the operator valued polymeasure

D:S %o X Sy — L%(X1, ., X V*5)
by _
D(Ay, ..., An) (@1, o xn) =T(T1XA1, -, TnXA,)
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then we have:
i) T has bounded semivariation and |U|(K,...,K,) = ||T|.
ii) For every y* € Y*(C Y***), T'y« is weak* regular.
iii) The mapping
Y* — (O(Ky,X1)& - @C(Kp, Xp))*

*

Y — Fy*

is weak™® to weak* continuous.

iV) T‘(fl7 RN fn) = f(flv Cey fn)dF, for every fl € C([X’h Xz)

Conversely, every polymeasure
F:% x- xS, — LY(Xy,..., X Y
with bounded semivariation and verifying (ii) and (iii) defines via (iv) an n-linear operator
T:C(Ky,X1)x - xC(K,,X,) —Y
for which (i) holds.
PROOF. LetT € L"(C(K1,X1),...,C0(Kp, Xp);Y). Let us define
T:B(2,X1) X x B(Z,,X,) — Y**

by

<T(917 s 7gn)7y*> =y*o T(glv - '7gn)
where y* o T is the extension of y* o T' given by Theorem 1. It follows that T is separately weak* to weak*
continuous and that ||T|| = ||T|.

LetnowI': ¥y x---x X, — L™(X1,...,X,; Y**) be the operator valued polymeasure associated to
T by Proposition 1. It follows from the definitions that, for every y* € Y*, the operator valued polymeasure
[y« definedby T'y« (A1, ..., Ap)(T1,. .., x0) = (L(A1, ..., Ap)(x1, ..., 2n),y*) is precisely the operator
valued polymeasure associated to the multilinear operator y* o T by Theorem 1. Since

DKy .o Kn) = sup [Ty |(Ky, .o K) = sup |y o T = [ITY],
[PIES! lyll<1

we get that (i) holds. (ii) and (iv) follow immediately from the definitions.
To see (iii), let .
T:C(Ky,X1)® - &C(Kp,Xp) — Y

be the linear operator associated to 7'. Then
T V* — (C(Ky, X1)& - 0C(Kp, X))*

is weak* to weak* continuous. We just need to check that T*(y*) = T'y«. To see this, let us consider
i@ f,eC(K,X,)® - @C(Ky,,X,). Then

W) A @ f)=y oT(fr@ @ f) =y oT(f1,.., fn)

_y (/(fl,...,fn)dl“> :/(f17~~~7fn)dry*'

It follows that, for every Z;”Zl flf @@ fl €C(K, X))@ @C(Kpn, Xn),

m

) H oo fl) = Z/(ff,...7fz;>dry*
j=1 j=1
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Using density, we get that (iii) holds.
The uniqueness of T is equivalent to the uniqueness of I'. To see the uniqueness of I" note that if, for
every (fi,...,fn) € C(K1,X1) x -+ x C(K,, X,),

/(fl,...,fn)dI‘l :/(fl,...,fn)dF2

then, for every y* € Y™,
[t g = [ f)dly

s0, the uniqueness of the polymeasures in the scalar case suffices to finish.
Conversely, let
F:% x- xS, — LY(Xy,..., X V)
be a polymeasure of bounded semivariation for which (ii) and (iii) hold. Let us then define the multilinear
operator T' € L™(C (K4, X1),...,C(Kn, X,);Y) by

T(eeocfa) = [[(rse o ST orevery fi € O, X

To see that T'is well defined, let us observe first that T is the restriction to C'(K'1, X1) X+ - -x C' (K, X;)
of the operator T' € L™(B(X1,X1), ..., B(Z,, X,); Y**) associated to I' by Proposition 1, so

TN < ITN = IT|(Ky, - ., K).
Moreover, since I verifies the hypothesis of Proposition 1 we get that
TNl = T|(Ky, - .., Ky).
We just have to see that T" takes values in Y. To see this, let us take into account that, for every y* € Y*

and for every (fi1,..., fn) € C(K1,X1) X -+ X C(Kp, X,),

W Ty fu)) = <y*,/<f1,...,fn)dr> = [ (e )iy

so, (iii) implies that T'(f1, ..., fn) € Y*" is o(Y*,Y’) continuous which means that T'(fi, ..., fn) € ¥
and T*(y*) =Ty-. B

Remark 1 It is easy to see that, if (z1,...,2) € X1 X - X Xy, then Ty, o
polymeasure of the operator Ty, ... € L"(C(K4),...,C(K,);Y) given by

is the representing

n

Toy,oen (P15 o) = T(@101, ., Tnpn)-
Finally, we have
Proposition2 Let T € £L*(C(K1,X1),...,C(K,, X,);Y) and let T and T be its representing poly-

measure and extension given by Theorem 2. Then the following are equivalent:
DTis £ Xy, ..., X0 Y) valued.

i) T is Y valued.
iii) For every (x1,...,2n) € X1 X --- X X, Ty, . 5. is countably additive.
iv) For every (x1,...,&p) € X1 X -+ X Xp, Ty, o, 18 regular.

v) For every (x1,...,2,) € X1 X -+ X X,, and for every y*** € Y*** Ty . ,ex is countably
additive.

vi) For every (x1,...,&n) € X1 X --- x X, and for every y*** € Y***, T'y .. y=== is regular.

Moreover, if

vii) For every (x1,...,%pn) € X1 X -+ X Xy, Ty, 4.+ C(Kq) x --- x C(K,) — Y is weakly
compact

then (i) through (vi) hold.
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PROOF. Clearly (i) and (ii) are equivalent. If (i) holds, then, for every (x1,...,2,) € X1 X - X Xp,
L., ...z, is weakly countably additive and the Orlicz-Pettis theorem gives (iii). The equivalence between
(iii) and (iv) and between (v) and (vi) follows from [11, Theorem 5]. Clearly (iii) implies (v). Another
application of the Orlicz-Pettis theorem shows that (v) implies (iii). If (iii) holds, [11, Theorem 5] implies
that, for every (x1,...,2n) € X1 X -+ x Xp, I'y, . is Y valued, which is equivalent to (i). If (vii)
holds, another application of [11, Theorem 5] suffices to prove (i). B
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