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Big groups of automorphisms of some Klein surfaces

Beata Mockiewicz

Abstract. Let Xp be a compact bordered Klein surface of algebraic genusp ≥ 2. It is known that ifG
is a group of automorphisms ofXp then|G| ≤ 12(p− 1). We call the groupG abig group of genusp if
|G| > 4(p− 1). In this paper we find a family of integersp such that the only big groups of genusp are
dihedral groups. In terms of the real genus introduced by C. L. May this means that for suchp there is no
big group of real genusp.

Grupos grandes de automorfismos de ciertas superficies de Klein

Resumen. SeaXp una superficie de Klein compacta con borde degenalgebraicop ≥ 2. Se sabe que
si G es un grupo de automorfismos deXp entonces|G| ≤ 12(p− 1). Se dice queG es ungrupo grande
de genp si |G| > 4(p− 1). En el presente artı́culo se halla una familia de enterosp para los que eĺunico
grupo grande degenp son los grupos diédricos. Esto significa que, en términos delgenreal introducido
por C. L. May, para tales valores dep no existen grupos grandes degenrealp.

1. Introduction

Let Xp be a compact bordered Klein surface [1] of algebraic genusp ≥ 2. If G is a group of automorphisms
of Xp then|G| ≤ 12(p− 1) [9]. A groupG is called abig group of genusp if |G| > 4(p− 1). An example
of big groups areM∗-groups, groups of order12(p − 1) acting on bordered Klein surfaces of algebraic
genusp. These groups were very extensively investigated, see [6], [7], [10] for example. In this paper we
prove that ifp is an integer lying between twin primesp− 1, p + 1, then|G| ≤ 4(p− 1) or G is a dihedral
groupD2p or D2(p+1). The real genusρ(G) of a finite groupG is the smallest algebraic genus of any
compact bordered Klein surface on whichG acts. Its study was initiated by Coy L. May [11]. He showed
that there are no groups of real genusp = 2 and posed the problem whether2 is the unique value ofp with
this property [11]. Since dihedral groups have real genus0, our result means that there is no big group of
real genusp for thep mentioned before.

2. Preliminaries

Let H be the open upper half plane. Anon-euclidean crystallographic group, NEC groupin short, is a
discrete subgroupΛ of Ω = Aut±(H) with compact quotient spaceH/Λ. The algebraic structure of an
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NEC groupΛ is determined by the signature, which has the form

(g;±; [m1, . . . ,mr]; {(n11, . . . , n1s1), . . . , (nk1, . . . , nksk
)}) (1)

The quotient spaceH/Λ is a surface of topological genusg with k holes. The surface is orientable if the
plus sign is involved and nonorientable otherwise. The integersmi are called proper or ordinary periods,
nij link periods, and the brackets(ni1, . . . , nisi) periods cycles. A general presentation ofΛ with signature
(1) can be found in [5] for example. We do not give it here because it is rather complicated in general while
we shall deal with rather special signatures. Instead we shall provide the presentations for considered cases.
A signature of the form(0;+; [−]; {(n1, . . . , nr)}) will be denoted by(n1, . . . , nr). The hyperbolic area
of a fundamental region forΛ equals

µ(Λ) = 2π

p− 1 +
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1− 1
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)
+
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i=1
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1
2
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wherep is an algebraic genus ofH/Λ, that isp = αg + k − 1, whereα = 1 if the sign is− andα = 2 in
the other case. IfΛ′ is a subgroup ofΛ of finite index, then

[Λ : Λ′] = µ(Λ′)/µ(Λ) (Riemman−Hurwitz formula).

An NEC groupΓ without orientation preserving elements of finite order is called asurface groupand it has
signature(g;±; [−]; {(−), k. . ., (−)}); it is said to beborderedif k > 0. A finite groupG can be represented
as the quotientΛ/Γ for some NEC groupΛ and normal bordered surface NEC subgroupΓ. Such a quotient
is said to be asmoothfactor group of an NEC groupΛ. Then the groupG acts as a group of automorphisms
of the compact bordered Klein surfaceH/Γ. Conversely every compact bordered Klein surfaceXp of
algebraic genusp ≥ 2 can be presented as the orbit spaceXp = H/Γ for some bordered surface groupΓ
of algebraic genusp and if G is a group of automorphisms ofXp thenG = Λ/Γ for some NEC groupΛ.
Moreover in this case|G| ≤ 12(p− 1) [9]. We will often use the following technical lemmata

Lemma 1 [[5]] LetΛ be an NEC group with area< π/2 admitting a bordered surface groupΓ as a nor-
mal subgroup. ThenΛ has one of the following signatures:

Case σ(Λ) µ(Λ)

(a) (2, 2, 2, n) π(n− 2)/2n , (n ≥ 3)
(b) (2, 2, 3, 3) π/3
(c) (2, 2, 3, 4), (2, 2, 4, 3) 5π/12
(d) (2, 2, 3, 5), (2, 2, 5, 3) 7π/15
(e) (0;+; [3]; {(2, 2)}) π/3
(f) (0;+; [2, 3]; {(−)}) π/3.

Lemma 2 [[5]] A necessary and sufficient condition for a finite groupG to be a smooth factorΛ/Γ, where
Γ is a bordered surface group andΛ is an NEC group with signature(2, 2,m, n) is thatG can be generated
by three elementsa, b andc of order2 such thatab andac have ordersm andn respectively.

3. Big groups of some compact bordered Klein surfaces

If G is a big group of genusp then by the Hurwitz-Riemman formula it is a factor groupΛ/Γ of an NEC
groupΛ with area less thanπ/2.

Theorem 1 If k > 6 is an integer lying between twin primesk−1, k+1 then the only big groups of genus
k areD2k or D2(k+1).
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First we shall prove some auxiliary results. The first is an easy exercise.

Lemma 3 Let p, p + 2 be twin primes withp ≥ 5. Thenx ≡ 1 mod(p) is the only solution of the
congruencex3 ≡ 1 mod(p). The congruencex3 ≡ 1 mod(p + 2) has two more solutions.

Proposition 1 Let p > 5 be a prime. Then there is no groupG of order6p generated by elementsa, b, c
of order2 such thatab andbc have order3.

PROOF. Let G be such a group. By Sylow theoremsG has a normal subgroupH of orderp. Moreover
G/H = 〈b̃, c̃〉 = D3. Then ã = (b̃c̃)αb̃ for someα = 0, 1, 2. If α = 0, thenab ∈ H, a contradiction.
If α = 1, thenH = 〈abcb〉. SinceH is normal inG, we obtain thatb(abcb)b = (abcb)β for some
1 ≤ β ≤ p−1. Thenabcb = (abcb)β2

, sop|β2−1 and thusβ = 1 or β = p−1. Thereforeb(abcb)b = abcb
or b(abcb)b = bcba. In the first casea = cbc andG has order6, a contradiction. In the second case
abca = cb. So〈bc〉E G, which is impossible. Finally, letα = 2. ThenH = 〈ac〉 and as beforebacb = ac
or bacb = ca. In the first caseac = 1, which is impossible. In the second one(ac)3 = 1, a contradiction
like before. This completes the proof.�

Proposition 2 Let p be the smaller of twin primes withp > 5. Then there is no groupG of order 6p
generated by two elements of orders2 and3 respectively.

PROOF. Let G = 〈a, b〉 have order6p and leta, b have orders2 and3 respectively. Like in the previous
proposition there is a normal subgroupH of orderp in G. We haveG/H = 〈ã, b̃〉. First assume that
G/H = D3. Then(ãb̃)2 = 1, soH = 〈(ab)2〉 andab has order2p. SinceH is normal inG, we obtain
as before,a(ab)2a = (ab)2 or a(ab)2a = (b2a)2. In both cases(ab)6 = 1, a contradiction. Now let
G/H = Z6. Then ãb̃ has order6, so 6 divides |ab|. Therefore|ab| = 6 since otherwiseG would be
cyclic. Moreoverãb̃ = b̃ã. So abab2 ∈ H and H = 〈abab2〉. Again, sinceH is normal inG, we
haveb(abab2)b−1 = (abab2)β for some1 ≤ β ≤ p − 1. Now abab2 = (abab2)β3

andp|β3 − 1. Thus
β3 ≡ 1 mod(p). By lemma 3 we haveβ = 1 andbaba = abab. So K = 〈(ab)2〉 is normal inG and
|G/K| ≤ 6. Since|K| ≤ 3, we obtain|G| ≤ 18. This is a contradiction, what completes the proof.�

Proposition 3 Letp > 5 be a prime. There is no group of order8p generated by elementsa, b, c of order
2 such thatab andbc have orders2 and4 respectively.

PROOF. LetH be a normal subgroup ofG of orderp. ThusG/H = D4 = 〈b̃, c̃〉 andã = (b̃c̃)αb̃ for some
0 ≤ α ≤ 3 or ã = (b̃c̃)2. Casesα = 0, 1 andα = 3 are easy to eliminate. Ifα = 2, thenH = 〈acbc〉.
Moreoverc(acbc)c = (acbc)β for some1 ≤ β ≤ p − 1, soβ = 1 or β = p − 1. In both cases〈bc〉 E G,
which is impossible. Now let̃a = (b̃c̃)2. ThenH = 〈a(bc)2〉 and in this case〈bc〉 E G again. This
completes the proof.�

Proposition 4 Letp > 5 be a prime. The only group of order4p generated by the elementsa, b, c of order
2 such thatab andbc have orders2 andp respectively isD2p.

PROOF. Suppose thatG is such a group. By Sylow theoremsH = 〈bc〉 is normal subgroup ofG. There-
fore a(bc)a = (bc)α for some1 ≤ α ≤ p − 1. Since thenbc = (bc)α2

, we obtain thatp|α2 − 1 and so
α = 1 or α = p − 1. Now a(bc)a = bc or a(bc)a = cb. In the first caseabc = bca. Thenac = ca and
(abc)2 ∈ H. Since(abc)2 6= 1 andabc can not have orderp, we obtain thatabc has order2p and therefore
G = 〈ab, c〉 = D2p. In the second case(ac)2 = (bc)2 andac has order2p and againG = D2p. This
completes the proof.�

PROOF OF THETHEOREM 1.
Let k > 6 be such thatk − 1, k + 1 are twin primes. Suppose thatG is a group of automorphisms of
a compact bordered Klein surfaceXk. Assume that|G| > 4(k − 1). We will show thatG is dihedral
groupD2k or D2(k+1). The groupG can be presented as a quotientΛ/Γ for some NEC groupΛ and NEC
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bordered surface groupΓ. We haveµ(Γ) = 2π(k − 1) and by Riemann-Hurwitz formulaµ(Λ) < π/2,
since|G| > 4(k − 1). Therefore we can use Lemma 1. First, letΛ has signature(2, 2, 3, 3). In this case
by Lemma 2G = 〈a, b, c〉, wherea, b, c have order2, ab andbc have order3. Moreover|G| = 6(k − 1).
By Proposition 1 there is no such a group. Now letΛ has signature(0;+; [3]; {(2, 2)}). ThenΛ has the
presentation〈x, c0, c1|x3, c2

0, c
2
1, (c0c1)2, (c1xc0x

−1)2〉. Nowc0 ∈ Γ or c1 ∈ Γ. Suppose thatc0 ∈ Γ. Then
c1 6∈ Γ since otherwisec0c1 would be an orientation preserving element of order2 in Γ. Similarly for c1 ∈ Γ
we havec0 6∈ Γ. ThusG is generated by the images inΛ/Γ of x andci for i = 0 or i = 1. These generators
have orders3 and2 respectively, sinceG is a smooth factor ofΛ. ThereforeG is a group of order6(k − 1)
generated by two elements of order2 and3. By Proposition 2 there is no such a group. LetΛ has signature
(0;+; [2, 3]; {(−)}). ThenΛ is a group with the presentation〈x1, x2, c |x2

1, x
3
2, c

2, (x1x2)−1c(x1x2)c〉.
Clearly c ∈ Γ andx1, x2 represent inΛ/Γ generators of order2 and3 respectively. Therefore againG
is a group of order6(k − 1) generated by two elements of order2 and3. Like before by Proposition 2
there is no such a group. For signatures(2, 2, 3, 4), (2, 2, 4, 3), |G| = 24(k − 1)/5. Then order ofG is not
integer, which is impossible. Similarly for signatures(2, 2, 3, 5), (2, 2, 5, 3), |G| = 30(k − 1)/7, which is
not integer again. Finally letΛ has signature(2, 2, 2, n), n ≥ 3. In this caseG = 〈a, b, c〉, a, b, c andab
have order2, bc has ordern, andG has order4n(k − 1)/(n − 2). Since|G| ≥ 2n, we haven ≤ 2k. For
n = 2k we obtainG = D2k. Assume thatn < 2k. Since|G| = 4n(k− 1)/(n− 2) and2n divides order of
G, n− 2 = 1 or n− 2 = 2 or n− 2 = k − 1 or elsen− 2 = 2(k − 1). That means thatn = 3, 4 or k + 1.
For n = 3 such group is anM∗- group. May proved [10] that there are noM∗-groups of genusp + 1, if
p > 5 is a prime. Forn = 4 or n = k + 1 we obtain|G| = 8(k − 1) or |G| = 4(k + 1) respectively. By
Propositions 3, 4G = D2(k+1). This completes the proof.�

Remark 1 If G is a finite group, then there is a compact bordered Klein surfaceX on whichG acts as a
group of automorphisms. Thereal genusρ(G) of G is the minimum algebraic genus of such surfaces. The
real genus of a group was first studied by Coy L. May [11]. He has obtained many results related to the real
genus, see for example [11], [12], [13]. There are infinitely many groups of real genus0 and1. Surprisingly
there are no groups of real genus2. Clearly the number of groups of real genusp for each integerp ≥ 2 is
finite. We also know that this number is a positive integer for infinitely manyp > 2 [11]. A natural problem
which was posed by May in [11] is finding integersp for which there is no group of real genusp. Since
every dihedral group acts on a sphere with one hole, it has real genus0. So Theorem 1 implies:

Theorem 2 Letk > 6 be an integer lying between twin primesk− 1, k + 1. Then there is no big group of
real genusk. That is ifρ(G) = k then|G| ≤ 4(k − 1). �
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