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Big groups of automorphisms of some Klein surfaces

Beata Mockiewicz

Abstract. Let X, be a compact bordered Klein surface of algebraic genus2. It is known that ifG
is a group of automorphisms of, then|G| < 12(p — 1). We call the grougZ abig group of genus if
|G| > 4(p — 1). In this paper we find a family of integegssuch that the only big groups of genusre
dihedral groups. In terms of the real genus introduced by C. L. May this means that for therk is no
big group of real genus.

Grupos grandes de automorfismos de ciertas superficies de Klein

Resumen. SeaX, una superficie de Klein compacta con bordegdaalgebraicp > 2. Se sabe que
si G es un grupo de automorfismos &g entoncesG| < 12(p — 1). Se dice qué& es ungrupo grande
de genp si |G| > 4(p — 1). En el presente ddulo se halla una familia de enterppara los que dlinico
grupo grande dgenp son los grupos éidricos. Esto significa que, eartinos debenreal introducido
por C. L. May, para tales valores gao existen grupos grandes genreal p.

1. Introduction

Let X, be a compact bordered Klein surface [1] of algebraic genus2. If G is a group of automorphisms

of X, then|G| < 12(p— 1) [9]. A groupG is called abig group of genugp if |G| > 4(p — 1). An example

of big groups areM/*-groups, groups of ordel2(p — 1) acting on bordered Klein surfaces of algebraic
genusp. These groups were very extensively investigated, see [6], [7], [10] for example. In this paper we
prove that ifp is an integer lying between twin primes- 1,p + 1, then|G| < 4(p — 1) or G is a dihedral
group Dy, or Dy,p1y. Thereal genusp(G) of a finite groupG is the smallest algebraic genus of any
compact bordered Klein surface on whi€hacts. Its study was initiated by Coy L. May [11]. He showed
that there are no groups of real genus 2 and posed the problem whethgis the unique value g5 with

this property [11]. Since dihedral groups have real gehuwair result means that there is no big group of
real genu® for the p mentioned before.

2. Preliminaries

Let H be the open upper half plane. Won-euclidean crystallographic group, NEC groipshort, is a
discrete subgroup of Q = Auti(H) with compact quotient spack/A. The algebraic structure of an
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NEC groupA is determined by the signature, which has the form

(g5 [ma, ... ome; {11, - s Masy )y e oo (M1, - oy Msy ) T) Q)

The quotient spacg(/A is a surface of topological genyswith & holes. The surface is orientable if the

plus sign is involved and nonorientable otherwise. The integgrare called proper or ordinary periods,

n;; link periods, and the brackets,1, .. ., n;s,) periods cycles. A general presentatiomofvith signature

(1) can be found in [5] for example. We do not give it here because it is rather complicated in general while
we shall deal with rather special signatures. Instead we shall provide the presentations for considered cases.
A signature of the form{(0; +; [—]; {(n1,...,n.)}) will be denoted by(n4,...,n,). The hyperbolic area

of a fundamental region fak equals

/(A)_Qw(p—l—&-Z(l—m) ZZ (l_m))’

=1 j=1

wherep is an algebraic genus 8{/A, that isp = ag + k — 1, wherea = 1 if the sign is— anda = 2in
the other case. I\’ is a subgroup of\ of finite index, then

[A:A]=p(A)/u(A) (Riemman — Hurwitz formula).

An NEC groupI” without orientation preserving elements of finite order is calledréace grou@and it has
signaturg(g; £; [—]; {(—), .*., (—)}); itis said to beborderedif £ > 0. A finite groupG can be represented
as the quotiend /T for some NEC grough and normal bordered surface NEC subgrbuisuch a quotient
is said to be amoothfactor group of an NEC groupy. Then the grougs acts as a group of automorphisms
of the compact bordered Klein surfagé/I". Conversely every compact bordered Klein surfage of
algebraic genug > 2 can be presented as the orbit spage= H/T" for some bordered surface groiip
of algebraic genug and if G is a group of automorphisms df, thenG = A /T for some NEC group\.
Moreover in this casi| < 12(p — 1) [9]. We will often use the following technical lemmata

Lemma 1 [[5]] LetA be an NEC group with are& /2 admitting a bordered surface groupas a nor-
mal subgroup. Then has one of the following signatures:

Case a(A) w(A)
(a) (2,2,2,n) m(n—2)/2n,(n>3)
(b) (2,2,3,3) /3
(c) (2,2,3,4),(2,2,4,3) 5m/12
) | (2,2,3.5),(2,2,5,3) 7n/15
(e) | (0;+;[3;{(2,2)}) m/3
(f) | (0:+:02,3:{(=)}) /3.

Lemma 2 [[5]] A necessary and sufficient condition for a finite gr@uipp be a smooth factak /T", where
I is a bordered surface group andis an NEC group with signatur, 2, m, n) is thatG can be generated
by three elements, b andc of order2 such thatub andac have ordersn andn respectively.

3. Big groups of some compact bordered Klein surfaces

If G is a big group of genug then by the Hurwitz-Riemman formula it is a factor graupl’ of an NEC
groupA with area less than/2.

Theorem 1 If k£ > 6 is an integer lying between twin primés- 1, k£ + 1 then the only big groups of genus
k are Day. Or Doy 1)-
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First we shall prove some auxiliary results. The first is an easy exercise.

Lemma 3 Letp,p + 2 be twin primes wittp > 5. Thenz = 1 mod(p) is the only solution of the
congruencer® = 1 mod(p). The congruence® = 1 mod(p + 2) has two more solutions.

Proposition 1 Letp > 5 be a prime. Then there is no grodpof order6p generated by elemenisb, ¢
of order2 such thatzb andbc have order3.

PROOF Let G be such a group. By Sylow theorerGshas a normal subgroufi of orderp. Moreover
G/H = (b,é) = Ds. Thena = (b&)*b for somea = 0,1,2. If a = 0, thenab € H, a contradiction.

If « = 1, thenH = (abcbh). Since H is normal inG, we obtain thath(abcb)b = (abch)® for some

1 < B <p-—1.Thenabcb = (abcb)ﬁQ, sop|s%—1andthus3 = 1 or 3 = p— 1. Thereforeb(abeb)b = abeb

or b(abecb)b = bcba. In the first caser = cbe and G has order6, a contradiction. In the second case
abca = cb. So(bc) I G, which is impossible. Finally, let = 2. ThenH = (ac) and as beforéacb = ac

or bachb = ca. In the first caseic = 1, which is impossible. In the second ofe:)® = 1, a contradiction
like before. This completes the prodll.

Proposition 2 Letp be the smaller of twin primes with > 5. Then there is no groug: of order 6p
generated by two elements of ord@rand 3 respectively.

PROOF LetG = (a,b) have orde6p and leta, b have order® and3 respectively. Like in the previous
proposition there is a normal subgrodip of orderp in G. We haveG/H = <a,6>. First assume that
G/H = Ds. Then(ab)? = 1, soH = ((ab)?) andab has orderp. SinceH is normal inG, we obtain
as beforea(ab)?a = (ab)? or a(ab)?a = (b%*a)?. In both casesgab)® = 1, a contradiction. Now let
G/H = Zs. Thenab has order6, so6 divides |ab|. Therefore|ab| = 6 since otherwises would be
cyclic. Moreoverab = ba. Soabab® € H and H = (abab?). Again, sinceH is normal inG, we
haveb(abab?)b~! = (abab?)? for somel < 8 < p — 1. Now abab® = (abab®)?* andp|3® — 1. Thus
B2 =1 mod(p). By lemma 3 we havgg = 1 andbaba = abab. SO K = ((ab)?) is normal inG and
|G/K| < 6. Since| K| < 3, we obtain|G| < 18. This is a contradiction, what completes the prdiif.

Proposition 3 Letp > 5 be a prime. There is no group of ord&p generated by elementsb, ¢ of order
2 such thatzb andbc have order® and4 respectively.

PROOF. Let H be a normal subgroup f of orderp. ThusG/H = D4 = (b, &) anda = (b¢)*b for some
0<a<3ora=(bé)? Casesx = 0,1 ando = 3 are easy to eliminate. b = 2, thenH = (acbc).

Moreoverc(acbe)e = (ache)? for somel < 3 < p—1,s08 = 1 or 3 = p — 1. In both casegbc) < G,

which is impossible. Now let. = (b¢)2. ThenH = (a(bc)?) and in this casébc) < G again. This
completes the proo

Proposition 4 Letp > 5 be a prime. The only group of ordép generated by the elements, c of order
2 such thatzb andbc have order2 andp respectively is),.

PROOF Suppose thaf is such a group. By Sylow theorentt = (bc) is normal subgroup ofi. There-
fore a(bc)a = (bc)® for somel < a < p — 1. Since therbe = (bc)®”, we obtain thap|a? — 1 and so
a=1lora=p—1.Nowa(bc)a = bc or a(bc)a = cb. In the first caseibc = bca. Thenac = ca and

(abc)? € H. Since(abe)? # 1 andabe can not have order, we obtain thatibe has ordep and therefore
G = (ab,c) = Dy,. In the second casgic)? = (bc)? andac has orderp and againG = Ds,. This

completes the prool

PROOF OF THETHEOREM 1.

Let £ > 6 be such thak — 1,k + 1 are twin primes. Suppose th&tis a group of automorphisms of
a compact bordered Klein surfacg,. Assume thatG| > 4(k — 1). We will show thatG is dihedral
group Dy Or Doy The groupG can be presented as a quotidnf” for some NEC grouph and NEC
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bordered surface group. We haveu(I') = 27(k — 1) and by Riemann-Hurwitz formula(A) < /2,
since|G| > 4(k — 1). Therefore we can use Lemma 1. First, dehas signatur¢2, 2, 3, 3). In this case
by Lemma 2G = (a, b, ¢), wherea, b, c have order, ab andbc have ordeB. Moreover|G| = 6(k — 1).
By Proposition 1 there is no such a group. NowAehas signaturé0; +; [3]; {(2,2)}). ThenA has the
presentatiodz, co, c1 |23, c3, 2, (coc1)?, (crxcor™1)%). Nowey € T orey € T'. Suppose thaty € T'. Then
c1 € I' since otherwiseyc; would be an orientation preserving element of ol2lierI". Similarly forc, € T’
we havery ¢ I'. ThusG is generated by the imagesAnT of « andc; fori = 0 ori = 1. These generators
have orders and2 respectively, sincé& is a smooth factor oh. ThereforeG is a group of orde6(k — 1)
generated by two elements of ordeand3. By Proposition 2 there is no such a group. Aethas signature
(0;+;[2,3;{(=)}). ThenA is a group with the presentatiofy,, z2, c| 2%, 23, ¢2, (z122) ~te(z122)c).
Clearlyc € T andxy,z- represent inA/T" generators of orde? and3 respectively. Therefore agat
is a group of orde6(k — 1) generated by two elements of ordeand3. Like before by Proposition 2
there is no such a group. For signatuf®s2, 3,4), (2,2, 4, 3), |G| = 24(k — 1)/5. Then order of7 is not
integer, which is impossible. Similarly for signaturgs2, 3,5), (2,2, 5,3), |G| = 30(k — 1)/7, which is
not integer again. Finally let has signatur¢2,2,2,n),n > 3. In this caseG = (a,b,c),a,b,c andad
have order, bc has ordem, andG has ordedn(k — 1)/(n — 2). Since|G| > 2n, we haven < 2k. For
n = 2k we obtainG = Dyj,. Assume that < 2k. Since|G| = 4n(k — 1)/(n — 2) and2n divides order of
G,n—2=1orn—2=20rn—2=%k—1orelsen —2=2(k—1). That meansthat = 3,4 ork + 1.
Forn = 3 such group is ad/*- group. May proved [10] that there are Aé*-groups of genug + 1, if
p > bisaprime. Fom = 4 orn = k 4+ 1 we obtain|G| = 8(k — 1) or |G| = 4(k + 1) respectively. By
Propositions 3, 47 = Dy ;1) This completes the prooll

Remark 1 If G is a finite group, then there is a compact bordered Klein sutk&oa whichG acts as a

group of automorphisms. Threal genusp(G) of G is the minimum algebraic genus of such surfaces. The
real genus of a group was first studied by Coy L. May [11]. He has obtained many results related to the real
genus, see for example [11], [12], [13]. There are infinitely many groups of real §eangil . Surprisingly

there are no groups of real geruClearly the number of groups of real genutor each integep > 2 is

finite. We also know that this number is a positive integer for infinitely mapy2 [11]. A natural problem

which was posed by May in [11] is finding integerdor which there is no group of real genpsSince

every dihedral group acts on a sphere with one hole, it has real geBasTheorem 1 implies:

Theorem 2 Letk > 6 be an integer lying between twin primes- 1, k£ + 1. Then there is no big group of
real genusk. Thatis ifp(G) = kthen|G| < 4(k—1). W
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