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Analysis and numerical solution of a nonlinear cross-diffusion
system arising in population dynamics

G. Galiano, M. L. Garzón and A. Jüngel

Abstract. A nonlinear population model with cross-diffusion terms for two competing species is studied
analytically and numerically. Due to the cross diffusion terms, the problem is strongly nonlinear and so,
no maximum principle generally applies. We show first the existence of weak solutions to the parabolic
system in any space dimension. Then the one-dimensional stationary problem is investigated analytically
and the notion of segregation is discussed. Finally, we present numerical results for the one-dimensional
stationary problem underlining the effects of segregation of the species.

Análisis y resolución numérica de un sistema de edp’s no lineal con
difusión cruzada que aparece en dinámica de poblaciones

Resumen. En este trabajo se estudia de modo analı́tico y numérico un problema en ecuaciones diferen-
ciales en derivadas parciales que modela la dinámica de dos poblaciones afectadas por la presión pobla-
cional inter e intraespecı́ficas y por un potencial medioambiental. Debido a los términos de difusión
cruzada, el problema es fuertemente no lineal por lo que el principio del máximo y los métodos rela-
cionados con el mismo no pueden ser aplicados. En primer lugar demostramos la existencia de solu-
ciones débiles del problema de evolución en cualquier dimensión espacial. Seguidamente, estudiamos el
problema estacionario unidimensional y discutimos la noción de segregación. Finalmente, presentamos
resultados numéricos para el problema estacionario unidimensional en los cuales pueden observarse el
interesante fenómeno de la segregación de poblaciones.

1. Introduction

For the evolution of two competing species with homogeneous population density, usually the classical
Lotka-Volterra differential equations are used as an appropriate mathematical model. In the case of non-
homogeneous densities, diffusion effects have to be taken into account leading to reaction-diffusion equa-
tions. Shigesada et al. proposed in their pioneering work [19] to introduce further so-called cross-diffusion
terms modeling inter- and intra-specific influences of the species. Denoting by � � the population density of
the �-th species (� � �� �) and by �� the corresponding current densities, the time-dependent equations can
be written as
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���� � ��� �� � ������ ��	� (1)

���� � ��� �� � ������ ��	� (2)

�� 
� ��
�
��� � ����� � �����	��

�
� 	����
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�� 
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��� � ����� � �����	��

�
� 	����
� (4)

in �� 
� � � ��� � 	, with � � �
� bounded and � � �. The function 
 is the (given) environmental

potential, modeling areas where the environmental conditions are more or less favorable [19, 15]. The
diffusion coefficients �� and ��� are non-negative, and 	� � � (�� 
 � �� �). The source terms are usually
given by a Lotka-Volterra form

������ ��	 
� ��� � ����� � �����	��� (5)

������ ��	 
� ��� � ����� � �����	��� (6)

where �� are the intrinsic growth rates of the �-th species (� � �� �), ��� and ��� are the coefficients of
intra-specific competition, and ��� and ��� are those of inter-specific competitions.

The above equations are completed by no-flux boundary conditions and inital conditions:

�� � � � �� � � � � on 
� 
� ��� ��� � 	� (7)

����� �	 � ���� ����� �	 � ��� in �� (8)

with � denoting the exterior unit normal to ��.
The above problem contains several types of reaction-convection-diffusion equations. Indeed, in the

case ��� � � (�� 
 � �� �), Eqs. (1)-(4) reduce to the semilinear drift-diffusion equations which are studied
in many fields of applications, e.g. population dynamics [16], electro-chemistry or semiconductors [14].
When �� � �� � � and ��� � ��� � �, the above problem is of degenerate type. These kind of problems
arise, e.g., in multi-phase filtration problems [1], plasma physics and semiconductor theory [8, 10].

For ��� � � (�� 
 � �� �), the problem becomes strongly coupled with full diffusion matrix. Such
problems arise, for instance, in nonequilibrium thermodynamics [4]. It is well known that in this case,
maximum principle arguments generally do not apply so different techniques have to be used or special
situations have to be studied.

A possible technique is described in [4], based on entropy dissipation methods. There, the diffusion
matrix is symmetric, positive definite and uniformly bounded. However, in our case, the matrix is non-
symmetric and, in fact, it is uniformly bounded only when certain �� bounds (which we do not obtain) are
available. Nevertheless, we are able to give an existence result for weak solutions under the condition

���� � ���� ���� � ���� (9)

Under this hypothesis it turns out that the diffusion matrix is positive definite. The lack of uniform upper
bounds for the diffusion terms is compensated by a weaker definition of solution, see Definition 1. How-
ever, it seems that (9) is merely a technical condition, and numerical experiments indicate a continuous
dependence of the solutions with respect to all the parameters.

The time-dependent problem (1)-(8) has been studied in the literature in several special situations, see
[22] for a review. Global existence of solutions and their qualitative behavior for � �� � ��� � ��� � �
has been proved in, e.g., [17, 18, 21]. In this case Eq. (2) is only weakly coupled. For sufficiently small
cross-diffusion parameters ��� � � and ��� � � (or equivalently, “small” initial data) and vanishing self-
diffusion coefficients ��� � ��� � �, Deuring could show the global existence of solutions [5]. When
�� � ��, a global existence result in one space dimension has been obtained by Kim in [11]. Finally, under
the condition (9) and in two space dimensions, Yagi has shown the global existence of solutions [23]. He
supposes ���� inital data and obtains strict solutions (in the sense of semigroups). However, no existence
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result for positive self-diffusion and cross-diffusion coefficients and � � initial data in any space dimension
seems to be available. In this paper we prove such a result assuming (9).

The stationary problem corresponding to (1)-(8), but without the transport term ����� ��
	 was studied
by Lou and Ni [12]. They focused on the existence and non-existence of non-constant solutions of the
problem depending on the relationship among the parameters of the equations. The question they adress is
how self- and cross-diffusion affect to the equilibria points of the system of ODE’s of Lotka-Volterra type.
Dropping time and transport terms in (1)-(4) allows them to use maximum principle arguments, obtaining
in this way �� estimates which are crucial. Unfortunately, this approach seems to fail for obtaining ��

estimates both in the time dependent problem and in the stationary problem with transport. We present in
this paper an example of existence of solutions for the one-dimensional stationary problem with transport
but without reaction term. In this way we illustrate that condition (9) may be not a necessary but a technical
condition. Numerical experiments also point out in this direction, as we already mentioned.

The paper is organized as follows. In Section 2. we present the notion of solution of problem (1)-(8),
as well as the assumptions which will hold throughout the paper and the main results. Section 3. is devoted
to the proof of the existence of solutions of the time-dependent problem. In Section 4. we study one case
of the stationary problem for which condition (9) is no longer necessary. We prove existence of solutions
for this problem and give an integral representation formula for the solution. We also define and discuss
the notion of segregation. Finally, in Section 5. we present numerical examples for the one-dimensional
stationary model.

2. Assumptions and main results

First we reformulate the problem. If either ��� or ��� are zero then at least one of the equations is only
weakly coupled, and the results of [17, 18, 21] can be used. Therefore we assume that both � �� and ��� are
positive and perform the following change of unknowns:

� 
� ������ � 
� ����� and � 
� ��
�

Then the problem can be reformulated as:

���� ���������� ���
� � ��	 � 	���	 � ����� �	� (10)

��� � ��������� � ���
� � ��	 � 	���	 � ����� �	� (11)

in �� , where �� � �������, �� � ������� and �� and �� are general source terms including the Lotka-
Volterra type terms (5), (6) (see below for the precise assumptions). We impose the no-flux boundary
conditions

������ ���
� � ��	 � � � 	��� � � � �� (12)

����� � ���
� � ��	 � � � 	��� � � � � on 
� � (13)

and the initial conditions
���� �	 � ��� ���� �	 � �� in �� (14)

with �� 
� ������ and �� 
� ������. From now on we shall refer to problem (10)-(14) as Problem P.
We specify our notion of weak solution.

Definition 1 We say that ��� �	 is a weak solution of Problem P if:

(i) �� � � � satisfy the regularity properties

�� � � ����� � �����		 � ����� � �����		 ������ � � �� �����		�	� (15)
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(ii) Equations (10)-(13) are satisfied in the following sense:

� �

�

	��� �
�
�
��

�
��� � ����� �	��� ��� � 	���

� � �� �

�
��

����� �	� (16)

� �

�

	��� �
�
�
��

�
��� � ���� � �	�� � ���� 	���

� � �� �

�
��

����� �	�� (17)

for all �� � � ����� � �� �����		, where 	�� �
 denotes the duality product of �� �����		� �
� �����	�

(iii) The initial conditions (14) are satisfied in the sense

������ ����� �	� ����	 �������� � �
������ ����� �	� ����	 �������� � �

as �� �� (18)

Observe that Definition 1 is not the usual �� based notion of weak solution. However, if the weak solution
in the sense of Definition 1 satisfies additionally �� � � ����� 	, then it is straightforward to show that
�� � is a weak solution in the usual sense.

We consider the following assumptions on the data:��������
�������

(a) � � �
� is a bounded domain with Lipschitz continuous boundary ��, and � � �,

(b) ���
��� ��� � �����
��� ��� � �� 	�� 	� � ��
(c) � � ����� 	�
(d) ��� �� � ����	� with ��� �� � �� and
(e) ��� �� 
 �� � � are continuous and

����� �	� � �
 �
�� ����� �	� � �
�

� for any �� � � ��

(19)

In particular, assumption (e) includes the Lotka-Volterra source terms. The main result for Problem P is the
following.

Theorem 1 Let the assumptions (19) hold and assume

���
��� ��� � ���� (20)

Then there exists a weak solution of Problem P.

3. Existence of solutions of Problem P

The proof of Theorem 1 is divided into three steps.
Step 1. Introduce the function

����	 �
��

 �� � �
� with �� � ���
�� ��� (21)

Then
� � ����	 � ���
��� �� � for any � � � (22)

and

����	� � pointwise in � as  � �� (23)
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Let 
� ! � ����� 	 be given and consider the linear problem

���� ���
�
������ ����� � 	���

�
� ��� (24)

��� � ���
�
������ ����� � 	���

�
� �� in �� � (25)�

������ ����� � 	���
� � � � �� (26)�

������ ����� � 	���
� � � � � on 
� � (27)

���� �	 � ��� ���� �	 � �� on �� (28)

where the diffusion matrix� � ����	 is given by

��
� ! 	 �

�
�� � ������
	 � ���! 	 ���! 	

���
	 �� � ������! 	 � ���
	

	
� (29)

and �� 
� ������
	� ���! 		, � � �� �.
To obtain a solution of (24)-(28) we apply a general result for linear systems of equations associated

to uniformly parabolic operators, see [13]. For this, we observe that � �� �� � ����� 	 and �� � ����� 	,
� � �� 
 � �� Moreover, the matrix� is uniformly positive definite, since for any � � �"� #	 � � � we have

���� � ��"
� � ��#

� � �������
	 � ���! 		"
� � �������! 	 � ���
		#

� � ����
	 � ���! 		"#

� ��"
� � ��#

� � ���� � ���	���
	"� � ���� � ���	���! 	#�
� ���
��� �������� (30)

where we used condition (9). Then, the results of [13] assert the existence of a unique solution, ��� �	, of
problem (24)-(28) such that

�� � � ����� � �����		 � ����� � �����		 ������ � � �����		�	� (31)

Observe that, in particular, this solution is a weak solution in the sense of Definition 1.

Step 2. We consider the Banach space

�� 
� ����� � �����		 � ����� � �����		 ������ � � �����		�	�

and define the set
$ 
�



% � ����� 	 
 �%��� � &

�
�

with some positive & to be fixed. Aubin’s lemma [20] implies that the imbedding $ � � ���� 	 is compact.
It is straightforward to check that $ is convex. For fixed  � � and for any �
� ! 	 � $ �, we define the
fixed-point operator ' 
 $ � � ����� 	

� by '�
� ! 	 � ��� �	, where ��� �	 is the solution of the linear
problem obtained in Step 1 of this proof. Note that a fixed point of this operator is a solution of problem
(24)-(28) with the matrix� 
� ����	 given by

���� �	 
�

�
�� � �������	 � ����	 ����	

����	 �� � �������	 � ����	

	
� (32)

and �� 
� �������	� ����		, � � �� �. We shall refer to this problem as Problem P�.
We verify now the assumptions of the Schauder fixed-point theorem. First we determine & � � such

that '�$�	 � $�. Due to the regularity (31) we can use �� � as test functions for Eqs. (24)-(25) to obtain,
for a.e. � � ��� � 	,

	

	�

�
�

��� � ��	 � �

�
�

������ � �����	 � (

�
�

��� � ��	 � ��


�
�

���� �
	 � ��� �! 		� (33)
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with � � ���
��� ��� and ( � ���� �	��� 	��	������. Here we used assumption (e) of (19) and estimate
(30). Then Gronwall’s lemma implies�

�

�����	 � ����		 � )��
��

�

���� � ���	 � ��


�
��

���� �
	 � ��� �! 		

	
� (34)

From (33), (34) and (22) we obtain�
�

�����	 � ����		 � �

�
��

������ � �����	 � �� � (�)�� 	

�
�

���� � ���	

� ����
 �� � (� 	meas��	� ��

In view of definition (29) for the coefficients � �� and of definition (21) for the function � � we obtain, for �
such that ��������� �
����� � �,

���������� ��
������� � ���
�

�
��

��
������� ����� � 	���


 � ��� ������
	� ���! 		�
�

� ������������ � � ��������� �	��������� �

� �	��������������� ���������� � � ��
  
���������� ��

(35)

for �� � �� � ���� � �	� . Hence

���������� ��
������� � ������������ � � ��������� �	 � �	��
�
��������������� � �� 	� (36)

A similar estimate holds for �� in the space ����� � � �����		�	. We deduce from (35) and (36) that for any
�
� ! 	 � $�, ��� �	 
� '�
� ! 	 satisfies

����� � ����� � ���

with �� � � independent of &. Finally, choosing & � �� we obtain '�$�	 � $�.
The continuity of the fixed-point operator follows from standard arguments. Furthermore, '�$ �	 is

relatively compact since the embedding $ *� ����� 	 is compact. Thus Schauder’s fixed-point theorem
provides the existence of a weak solution of Problem P�.

We finish this step by proving that the solution of Problem P�, which we denote now by ���� ��	, satisfies
��� �� � � in �� . Since ��� �� � �� , we can use ��� 
� ���
�� ��� and ��� 
� ���
�� ��� as admissible
test functions to obtain

	

	�

�
�

����� 	
� � ���� 	

�	 � �

�
�

������ �� � ����� ��	 � (

�
�

����� 	
� � ���� 	

�	� (37)

since ��������	� �����		 � ����� �����		 � � on 
�� + �� and similarly for ��. Gronwall’s lemma
implies �

�

���� ��	
� � ��� ��	

�	 � )��
�
�

����� 	
� � ���� 	

�	 � ��

for a.e. � � ��� � 	. The result follows.

Step 3. For each  � � consider the sequence of solutions �� �� ��	 of Problem P�, obtained in Step 2. We
show that ��� �	 
� ���������� ��	 exists and is a weak solution of Problem P. Using ��� �� � �� as test
functions in Eqs. (24), (25), respectively, we get

	

	�

�
�

���� � ��� 	 � �

�
�

������� � ������	 � (

�
�

���� � ��� 	 � ��


�
�

���� ���	 � ��� ���		� (38)
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We use again property (22) and Gronwall’s lemma to obtain�
�

�����	
� � ����	

�	 � )����
�

� ��

�
�

���� � ���	� (39)

From (38) and (39) we deduce that the norms

���������� �
����� � ���������� �
����� and ���������� ������� � ���������� �������� (40)

are uniformly bounded with respect to  . Moreover, from Eq. (24) we obtain, for � �� given by (32) with
��� �	 replaced by ���� ��	,

����������� ��	 ��������� � ���
�

�
��

�
������� � ������ � 	����


���

�
��

��������	� �����		��

with � such that ��������� �	 ������� � �. We have

����������� ��	 ��������� � ����������� ����������������� � � ����������� ����������������� �

� �	���������� ���������� � � ,�
(41)

with , independent of  . Similarly, ����������� ��	 ��������� � ,� We deduce the existence of a subse-
quence of ���� ��	 (again denoted with the subindex  ) and a pair ��� �	 such that

����� ���	
�
- ���� ��	 weakly* in ����� � � �� �����		�	�

��������	- ������	 weakly in ����� 	�
(42)

Furthermore, Aubin’s lemma implies that, up to a new subsequence,

���� ��	� ��� �	 a.e. in �� and strongly in ����� 	� (43)

We then have, using Hölder’s inequality, for . � �	��	� �	 (. +� if 	 � �),�
��

������	� �	� �

�
��

��� � ��  ���	
�

� �� � �	�

� �

�
��

��� � �	� � �

�
��

� ���	
�

� ��	��	��� �� � �		��

� �

�
��

��� � �	� � � 	��
�
��

�	��� ��

� ���� � ������� � � � 
	������	������������������

� ���� � ������� � � � 
	�������	���������������
��

� �� (44)

as  � �. Here we have used the continuous embedding � ���	 *� ����	 and the uniform bounds on ��.
The continuity of �� implies

��������	� �����		� ����� �	 a.e. in �� and strongly in ����� 	� (45)

Since ���� ��	 is a weak solution in the sense of Definition 1 we have, for any � � ����� � � �� �����			,� �

�

	���� �
�
�
��

�
��� � ��������	 � �����		��� � �����	��� � 	����

� � ��

�

�
��

��������	� �����		��

(46)
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Letting  � �, using (42)-(45), we obtain

� �

�

	��� �
�
�
��

�
��� � ����	 � �		��� ��� � 	���

� � �� �

�
��

����� �	��

Finally, since � � ����� � �� �����	�	 � ,����� � ��� �����	�	, the initial condition is satisfied in the
sense of � �����	�, as prescribed in (18). Similarly, we obtain Eq. (11) in the limit  � �. This proves the
theorem.

4. The stationary problem

We consider in this section the one-dimensional version of the stationary problem corresponding to Problem
P, with ����� �	 � ����� �	 � � (see [19]). Integrating both equations in ��� "	 with " � � and using the
boundary conditions leads to the following problem. Find ��� �	 
 ��� ��� �

�
� such that

��
���� � ���� � ��	

��
� 	�/� � ��

���� � ���� � ��	
��
� 	�/� � �

in �� (47)

with �
�

� � �� and
�
�

� � ��� (48)

Here �� and �� stand for the mass of � and �, conserved along time in the evolution problem and determined
by the initial distributions:

�� 
�

�
�

�� and �� 
�

�
�

���

In [19] the authors followed a dynamical system approach to equations (47), for which the origin ��� �	 �
��� �	 is the unique stable stationary point. They also deduced a necessary condition for segregation and
analyzed and gave an explicit solution of the simplified case ��� � ��� � ��� � �. However, it is clear
from the property of conservation of mass that ��� �	 � ��� �	 is not an admissible solution of Problem
(47)-(48). In this section we shall give a proof of existence of solutions of this problem. We shall see that
condition (20) is no longer necessary and only positiveness of � � will be assumed. The end of this section
is devoted to discuss the notion of segregation.

Let us start by transforming the system (47). Splitting the equations (47) we find

����� � ����� � ��	 � ����� � 	�/	 � �� (49)

����� � ����� � ��	 � ����� � 	�/	 � �� (50)

We have from (50)

�� � � 	�/ � ���
�� � ����� � ��

��

and subsituting in (49) we obtain

�� � �/0���� �	

%���� �	
�� (51)

with
%���� �	 
� ��� � ����� � ��	��� � ����� � ��	� ���� � ��

0���� �	 
� 	���� � ����� � ��	� 	����
(52)

In a similar way we get

�� � �/0���� �	

%���� �	
�� (53)
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with
%���� �	 
� ��� � ����� � ��	��� � ����� � ��	� ���� � ��

0���� �	 
� 	���� � ����� � ��	� 	����
(54)

We now state the result on existence of solutions.

Theorem 2 Let �� and �� be positive and assume / � ����	. There exists a solution ��� �	 of Problem
(47)-(48) such that �� � � � in � and

�� � �� �����	� (55)

In addition, if / �������	 then the solution ��� �	 satisfies

�� � ���������	� (56)

PROOF. A general solution of (51), (53) is given by

��"	 � ���	 ���

� �

�

�/0���� �	

%���� �	

�
��"	 � ���	 ���


� �

�

�/0���� �	

%���� �	

�
� (57)

and by (48) we determine the value of ���	 and ���	 as

���	 � ��

��
�

���

� �

�

�/0���� �	

%���� �	

�	��
� (58)

���	 � ��

��
�

���

� �

�

�/0���� �	

%���� �	

�	��
� (59)

Thus, if �� � � ����	 satisfy (57)-(59) then ��� �	 is a solution of (47)-(48) which in fact belongs to
� �����	.

To find a solution of (57)-(59) we start obtaining a priori estimates. We have

��0���� �	
%���� �	

�� � ����	� � 	����
%���� �	

�
	���

%���� �	
�

��	�
%���� �	

� ����	� � 	��
�� � �����

�
	�

�� � �����
�

	�
��
�
 (�� (60)

and therefore, using (57)

��

��� ��� 
��(��/���� � ��"	 � ��

��� ��� 
�(��/���� � (61)

for " � �. From (51), (60) and (61) we obtain

����"	� � �/�"	���"	�0���� �	
%��� �	

� � (���

��� �/��� ��� 
�(��/���� � (62)

for " � �. Estimates similar to (61)-(62) hold for �. We introduce the following iterative scheme based on
(57)-(59)

�� 
�
��

��� � �����"	 
� ������	 ���

� �

�

�/0����� ��	

%����� ��	

�
� (63)

with

������	 
� ��

��
�

���

� �

�

�/0����� ��	

%����� ��	

�	��
�

and similar expressions for �. Since ��� �� � � and /0��%�, � � �� �, are bounded we have ��� �� � �
uniformly in � � �. The a priori estimates (61)-(62) imply that the sequences � � and �� are bounded in
� �����	. We can therefore extract subsequences (still denoted by �) such that

��
�
- � and ��

�
- � in � �����	

�� � � and �� � � in ����	 for all . +� and a.e. in ��
(64)
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Moreover, �� � � ,�����	 for any 1 + � and are non-negative in � . To check that �� � is actually a
solution of (47)-(48) is straightforward. The mass condition is a consequence of the strong convergence in
����	 (in fact, only weak convergence would be sufficient). Using expression (63) and a similar one for �
we find �

�����%����� ��	 � /0����� ��	���� � �

�����%����� ��	 � /0����� ��	���� � �
in ��

Property (64) and the continuity of % �� 0� allow us to pass to the limit and to obtain a solution of (49)-(50),
which is equivalent to have a solution of (47)-(48). Finally, a standard bootstrap argument allows us to
deduce (56). �

From now on we shall write � and � instead of �� and �� in the diffusion coefficients, and define
%��� �	 
� %���� �	 � %���� �	.

In the following we shall analyze the concept of segregation in a simplified framework. We shall assume,
following [19], that the environmental potential 
�"	 is a smooth function such that the corresponding
enviromental flux satisfies /�"�	 � � for a single point "� � �.

Definition 2 We say that the stationary problem (47)-(48) has the propperty of segregation if there exists
a point "� � � such that � and � have a local maximum and minimum at "�, respectively (or vice versa).

Observe that since /�"�	 � �, from (51) and (53) we find

���"�	 � ���"�	 � ��

so we deduce the existence of a critical point, "�, both for � and �. Taking derivatives in (51) and (53) and
evaluating at "� we have

%���"�	� ��"�		�
���"�	 � �/��"�	0����"�	� ��"�		�

%���"�	� ��"�		�
���"�	 � �/��"�	0����"�	� ��"�		�

Therefore, segregation will take place if

�����0����"�	� ��"�			 �� �����0����"�	� ��"�			�

We may rewrite 0�� 0� as follows:�
0���� �	
0���� �	

	
� �

�
	�
	�

	

�

�
�� � ���� � � ��

�� �� � ����� �

	�
	�
	�

	
�

and since � is positive definite we also have�
	�
	�

	
�

�

����

�
�� � ����� � �

� �� � ���� � �

	�
0���� �	
0���� �	

	
�

From these expressions we see

0���� �	0���� �	 � � �� 	�	� � ��

	�	� + � �� 0���� �	0���� �	 + ��

Therefore, segregation does always occur if �����	�	 �� �����	�	. Note that in this case "� is an attractive
point (from the environmental point of view) for one of the populations and a repulsive point for the other.
On the other hand, the only possibility not to have segregation (so " � is a point of local maximum or local
minimum for both � and �) is that �����	�	 � �����	�	. However, this is merely a necessary condition and
it is still possible to have �����	�	 � �����	�	 and segregation taking place.
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Since segregation occurs for 	�	� + � let us assume, to fix ideas, that 	� and 	� are positive (the case
	�� 	� + � can be analyzed in a similar way). A first non-trivial situation is the following:

if ���	� � 	� and ���	� � 	� (65)

then 0� � � and 0� � � and therefore, "� is a point of maximum both for � and �. As a consequences,
segregation does not occur. Observe also that if (65) holds then � ��� � ���, which is a condition in the
same spirit as (20). We could say that this is the case of strong diffusion. Solutions corresponding to this
case do spread along the whole domain without noticing the effects of cross diffussion and enviromental
potential.

Non-trivial cases in which segregation occurs are not so clearly determined by the size of the parameters.
We have 0� � � and 0� + � if

�� � �����"�	 � ��"�	 �
	�
	�

��"�	 and
	�
	�
��� � �����"�	 � ��"�		 + ��"�	� (66)

Observe that the �� norms of � and � are bounded when 	� � �, see (61). Therefore, fixing the other
parameters arbitrarily and taking 	� small enough we have condition (66) fulfilled and segregation occurs.
In fact, the important parameter here is the ratio 	��	�, which leads to segregation either if it is large or
small, see Figure 3.

Finally, the numerical experiments indicate that this sufficient condition on the ratio 	 ��	� is not nec-
essary, as Figure 1 shows.
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Figure 1. Stationary density distributions ����� ����
corresponding to case (a). Different curves are labeled
with the corresponding �� values.
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Figure 2. Stationary density distributions ����� ����
corresponding to case (b). Different curves are labeled
with the corresponding �� values.

5. Numerical results

For the discretization of Problem P, a semi-implicit finite difference method is used. A rectangular mesh
over the domain 2 � 
�"� �	 
 � � " � 3, � � � � �� defines a set of points 2
 � 
�"�� ��	 
 "� � �0,
�� � �4 , � � �� � � � � 5 , � � �� � � � �6�, with 5 � �, 6 � � the number of mesh points in the space
and time dimensions, respectively, and 0 � ���

� , 4 � �
� the correspondent mesh sizes. The following

notation is used: let ��� � �
�
� be the numerical aproximations of the population densities ��" �� ��	� ��"�� ��	

respectively and �� � ���������, Æ��� � ������������� the usual difference operators. An obvious
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Figure 3. Stationary density distributions ����� ����
corresponding to case (c), �� � �. Different curves are
labeled with the corresponding �� values.
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Figure 4. Stationary density distributions ����� ����
corresponding to case (c), �� � ���. Different curves
are labeled with the corresponding �� values.

discretization of equations (10)-(11) which leads to a linear system of equations to be solved at each time
step, is the following:

Æ��� � �

0�
�1�	

�
� Æ

������ � �

�0�
���	

�
�  ����� � �

0�
����� Æ���� � 	���

���
� /� �

�

�0
/ ����� 	 � ��

Æ��� � �

0�
�1�	

�
� Æ

������ � �

�0�
���	

�
�  ����� � �

0�
����� Æ���� � 	���

���
� /� �

�

�0
/ ����� 	 � ��

for � � �� � � � � 5 � �, where: Æ��� � ��
���
� � ��� 	�4 ,

�1�	
�
� � ��� � ����

�
� � ��� 	� �1�	

�
� � ��� � ����

�
� � ��� 	�

���	
�
� � �� ��� � ��� � ���	

�
� � �� ��� � ��� �

(67)

The discrete boundary conditions are

��� � ����
�
� � ��� 	Æ

�
� ����� � ����� Æ�� �

�
� � 	��

���
� / � ��

��� � ����
�
� � ��� 	Æ

�
� �

���
� � ����� Æ�� �

�
� � 	��

���
� / � ��

for � � �, and

��� � ����
�
� � ��� 	Æ

�
� ����� � ����� Æ�� ��� � 	��

���
� / � ��

��� � ����
�
� � ��� 	Æ

�
� ����� � ����� Æ�� ��� � 	��

���
� / � ��

for � � 5 . Here

Æ�� �
�
� �

�!��� � ���� � ���
�0

� Æ�� ��� �
����� � ������ � !���

�0

are a forward three point formula to approximate ���"�� ��	 and a backward three point formula to approx-
imate ���"� � ��	, respectively. Therefore, discretization errors are of orders 7�0 �	 and 7�4	.
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The following data has been taken: � � ��� !�; the environmental potential function 
�"	 � ��"�" �
��"	�. The mesh sizes are 0 � ����, 4 � ���� and we considered the stationary solution to be attained
when

���
�

������ � ��� �
���� �

+ �����

The mass conservation condition

�� �

�
�

��� �� �

�
�

��

is fullfilled by the numerical solution at each time step. Let ���� ��� be the approximated values of ��, ��
respectively, obtained by numerical integration. The mass errors are

���
�������

����� ����� ��� � ����	 + �����

The performed numerical experiments show that, for a wide range of model parameters and initial
conditions, the numerical scheme is stable, which allows us to show some different behaviours of two
interacting species included in the model. In particular it is interesting to observe when segregation of the
two species, due to habitat hetereogenity, does appear.

We run the numerical experiments to study the behaviour of the model in the following cases:

(a) Large and small cross-diffusion terms. � � � 	� � � and initial conditions ��"� �	 � ��� ��"� �	 � ��
are fixed, while small �� corresponds to large cross diffusion and vice versa. Figure 1 below shows
the numerical solution corresponding to � � values of �� ���� ��.

(b) Large diffusion coefficients �� compared to ��, i.e. �� � ��. The transport coefficient 	� � � and the
same initial conditions as in case (a) are fixed. Figure 2 shows the numerical solutions corresponding
to �� � ���� and �� � �� ��� ���.

(c) Segregation effects due to a large ratio of the transport coefficients. In this case 	 � � 	�, �� � 	� � �
and ��"� �	 � ��, ��"� �	 � �� are fixed. Figure 3 shows the numerical solutions corresponding to
�� � � and 	� � �� �� ��� ��. As case (a) shows, large cross-diffusion enhance segregation effects,
therefore we repeat the last simulation with �� � ���. Figure 4 shows same results for this case.

(d) Discontinuous initial data. The model parameters are � � � �� � �, 	� � �, 	� � �. The initial con-
ditions are ��"� �	 � ��, � � " � ��" and ��"� �	 � �, ��" + " � !, ��"� �	 � ��. Figure 5 shows
that the stationary solution ��"	� ��"	 is independent of the initial density distributions, provided they
have same mass (compare to Figure 3).

(e) �� � �, �� � �, �� � ����, 	� � ��, 	� � �, ��"� �	 � ��"� �	 � �� (Figure 6). Here, a neat
segregation of the two species can be observed.

For large density gradients arising, for instance, when 	 � � �� �� � �, the numerical scheme fails to
converge to a mass conserving solution. In these situations, numerical schemes for convection-dominated
problems have to be employed.

In view of the numerical results the following conclusions can be drawn: Either large diffusion coef-
ficients or small cross-diffusion terms, with equal transport coefficients, have similar effects on the final
stationary density distributions and no segregation occurs. Segregation effects are outstanding with ratios
of 	��	� � �� and ����� � ��.
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[10] Jüngel, A. (2001) Quasi-Hydrodynamic Semiconductor Equations. Progress in Nonlinear Differential Equations
and their Applications, 41. Birkhuser Verlag, Basel.

[11] Kim, J.U. (1984) Smooth solutions to a quasi-linear system of diffusion equations for a certain population model.
Nonlin. Anal. 8, 1121-1144.

[12] Lou, Y. and Ni, W.M. (1996) Diffusion, self-diffusion and cross-diffusion. J. Diff. Eqs. 131, 79-131.

294



On a nonlinear cross-diffusion system arising in population dynamics

[13] Ladyzenskaya, O. A., Solonnikov, V. A. and Ural’ceva, N.N. (1968) Linear and Quasilinear Equations of
Parabolic Type. Amer. Math. Soc., Providence.

[14] Markowich, P., Ringhofer, C. and Schmeiser, C. (1990) Semiconductor Equations. Springer, Wien.

[15] Mimura, M. and Kawasaki, K. (1980) Spatial segregation in competitive interaction-diffusion equations. J. Math.
Biol. 9, 49-64.

[16] Pao, C.V. (1992) Nonlinear parabolic and elliptic equations. Plenum Press, New York.

[17] Pozio, M. and Tesei, A. (1990) Global existence of solutions for a strongly coupled quasilinear parabolic system.
Nonlin. Anal. 14, 657-689.

[18] Redlinger, R. (1995) Existence of the global attractor for a strongly coupled parabolic system arising in population
dynamics. J. Diff. Eqs. 118, 219-252.

[19] Shigesada, N. Kawasaki, K. and Teramoto, E. (1979) Spatial segregation of interacting species. J. Theor. Biol. 79,
83-99.

[20] Simon, J. (1987) Compact sets in the space ����� � ���. Ann. Math. Pura Appl. 146, 65-96.

[21] Wanli, Y. (1999) Global solutions to some quasilinear parabolic systems in population dynamics. J. Partial Diff.
Eqs. 12, 193-200.

[22] Yaping, W. (1997) Qualitative studies for some cross-diffusion systems. In: T.-T. Li, M. Mimura, Y. Nishiura,
and Q.-X. Ye (eds.), China-Japan Symposium on Reaction-Diffusion Equations and Their Applications and Com-
putational Aspects, World Scientific, Singapore.

[23] Yagi, A. (1993) Global solution to some quasilinear parabolic system in population dynamics. Nonlin. Anal. 21,
603-630.

G. Galiano and M. L. Garzón A. Jüngel
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