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A sequence space representation of the space of bounded
ultradistributions of Beurling type

Maria del Carmen Gomez-Collado

Abstract. Sequence space representations of the spaces DLI’(M)(RN ) and of its dual D', (w)(RN )s
the space of bounded ultradistributions of Beurling type, are presented, in case the weight w is a strong
weight.

Representacion del espacio de las ultradistribuciones acotadas de tipo
Beurling como espacio de sucesiones

Resumen. Representamos D1 () (RY) y su dual D), (w>(]RN ), el espacio de las ultradistribuciones
acotadas de tipo Beurling, como espacio de sucesiones cuando la funcién peso w es un peso fuerte

1. Introduction and notation

The representation of several spaces of (ultra)-differentiable functions and (ultra)-distributions has been
intensively investigated by many authors, like Meise and Taylor [6], Valdivia [11] and Vogt [13] among
others. There are several reasons for the investigation of such representation, for example it gives the
information about the linear topological structure of the spaces under consideration.

The classical space Dy, was introduced by Schwartz [10] as the Fréchet space of all C'"*° functions f
such that f and all its derivatives are in L. Its dual consists of the bounded distributions and contains as
a subspace the almost periodic distributions. Cioranescu [2] obtained the characterization of bounded and
almost periodic ultradistributions of Beurling type. The same topic was considered in [4], where some of
the Cioranescu’s results were extended to study bounded and almost periodic ultradistributions of Beurling
or Roumieu type.

In this paper a representation of the space DLl,(w)(RN ) as a Kothe sequence space is given. As a
corollary we will obtain that such a space is always quasinormable. In particular, the space of bounded
ultradistributions of Beurling type is an (I.B)-space.

We introduce the spaces of functions and ultradistributions and most of the notation that will be used in
the sequel.

Definition 1 ([1]) A continuous increasing function w : [0, co[— [0, o] is called a (non-quasianalytic)
weight if it satisfies the following conditions:
() there exists L > 0 withw(e t) < L(w(t) + 1) forallt > 0,
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(8) Ji~ St < o,
(7) log(t) = o(w(t)) as t tends to oo,
(0) ¢ : t — w(et) is convex.

For a weight function w we define @ : CN — [0, oo[ by &(2) := w(|2|), and we call this function again
w by abuse of notation.

A strong weight is a weight w satisfying the following aditional condition

(€) there exists C' > 1 with [;° “’tz“ dt < Cw(y) + C forally > 0.

The Young conjugate ©* : [0, 0o[— R of ¢ is defined by
©*(s) :=sup{st — p(t) : t > 0}.

There is no loss of generality to assume that w vanishes on [0, 1]. Then ¢* has only non-negative values
and p** = .

Definition 2 ([1]) Let w be a weight function. We define
EwyRY) :={f e C®RY): VK CCRY Vm e N: || f |lkm< oo}
where

A
| £ 1l xi= Sub, e esupgeny | £ (@) ]exp (= Ap <%> ) YA>0.

We endow this space with its natural locally convex topology. The elements of E(w)(]RN) are called w-
ultradifferentiable functions of Beurling type.

For a compact set K in RV we put
Dy (K) = {f € £y (RY) : supp(f) C K}

endowed with the induced topology. For a fundamental sequence (K;);en of compact subsets of RN we
let
D(w)(]RN) = 1nd D(w)([(j).

11—

The elements of D’(w) (RN') are called w-ultradistributions of Beurling type.

Definition 3 ([4]) For a weight function w, we denote

e
Dyt = (F €D (EY): [fai= sup || £ s exp( — 2" (12)) < oo ).
a€eNY

We define DLI’(W)(IRN) := proj D1, x. Then Dpa (o) (RN') is a Fréchet space.
“—A

Remark 1 The inclusions D,y (RY) C D1 () (RY) C &) (RY) are continuous and have dense range.
The elements of D’Ll7 () (RN) are called bounded w—ultradistributions of Beurling type. In what fol-
lows we will always consider D7, () (R") endowed with the strong topology 3(Df: () (RY ), Dra (o) (RY)).

Forevery A > 0 and f € Dy (,,)(RY) we put
|

()= Y I Ml exp( = A" ().

aeNY
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Proposition 1 The topology of Dp1 (., (RN') is given by the sequence of seminorms (qm)men.

PROOF.  We consider f € Dp1 (,,)(K). Itis clear that | f|,, < gm(f) for every m € N. Now we take
L > 0 such that w(et) < L(1 + w(t)) forall ¢ > 0. It follows from [1, 1.4] that

1@ 1y exp( = mee™ (1)) <l £l exp(—mLe™ (d2h) jerlatome
< |f|mLe—\a|+mL

for every m € N, and then

A (f) < ™ [ flmr D> el

aeNN
Since )

According to Remark 1 and Proposition 1, for a compact set K C RY, the topology of D) (K) is
given by the sequence of seminorms (¢, )men-

QENN e~lel is convergent the conclusion follows. W

For a function f € C>°(RV ) and h € RV we denote 7, the translation operator defined by (7, f)(x) =
flx—h), zeRVN.

2. The representation of Dy ) (R") and D}, (R")

Our aim is to prove that if w is a strong weight, then D1 () (RN is isomorphic to /1 (A (a(w, N))) where
a(w,N) = (w(j~ ))jen and to derive some consequences about the topological structure of Dy () (RY).

We recall that, for a locally convex space E, ¢4 (E) denotes the linear subspace of EZ" which consists
of all sequences (74 )qezn~ in B such that ) -, ~ p(24) is convergent for every continuous seminorm p in
E.

Let @ = (a;)jen be an increasing and unbounded sequence of positive real numbers. The power series
space of infinite type A () is defined by

As(@) :={zeC |z | = Z |z;|r® < oo forall r > 0}.

j=1

Obviously, A («) is a Fréchet space under the locally convex topology induced by the norms (|| . ||)r>0
[8].

Our first objective is to prove that D1 () (RY) is isomorphic to ¢1(D,)(K)) for every compact cube
K cc RN. To do this we will use the following modification of the Pelczynski’s method due to Vogt [13].

Lemma 1 ([13, 1.1]) Let E, F be locally convex spaces. If E is isomorphic to a complemented subspace
of 01(F) and (1 (F) is isomorphic to a complemented subspace of E then E and (1 (F) are isomorphic.

Proposition 2 For every compact cube K in RY, Dri (w) (RN') can be embedded as a complemented
subspace into {1 (D) (K)).

PROOF. We can assume K = [—2,2]V. Choose ¢y € D,)(K) such that, for ¢, (z) := ¢o(z — v), we
have 3~ _,~ &, (z) = 1 forall z € RY. We define the maps

®:Dp1)(RY) — (D) (K))
f — (Tfu(f(ﬁV))yeZN

and )
v fl('D(w) (IX)) — DLl,(w)(]RN)

(ft/)uEZN = ZueZNTV(fV)
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We have to show that ¢ and ¥ are well defined continuous linear maps and ¥ o ® = id.

(i) @ is well defined and continuous: We consider f € DL17(M)(]RN), m € Ny and L > 1 such that
w(et) < L(w(t) + 1). Forevery v € ZY,

T (fou) = (T_uf)do € D(w)(l()~

For every x € K we have, after applying Leibniz’s rule and the convexity of ¢*,

(70 (£6,) (@)] exp( —mep" (L%') )

<X (§) e etems a4 )] o ] oo (5 et ()
< Monliom 3 (5) e e i et G,
<o

and consequently

Z Gm (T—v (fdv))

veZN
1l
< e o llkim Y Z( ) DY / 1fO) (z + v)| dx e Lme" (25)
aeNY v<a veZN
< 4Nelm || gy K. Z Z ( )e—la I o I o Lme™ (£3)
aeNY v<a
N L 2 laf
< e oo e flin X (2)
aeNY

(ii) ¥ is a continuous map: We fix (f,,) € £1(D(,)(K)). Since ), ~ T, f,, is a locally finite sum we

obtain ()
/. (2 f) e < ¥ [ 1@ =lde = 3 140 1

veZnN veZN veZnN
Consequently, for every m € Ny,

Y il < sup 30 A e () < 37l

veZN a€eN 0 veZN veZN
from where it follows that ¥ is a continuous map.

(iii) Since for every f € Dy1 () (RY) we have

(T o®)(f) =¥ ((r—u(fé))vezn) = > fou =1,

veZN

the proof is complete. l

Definition 4 ([7]) Let w be a weight function. For a compact set K in RN with Iz' = K we define the
w-Whitney jets of Beurling type on K by

EwE) = {f = (fa)acry €CUE) : fo)l Ke C™(K),
(fo)l K) @) — fal K for each o € NN and for each m € N

11l = sup sup |fa(@lexp(~mep (' ')) < o}

aeNf," z€EK
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A sequence space representation of the space of bounded ultradistributions of Beurling type

and we endow &, (K) with the Fréchet space topology induced by the norm system (|||.|||m)men. The
restriction map

P € (BRY) — £y (K) by prc(f) = (£

is continuous and linear.

: ’)QGNéV

The existence of a continuous linear extension operator has been studied by Meise and Taylor [7]. They
obtained the following result, which is essential in the proof of Proposition 3.

Theorem 1 ([7, 3.1]) Let w be a strong weight function and let K be a compact set in RN with I(;;é () which

is of the form K = H;nzl Gj, where G; C RNi, 1< N; < N, is a bounded open set with real-analytic
boundary for 1 < j < m. Then there exists a continuous linear extension operator Ex : E,)(K) —

E(w)(IRN) with PK © Ex = idé‘(w)(K)-

Proposition 3 Letw be a strong weight. For every compact cube K in RN, ¢, (E(w) (K)) can be embedded
as a complemented subspace into D1 (. (RV).

PROOF. We can assume K := [—1, Z]N . It follows from Theorem 1 that there is a continuous linear
operator Ex @ £y () — £y (RY) with pg o B = idg,,,, (x)- We can assume, by multiplying with a
test function, that Exc : £,y (K) — Do) ([—3, 5]°). Now we define

b fl (g(w) (IX’)) — DL17(M)(]RN)
(fu)uGZN = ZueZN Tv (EKfV)
and )
P DLl,(w) (]RN) — 51(5(@ (I&))
[ e (pK(T—Vf)),,ezN
We claim that & and ¥ are well defined, linear and continuous maps and ¥ o & = id.

(i) ¥ is a well defined and continuous map:
Forevery f € Dy (,)(RY) we have that pgc (17—, f) € () (K) forall v € Z. Now, it follows from
Sobolev’s Lemma [9, 3.5.12] and the convexity of ¢* that

> Mpr(r=u )lllm
= > M= f) lxm

x|
= 3 sup sup [f@ (@ +p)le D
, TEK aeNY

< C) sup sup / £ (g 4 )] e=2me” (5 rme (21 g,
o aEeNY |BI<N+1J[-5 3N
< C Z oMy’ ( (D£L) Z / )(1‘+1/)| —2mep* (M)dx
Ve st e
< Cem¥ (N1 Z Z (/ o )(x+1/)|d;c> o—2me” ($)
yENY veZN _éé]N
< CemeTEE N FO) et B,
yeNY

for some positive constant C'. This shows that ¥ is a well defined and continuous map.

31



M. C. Gémez-Collado

(i) @ is well defined and continuous: Let m € NYY, (f), ez~ € (1(E(w) (K)). Since Y-, 7, (Ex fo) () is
a locally finite sum we obtain

1> 7 (Bx fo) Im
()

sup /N| (Z Ty (EKfV)> (x)|e—mw(|im\)dx

a€eNYY
< Z/ ZI (Excf) (@ = v)e ™ D de
aeNY
< Z/ (Bx f)® (2 = v)le ™" e
v aeNy
o —m * m
< SN N Exf) e me D)
v aeNY
< > am(Ex ).

Since E is continuous, there exist a positive constant C' > 0 and n € N such that

lgm (Ex fu)] < Cl||fvllln  forall v.

Then
157 B £) o < C S 1l

(iii) ¥ o @ = ¢d: Let (fV)VeZN S 51(5@) (K)), f,, = (fV7a)a€N{)V’

om)((ea) = 0 (S ten)) = ot (St

IfyeZVNandzx € K,

(- (Z T”(EKf”)> )@) = X n(Exfo)w+7) = Y (Bxcfu) (o +7 - v).

v

yeZN

If vy # vimplies x+v—v & [— %, ]V and then Ex f, (z+v—v) = 0. Hence 7_, (3, 7o (Ex fv)) = Ei f+
on K and (¢ 0 ¢)((f,)) = (px (Ex fy))y = (fy)y. W

Now, we can prove the announced representation of Dy () (RY') as a sequence space.

Theorem 2 Let w be a strong weight. For every compact cube K in RV Dri (w) (RN) is isomorphic to
U (D) (K)). Consequently Dy (o) (RN) is isomorphic to (1 (Ao ((w, N))), where a(w, N) = (W~ ))jen-

PROOF.  Since for every compact cube K in RY, both spaces &, (K) and D, (K) are isomorphic

t0 Aso(a(w, N)) where a(w, N) = (w(j%))jeN [6, 5.91,[7, 3.2], it follows from the Lemma 1 and the
Propositions 2 and 3 that Dy (,)(RY) is isomorphic to 1 (D, (K)). The conclusion follows from [7,
32]. 1

As a consequence of the previous theorem we obtain some topological properties of D1 () (RN and
its dual.
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Corollary 1 If w is a strong weight, then the Fréchet space Dr: () (R)N is a quasinormable space. In
particular it is distinguished.

Corollary 2 Ifw is a strong weight then D', , (
Moreover D', (@) (RN is a strongly boundedly retractive (LB)-space.

w)

PrROOF. It follows from [3, 5.18]. &
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(RY) = loo (Moo (aw, N))y ), where a(w, N) = (w(j ¥ ))jen-



