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Geometrical aspects of the Landau-Hall problem on the
hyperbolic plane

A. López Almorox and C. Tejero Prieto

Abstract. Some geometrical aspects of the classical hyperbolic Landau-Hall problem are discussed.
The Lie algebra of infinitesimal symmetries of this problem is explicitly given, turning out that it is
isomorphic toso(2, 1) and that its associated Noether invariants are the hyperbolic angular momenta. The
Hamiltonian formulation is also given, allowing us to obtain the manifold of orbits of constant energy for
this problem using symplectic reduction techniques.

Aspectos geom étricos del problema de Landau-Hall en el plano hiperb ólico

Resumen. Se discuten algunos aspectos del problema de Landau-Hall hiperbólico. El álgebra de Lie de
las simetŕıas infinitesimales de este problema se da explı́citamente, resultando ser isomorfa aso(2, 1) y
que sus invariantes Noether asociados son los momentos angulares hiperbólicos. Asimismo se desarrolla
la formulacíon hamiltoniana, lo que nos permitirá obtener la variedad déorbitas de energı́a constante de
este problema mediante técnicas de reducción simpĺectica.

1. Introduction

The Landau-Hall problem is the study of the motion of a charged particle in a constant and static magnetic
field (in what follows we will refer to it as a magnetic Hall field) on a Riemann surface. The quantum aspects
of this problem have been used to give different models of the integer Hall effect; that is, the quantization of
the transverse resistivity of an electronic gas at very low temperatures and very high static magnetic fields
in certain bidimensional experimental devices which was discovered by K. von Klitzing in 1980 [19].

Let us recall briefly what the classical Hall effect is on the euclidean plane. Let{x1, x2, x3} be the
euclidean coordinates onR3 and let us suppose thatX1X2 is the plane of the conductor. Let us consider
a charged particle moving in this plane and let~B ≡ (0, 0, B) be a constant and static magnetic field
perpendicular toX1X2 and let ~E ≡ (E1, E2, 0) be a constant and static electric field in this plane. If a
particle of mass m and chargee is moving with velocity~v ≡ (v1, v2, 0) in that plane then the forces acting
upon it are the Lorentz force~FLorentz = e~v ∧ ~B ≡ (F1, F2, 0) = (eBv2,−eBv1, 0) and the electric
force ~Felectric = e ~E ≡ (eE1, eE2, 0). The motion of the particle on the planeX1X2 is described by a
parametrized curve~x(t) ≡ (x1(t), x2(t), 0) which is a solution of Newton equation with initial conditions
~x(0) ≡ (x1(0), x2(0), 0) and~v(0) ≡ (v1(0), v2(0), 0) with ~v(t) ≡ (v1(t), v2(t), 0) = (ẋ1(t), ẋ2(t), 0)
being the velocity of the particle. If we introduce complex notationz(t) = x1(t) + ix2(t), ż(t) = v1(t) +
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iv2(t), E = E1+iE2, one has that the evolution equations arez̈(t) = −i eB
m ż(t)+ e

mE = −iωcż(t)+ e
mE

whereωc = eB
m is the cyclotron frequency. Performing an integration, one has that

ż(t) =
e

imωc
E + [ż(0)− e

imωc
E]e−iωct

The termż(t)cyclotron = [ż(0) − e
imωc

E]e−iωct is called the cyclotron velocity, whereasż(t)drift =
−i eE

mωc
= −iE

B is called the drift velocity and it is constant. Let us notice that the drift velocity~vdrift ≡
( eE2

mωc
,− eE1

mωc
, 0) = (E2

B ,−E1
B , 0) is orthogonal to the applied electric field~E ≡ (E1, E2, 0) and is inde-

pendent of the mass and the charge of the particle. Performing another integration one obtains that the
trajectory of the particle is given by the cycloid

z(t) = z(0) +
e

imωc
Et− 1

iωc
[ż(0)− e

imωc
E](e−iωct + 1)

Let us consider now a gas of non-interacting charged particles moving in a bidimensional conductor
contained in theX1X2 plane and subject to the action of a constant and static magnetic field orthogonal to
that plane and to a constant and static electric field as described before. Letn be the electronic density, then
the mean velocity of these particles is the drift velocity< żmean >= ż(t)drift; therefore we will call the
drift current or Hall current, and we will denote it byjHall = jHall

1 + ijHall
2 , the following expression

jHall = ne < żmean >= −i
ne2

mωc
E = −i

ne

B
E

thereforejHall
1 = −ne

B E2 and jHall
2 = ne

B E1. The Hall conductivity matrixσHall =
(

σ11 σ12

σ21 σ22

)
exhibits the proportionality between the Hall current and the applied electric field, that isjHall = σHallE.
Therefore (

jHall
1

jHall
2

)
=

(
0 −ne

B
ne
B 0

) (
E1

E2

)
In particular the transverse conductivity isσ12 = −ne

B . The inverse of the Hall conductivity matrix is

called the Hall resistivity matrixρHall = [σHall]−1 =
(

ρ11 ρ12

ρ21 ρ22

)
and is given by

ρHall =
(

0 − B
ne

B
ne 0

)
with ρ12 = − B

ne being the so-called transverse Hall resistivity, which, in the approximation we have taken,
depends linearly on the magnetic fieldB.

However, in experiments with Si-Mosfets devices at very low temperatures and very high magnetic
fields this linearity is not observed [24]. Instead of it one observes a quantization of the transverse Hall
conductivity,σ12 is an integer or a fractional number timese2

h with the appearance of plateaux in the graph
of ρ12 against the applied magnetic fieldB. This phenomenon bears the name of quantum Hall effect
(integer or fractional).

The different theoretical explanations of the quantum Hall effect have started always studying the quan-
tum Landau problem for a particle with different boundary conditions [16, 27]. The quantum treatment of
a charged particle moving on a plane and subject to the action of a constant magnetic field is well known
but to arrive at a quantization of Hall conductivity one has to impose that the magnetic flux is quantized
(Dirac’s condition), this fact reveals the importance of the non triviality of the topology of the configuration
space in the explanation of this phenomenon. The explanation of the plateaux in the integer quantum Hall
effect is done through the effect that the impurities and the disorder in the semiconductor produce on the
Landau levels which are split into energy bands.
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Thoulesset al. have studied in [25] the Landau-Hall problem for electrons without interaction in peri-
odic potentials ( Landau problem in the flat torusT 2), calculating the Hall conductivity for Bloch electrons
in a magnetic field. Refinements of certain arguments of Laughlin and the use of the Kubo formula for
the conductivity have made possible the understanding of the Hall conductivity as a topological invariant
[26, 7]. The possible consideration of this problem in materials with different boundary conditions, leads
to the necessity of generalizing the preceding study to other Riemann surfaces different fromR2 ' C or
the flat torusT 2. The quantum Landau-Hall problem in genusg = 0 is analogous to the study of a charged
particle on a sphere and subject to the action of a magnetic monopole located at its center and can be found
in [11, 5]. Some aspects related to the quantum Landau-Hall problem on Riemann surfaces of genusg > 1
have been studied during the last years and can be found in [9]–[3].

2. Geometrical aspects of the classical Landau-Hall problem
on Riemann surfaces

For a better understanding of the quantum Hall effect on Riemann surfaces it is necessary to have a good
knowledge of the classical Landau-Hall problem in configuration spaces which are Riemann surfaces. Thus,
the first thing to do is to generalize the concept of a constant and static magnetic field which is orthogonal
to the surface [20]; these are the so-called magnetic Hall fields in the physics literature .

Let Q be a Riemannian manifold,T2 the metric tensor and∇ the Levi-Civita connection associated
with T2.

Definition 1 A magnetic Hall field onQ is a 2-form FHall on Q which verifies Maxwell equations
dFHall = 0 , δFHall = 0 and that in addition is covariantly constant, that isD∇FHall = 0, for every
vector fieldD onQ.

Proposition 1 If dim Q = 2 then the magnetic Hall fields are the harmonic 2-forms onQ. In particular
every magnetic Hall field is of the form

FHall = BΩ2 B ∈ R

with Ω2 being the Riemannian area element.

Remark 1 The magnetic Hall fields on a bidimensional Riemannian manifoldQ can be described as the
curvature 2-formΩHall of a connectionωHall on a principal fiber bundleπ : P → Q with structure group
U(1). If {Uα}α∈I is a trivializing covering ofP and{σα} are the local sections that trivialize the bundle

Φα : π−1(Uα) −→ Uα × U(1)
σα(x) · g −→ (x, g)

Then one definesA(α)
Hall = σ∗α(ωHall) andF

(α)
Hall = σ∗α(ΩHall). If σα(x) = σβ(x) · gαβ(x), with gαβ :

Uα ∩ Uβ → G being the corresponding transition functions, on the non empty intersections one has that

A
(β)
Hall = A

(α)
Hall + g∗αβ(θ)

F
(β)
Hall = F

(α)
Hall

with θ being the Maurer-Cartan form of the structure groupU(1). Therefore, there exists a 2-formFHall

onQ, moreover, if it satisfies the Maxwell equations we shall say that it represents a magnetic Hall field on
Q. It is clear that in general there does not exist a global 1-formA on Q such thatFHall = dA, although
locally it is always verified thatF (α)

Hall = dA
(α)
Hall.
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Proposition 2 The magnetic Hall fields on a compact Riemann surface are discrete; that is,

FHall =
k h

e a(Q)
Ω2 k ∈ Z

wherek = c1(P ) is the first Chern class of the fiber bundleP anda(Q) is the area of the surface.

Remark 2 If Q is compact and if we suppose thatρHall
12 ∼ B

ne , as we deduced classically for the euclidean
plane, then taking into account thatB = k h

e a(Q) , it would be verified that

ρHall
12 ∼ k h

n e2 a(Q)
=

k

N

h

e2

with N = n a(Q) being the number of electrons inQ andk ∈ Z the Chern class of the fiber bundleP .
Surprisingly one obtains a behavior similar to that predicted by quantum mechanics.

2.1. (Local) Lagrangian formulation of the motion of a particle in a mag-
netic Hall field

The classical description of the motion of a particle of massm and chargee in a magnetic Hall field on a
bidimensional Riemannian manifold(Q,T2) can be formulated as a (local) variational problem on the 1-jet
fiber bundleπ : J1(R×Q/R) = R×TQ → R×Q, of 1-jets of sections of the regular projection onto the
first componentπ1 : R×Q → Q, with a Lagrangian density which, in general, is only locally defined.

J1(R×Q/R) P
π ↓ ↓ p

R×Q
π2−→ Q

π1 ↓
R

We will suppose that the magnetic Hall fieldFHall = B Ω2 is defined by the curvature formΩHall of a
connectionωHall on a principal fiber bundlep : P → Q with structure groupU(1). Let σα : Uα → P ,
∀α ∈ I be the local sections of a trivializing covering{Uα}α∈I of P , let us denote byA(α)

Hall = σ∗α(ωHall)
the local vector potential and byF (α)

Hall = σ∗α(ΩHall) = dA
(α)
Hall the magnetic Hall field on the open set

Uα. Let us suppose moreover that{q(α)
i , 1 ≤ i ≤ 2} are local coordinates on the open setUα; then

T
(α)
2 =

∑2
i,j=1 g

(α)
ij dq

(α)
i ⊗ dq

(α)
j , A

(α)
Hall = A

(α)
1 dq

(α)
1 + A

(α)
2 dq

(α)
2 andF

(α)
Hall = F

(α)
12 dq

(α)
1 ∧ dq

(α)
2 .

On the open sets̄Uα = π−1(J × Uα) ⊂ R × TQ with J being an open set ofR with coordinate{t}, one
defines:

a) The Lagrangian (local in general)

L
(α)
Hall =

1
2
mq̇

(α)
i g

(α)
ij q̇

(α)
j + eA

(α)
i q̇

(α)
i .

b) The Poincare-Cartan form (local in general)

Θ(α)
Hall = p

(α)
j dq

(α)
j −H

(α)
Halldt = −(mq̇

(α)
i g

(α)
ij + eA

(α)
j )dq

(α)
j +

1
2
mq̇

(α)
i g

(α)
ij q̇

(α)
j dt

where

p
(α)
j = −

∂L
(α)
Hall

∂q̇
(α)
j

= −(mq̇
(α)
i g

(α)
ij + eA

(α)
j )

H
(α)
Hall = −(

∂L
(α)
Hall

∂q̇
(α)
j

q̇
(α)
j − L

(α)
Hall) = −1

2
mq̇

(α)
i g

(α)
ij q̇

(α)
j
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are the generalized momentum and the Hall Hamiltonian respectively. Let us notice that the Hall Hamilto-
nian can also be expressed as

H
(α)
Hall = − 1

2m
(p(α)

i + eA
(α)
i )[g(α)]

ij
(p(α)

j + eA
(α)
j )

which is the usual Hamiltonian of a charged particle placed in an electromagnetic field. (Notice that due to
our definition of the generalized momenta there is a global sign change, thus inessential, with respect to the
traditional notation).

Taking into account that on the intersectionsUα ∩ Uβ 6= ∅, it is verified thatA(β)
Hall = A

(α)
Hall + dΨ(αβ)

andF
(β
Hall = F

(α)
Hall, then

L
(β)
Hall = L

(α)
Hall + e

∂Ψ(αβ)

∂q
(α)
i

q̇
(α)
i

Θ(β)
Hall = Θ(α)

Hall − e dΨ(αβ).

Therefore, since the fiber bundleP may not be trivial, the Lagrangian and the Poincare-Cartan form, in
general, are not globally defined. However

H
(α)
Hall = H

(β)
Hall

dΘ(α)
Hall = dΘ(β)

Hall

that is, there exists a global Hall Hamiltonian which we will denote byHHall. These expressions prove that
there exists a global 2-form onJ1(R ×Q/R) = R× TQ which will be denoted byΩHall; in general it is
not exact, but on each open setŪα it coincides withdΘ(α)

Hall. If we denote byΘkinetic the (globally defined)
Poincare-Cartan form associated with the (global) kinetic term of the Lagrangian then

ΩHall = dΘkinetic − e π∗(FHall)

and therefore the evolution equations can be given in a global way by Cartan equations

(iDΩHall)|j1σ = 0 ∀D ∈ Γ(TJ1(R×Q/R))

The solutions of these equations are parametrized curves onQ, thus on each open setUα, they are of the
form

σ : J −→ Uα

t −→ σ(t) = (q(α)
1 (t), q(α)

2 (t))

fulfilling the usual equations for a charged particle subject to the Lorentz force

m (q̈(α)
k + [Γ(α)]

k

ij q̇
(α)
i q̇

(α)
j ) = e [g(α)]

sk
F (α)

sr q̇(α)
r

with [Γ(α)]
k

ij being the Christoffel symbols of the Levi-Civita connection associated withT2 on the open

setUα andF
(α)
12 = B(g(α)

11 g
(α)
22 − g

(α)
12 g

(α)
21 )

1
2 the magnetic Hall field.

2.2. Infinitesimal symmetries of the classical Landau-Hall problem

The concept of infinitesimal symmetries of a globally defined variational problem, and their associated
Noether invariants can be found in [13]; however due to the fact that in the Landau-Hall problem the
Lagrangian and the Poincare-Cartan are, in general, not globally defined it is necessary to generalize these
concepts in the following way [20]
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Definition 2 A vector fieldD onR×Q is said to be an infinitesimal symmetry of the Landau-Hall problem
if its 1-jet extensionj1D to J1(R×Q/R) verifies the following conditions:

1. D is π1-projectable.

2. (j1D)LΘ(α)
Hall = −dg

(α)
D on each open set̄Uα.

3. OnŪα ∩ Ūβ 6= ∅, it is verified thatg(β)
D = g

(α)
D + e j1D(Ψ(αβ)).

Notice that in the case of globally defined Landau-Hall problems, such as the euclidean or hyperbolic
plane, this definition coincides with the one given in [13]. One can also compare this definition with the
definition of the symmetries of a gauge field given in [18, 12]

Definition 3 The Noether invariantfD associated with the infinitesimal symmetryD is the global function
of J1(R×Q/R) which on each open set̄Uα is given by

f
(α)
D = ij1DΘ(α)

Hall + g
(α)
D

Notice thatfD is globally defined because on the intersectionsŪα ∩ Ūβ 6= ∅ it is verified thatf (α)
D = f

(β)
D .

Corollary 1 The set of infinitesimal symmetries for the Landau-Hall problem is a real Lie algebra.

Let us see which are the equations that an infinitesimal symmetry of the Landau-Hall problem has to
verify.

Let Ū be one of the open sets{Ūα}α∈I and let{t, q1, q2, q̇1, q̇2} be fibered coordinates on̄U ; then
FHall = F12(q1, q2) dq1 ∧ dq2 = B

√
det G dq1 ∧ dq2 andAHall = A1(q1, q2) dq1 + A2(q1, q2) dq2 with

F12 = ∂A2
∂q1

− ∂A1
∂q2

. If D is an infinitesimal symmetry then onU = π(Ū) it is expressed as

D = f(t)
∂

∂t
+ f1(t, mq1, q2)

∂

∂q1
+ f2(t, mq1, q2)

∂

∂q2

since it isπ1-projectable. Thereforej1D = f ∂
∂t + fi

∂
∂qi

+ [∂fi

∂t + q̇j
∂fi

∂qj
− q̇i

∂f
∂t ] ∂

∂q̇i
. Since onŪ

(j1D)LΘHall = −dgD we have [20]

Proposition 3 If D = f ∂
∂t + f1

∂
∂q1

+ f2
∂

∂q2
is an infinitesimal symmetry then on̄U the following system

of partial differential equations is satisfied

m[
∂2f1

∂t2
g11 +

∂2f2

∂t2
g21] + eF12

∂f2

∂t
= 0

m[
∂2f1

∂t2
g12 +

∂2f2

∂t2
g22]− eF12

∂f1

∂t
= 0

∂

∂q2
[m(

∂f1

∂t
g11 +

∂f2

∂t
g21) + eF12f2]−

∂

∂q1
[m(

∂f1

∂t
g12 +

∂f2

∂t
g22)− eF12f1] = 0

2(
∂f1

∂q1
g11 +

∂f2

∂q1
g21) + (f1

∂g11

∂q1
+ f2

∂g11

∂q2
)− g11

∂f

∂t
= 0

2(
∂f1

∂q2
g12 +

∂f2

∂q2
g22) + (f1

∂g22

∂q1
+ f2

∂g22

∂q2
)− g22

∂f

∂t
= 0

(
∂f1

∂q1
g12 +

∂f2

∂q1
g22) + (

∂f1

∂q2
g11 +

∂f2

∂q1
g21) + (f1

∂g12

∂q1
+ f2

∂g12

∂q2
)− g12

∂f

∂t
= 0.
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Let us notice that in these equations the vector potential used to define the Lagrangian does not appear but,
rather the magnetic Hall field, which is globally defined.

To integrate these equations it is better to use isothermal coordinates{x1, x2} on the open setU , thus the
complex coordinate of the underlying Riemann surface isz = x1 + ix2 andz̄ = x1− ix2. The infinitesimal
symmetries are

D = f(t)
∂

∂t
+ hz(t, z, z̄)

∂

∂z
+ hz̄(t, z, z̄)

∂

∂z̄

with hz = f1 + if2 andhz̄ = f1 − if2 ( notice that̄hz = hz̄ because the vector field is real) and the
equations that must be verified by the infinitesimal symmetries are simplified to

0 =
∂2hz̄

∂t2
− eFzz̄

mgzz̄

∂hz̄

∂t
(1)

0 =
∂2hz

∂t2
+

eFzz̄

mgzz̄

∂hz

∂t
(2)

0 =
∂2

∂z̄∂t
(gzz̄hz̄)−

∂

∂z̄
(
eFzz̄

m
hz̄)−

∂2

∂z∂t
(gzz̄hz)−

∂

∂z
(
eFzz̄

m
hz) (3)

0 =
∂hz̄

∂z
(4)

0 = hz
∂gzz̄

∂z
+ hz̄

∂gzz̄

∂z̄
+ gzz̄

∂hz

∂z
+ gzz̄

∂hz̄

∂z̄
− gzz̄

∂f

∂t
(5)

0 =
∂hz

∂z̄
. (6)

Let us note thateFzz̄

m gzz̄
= i eB

m = iωc. These equations have been integrated by the authors forS2 with

its usual metric, the flat torusT 2, C∗ with its usual complete flat metric, every Riemann surface of genus
g > 1 as well as for their universal Riemannian coverings.

Corollary 2 Every infinitesimal isometry ofT2 is an infinitesimal symmetry of the Landau-Hall problem.

PROOF. If X = ĥz(z, z̄) ∂
∂z +ĥz̄(z, z̄) ∂

∂z̄ is an infinitesimal isometry ofT2, it is verified that0 = XLT2 =

2gzz̄
∂ĥz̄

∂z dz⊗dz+2gzz̄
∂ĥz

∂z̄ dz̄⊗dz̄+[gzz̄ (∂ĥz

∂z + ∂ĥz̄

∂z̄ )+ ĥz
∂gzz̄

∂z + ĥz̄
∂gzz̄

∂z̄ ] (dz⊗dz̄+dz̄⊗dz) therefore

equations (1),(2), (4), (5) and (6) are automatically verified. On the other hand equation (3), sinceĥz and
ĥz̄ do not depend on t, is written as

∂

∂z̄
(Fzz̄ĥz̄) +

∂

∂z
(Fzz̄ĥz) = 0

butFzz̄ = iBgzz̄, thus the preceding equation is written as

∂

∂z̄
(gzz̄ĥz̄) +

∂

∂z
(gzz̄ĥz) = 0

which is automatically verified sinceXLT2 = 0. �

Corollary 3 It is trivially checked thatD = ∂
∂t is an infinitesimal symmetry of the Landau-Hall problem.

Remark 3 In the examples analyzed by the authors the Lie algebra of infinitesimal symmetries of the
Landau-Hall problem is finite-dimensional. However, in the Landau-Hall problem on the euclidean plane
and the torus there are infinitesimal symmetries different from the ones given in the preceding corollaries.
On the sphere and on the Poincaré upper half plane it is proved, by integrating the preceding equations, that
every infinitesimal symmetry of the Landau-Hall problem is a linear combination of∂

∂t and the infinitesimal
isometries ofT2 [20, 21]. Finally on compact Riemann surfaces of genusg > 1 there are no infinitesimal
isometries apart from∂

∂t .
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2.3. The evolution equations of the classical Landau-Hall problem

In complex coordinates it is easy to see that the evolution equations of the Landau-Hall problem are given
by

z̈ + ż2 ∂lngzz̄

∂z
= − eFzz̄

mgzz̄
ż = −iωc ż (7)

¨̄z + ˙̄z2 ∂lngzz̄

∂z̄
=

eFzz̄

mgzz̄

˙̄z = iωc ˙̄z (8)

sinceFzz̄ = iBgzz̄.
Using the Frenet frame, one can give an intrinsic expression for these equations in the following manner:

Let D = σ∗( d
dt ) be the velocity vector field of the particle; then the evolution equations are

imD∇DT2 = −e iDFHall

Let Φ be the tensor field of type (1, 1) determined byT2(D1,Φ(D2)) = FHall(D1, D2), ∀D1, D2 tangent
vector fields toQ, then the evolution equations can be expressed as

mD∇D = −eΦ(D)

It is important to remark thatΦB defines the complex structure of the Riemann surface underlyingQ.

Lemma 1 It is verified that

1. Φ2 = −B2IdTQ

2. T2(Φ(D1),Φ(D2)) = B2T2(D1, D2)

Using the bidimensional Frenet formulae, one has

Theorem 1 The geodesic curvatureχg and the energy of the trajectory of a charged particle placed in a
magnetic Hall field are constant andχg = − eB

mv .

PROOF. Let Dσ(t) = v(t)Tσ(t) with v2 = T2(D,D) and let< Tσ(t), Nσ(t) > be an orthonormal basis of
Tσ(t)Q. The bidimensional Frenet formulae are

T∇T = χgN

T∇N = −χgT

with χg being the geodesic curvature. Taking into account thatD∇D = D(v)T + χgv
2N , one has that

T2(mD∇D,T ) = −eFHall(D,T ) = 0, which impliesD(v) = dv(t)
dt = 0 ; that isv is constant (which

in turns implies that the energy is conserved ). Bearing in mind this fact, the evolution equation can be
expressed as

T∇T = − e

mv
Φ(T )

and from this it follows thatχ2
g = ||T∇T || = e2B2

m2v2 = ω2
c

v2 with ωc = eB
m the cyclotron frequency.

On the other hand it is easy to check that

T2(Φ(D),Φ(D)) = 1
T2(D,Φ(D)) = 0

thus we can takeN = Φ(T )
B , and the basis< T, Φ(T )

B > is positively oriented with respect to the Riemannian

orientation ofQ sinceΩ2(T, Φ(T )
B ) = FHall(T,Φ(T )) = T2(T, T ) = 1. ThenT∇T = χg

B Φ(T ) and
comparing this with the expression found before one deduces thatχg = − eB

mv . �
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3. The hyperbolic Landau-Hall problem

With the aim of a better visualization of some results that we will find later, our hyperbolic model will be
the hyperboloid ofR3

Q = {(x, y, z) ∈ R3 / x2 + y2 − z2 = −R2 ; z > 0 }

The metric tensorThyp
2 = dx2 + dy2 − dz2 defines a hyperbolic geometry onR3. It is well known that

the restriction ofThyp
2 to the hyperboloidQ defines a Riemannian geometry onQ with constant negative

curvature equal to− 1
R2 .

If we consider now the hyperbolic stereographic projection ofQ onto theXY plane

x1 =
Rx

R + z
x2 =

Ry

R + z

it is verified thatx2
1 + x2

2 = −R2(R−z)
R+z ≤ R2, obtaining in this way the disk modelD2, and the metric is

expressed as

T2 = Thyp
2 |Q =

4R4

(R2 − x2
1 − x2

2)
2 (dx2

1 + dx2
2) =

2R4

(R2 − zz̄)2
(dz ⊗ dz̄ + dz̄ ⊗ dz)

with z = x1 + ix2. Therefore the magnetic Hall fields onQ are

FHall =
4R4B

(R2 − x2
1 − x2

2)
2 dx1 ∧ dx2 =

2iBR4

(R2 − zz̄)2
dz ∧ dz̄

thus the Hall potential can be taken as

AHall =
2R2B

(R2 − x2
1 − x2

2)
(x1dx2 − x2dx1) =

−iBR2

(R2 − zz̄)
(zdz̄ − z̄dz)

It is important to point out that this Hall potential, although global, is not invariant under the isometries of
the metricT2.

One has that the Landau-Hall Lagrangian in the hyperbolic case is globally defined

LHall =
2mR4

(R2 − zz̄)2
ż ˙̄z +

ieBR2

(R2 − zz̄)
(z ˙̄z − z̄ż)

and the corresponding Poincaré-Cartan form, which is also global, is given by

ΘHall = −[(
2mR4 ˙̄z

(R2 − zz̄)2
+ e

iBR2z̄

(R2 − zz̄)
) dz + (

2mR4ż

(R2 − zz̄)2
− e

iBR2z

(R2 − zz̄)
) dz̄] +

+
2mR4ż ˙̄z

(R2 − zz̄)2
dt.

Theorem 2 The set of infinitesimal symmetries of the hyperbolic Landau-Hall problem is a real Lie alge-
bra of dimension 4 which is generated by the following vector fields

D0 =
∂

∂t

D1 =
x1x2

R

∂

∂x1
− (R2 + x2

1 − x2
2)

2R

∂

∂x2
= −i

(R2 + z2)
2R

∂

∂z
+ i

(R2 + z̄2)
2R

∂

∂z̄

D2 =
(R2 − x2

1 + x2
2)

2R

∂

∂x1
− x1x2

R

∂

∂x2
=

(R2 − z2)
2R

∂

∂z
+

(R2 − z̄2)
2R

∂

∂z̄

D3 = x2
∂

∂x1
− x1

∂

∂x2
= −iz

∂

∂z
+ iz̄

∂

∂z̄
.
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The Lie brackets of the infinitesimal symmetries< D0, D1, D2, D3 > are

[D0, Di] = 0, ∀i = 1, 2, 3
[D1, D2] = −D3,

[D1, D3] = −D2,

[D2, D3] = D1,

from where it follows that the vector fields< D1, D2, D3 > generate the Lie algebraso(2, 1). These vector
fields are the restriction of the infinitesimal isometries ofThyp

2 to the hyperboloidQ, and their expression
in Cartesian coordinates{x, y, z}, onQ are

D1 = −z
∂

∂y
− y

∂

∂z

D2 = z
∂

∂x
+ x

∂

∂z

D3 = y
∂

∂x
− x

∂

∂y

with the conditionx2 + y2 − z2 = −R2 andz > 0.

Theorem 3 The Noether invariants associated with these infinitesimal symmetries are

fD0 =
2mR4ż ˙̄z

(R2 − zz̄)2
+ λ0

fD1 = − imR3

(R2 − zz̄)2
[(R2 + z̄2)ż − (R2 + z2) ˙̄z] + e

BR3(z + z̄)
(R2 − zz̄)

+ λ1

fD2 = − mR3

(R2 − zz̄)2
[(R2 − z̄2)ż + (R2 − z2) ˙̄z]− e

iBR3(z − z̄)
(R2 − zz̄)

+ λ2

fD3 = − 2imR4

(R2 − zz̄)2
[z̄ż − z ˙̄z] + e

2BR4

(R2 − zz̄)
+ λ3

with λ0, λ1, λ2 andλ3 being arbitrary constants.

The preceding constants can be chosen in a way such that the following additional conditions are ful-
filled

[j1(D1)]fD2 = −fD3 (9)

[j1(D1)]fD3 = −fD2 (10)

[j1(D2)]fD3 = fD1 . (11)

It is sufficient to takeλ1 = λ2 = 0 andλ3 = −eBR2. Taking into account that the Poisson brackets are
given by{fDr

, fDs
} ≡ [j1(Dr)]fDs

we shall see that these conditions guarantee the equivariance of the
moment map that will be defined in section 4).

We will also takeλ0 = 0. Thus, one defines the energyE and the hyperbolic angular momentaJ1, J2
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andJ3, as the preceding Noether invariants for these concrete values of{λi , ∀i = 0, 1, 2, 3}; that is

E =
2mR4ż ˙̄z

(R2 − zz̄)2

J1 = − imR3

(R2 − zz̄)2
[(R2 + z̄2)ż − (R2 + z2) ˙̄z] + e

BR3(z + z̄)
(R2 − zz̄)

J2 = − mR3

(R2 − zz̄)2
[(R2 − z̄2)ż + (R2 − z2) ˙̄z]− e

iBR3(z − z̄)
(R2 − zz̄)

J3 = − 2imR4

(R2 − zz̄)2
[z̄ż − z ˙̄z] + e

2BR4

(R2 − zz̄)
− eBR2.

In Cartesian coordinates on the hyperboloid these invariants acquire a more symmetrical look

E =
1
2
m (ẋ2 + ẏ2 − ż2)

J1 = m(yż − zẏ)− eBR x

J2 = m(zẋ− xż)− eBR y

J3 = m(yẋ− xẏ)− eBR z

with the conditionsx2 + y2 − z2 = −R2, z > 0 andxẋ + yẏ − zż = 0. It is clear thatE is the kinetic
energy of the particle and~J ≡ (J1, J2, J3) represents the hyperbolic angular momenta.

Proposition 4 The following relation is verified between the energy and the hyperbolic angular momenta

J2
1 + J2

2 − J2
3 = 2mR2E − e2B2R4

Hyperbolic notation
1. Given two tangent vectorsX1 andX2 at a point of the hyperbolic space(R3, Thyp

2 ),such that in Cartesian
coordinates they are expressed asX1 ≡ (a1, a2, a3) andX2 ≡ (b1, b2, b3), we shall write

X1 ∗X2 = Thyp
2 (X1, X2) = a1b1 + a2b2 − a3b3

2. The hyperbolic cross productX1 ×hyp X2 of the vectorsX1 ≡ (a1, a2, a3) andX2 ≡ (b1, b2, b3) is
defined in the usual way to be

iX1×hypX2T
hyp
2 = Ωhyp

3 (X1, X2,−)

whereΩhyp
3 = dx∧ dy ∧ dz is the volume element onR3 associated with the hyperbolic metricThyp

2 . Due
to the antisymmetry ofΩhyp

3 , it is verified thatThyp
2 (X1, X1 ×hyp X2) = Thyp

2 (X2, X1 ×hyp X2) = 0. In
Cartesian coordinates

X1 ×hyp X2 = (a2b3 − a3b2, a3b1 − a1b3,−a1b2 + a2b1).

Note that with the above notation if~r ≡ (x, y, z), and~p ≡ (mẋ,mẏ, mż), then on the hyperboloidQ it is
verified that

~J = ~r ×hyp ~p− eBR~r

E =
1

2mR2
( ~J ∗ ~J + e2B2R4)

It is easy to prove the last equality using the hyperbolic notation we have just introduced; it is enough to
take into account that

~r ×hyp ~p ≡ (myż −mzẏ , mzẋ−mxż , myẋ−mxẏ)
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and that if we call~v ≡ (ẋ, ẏ, ż) the velocity vector of the particle one has that

(~r ×hyp ~p) ∗ (~r ×hyp ~p) = m2[−~v ∗ ~v (x2 + y2 − z2) + (xẋ + yẏ − zż)2]

on the hyperboloidQ, since it is verified thatx2 + y2 − z2 = −R2, z > 0 andxẋ + yẏ − zż = 0. Then

(~r ×hyp ~p) ∗ (~r ×hyp ~p) = m2R2 (~v ∗ ~v) = 2mR2E

with E = 1
2m~v ∗ ~v being the energy of the particle. Therefore

~J ∗ ~J = (~r ×hyp ~p) ∗ (~r ×hyp ~p) + e2B2R2 (~r ∗ ~r) = 2mR2E − e2B2R4

since(~r ×hyp ~p) ∗ ~r = 0 and~r ∗ ~r = −R2.

One can also use the constants of motion{J1, J2, J3} to integrate the evolution equations since our
system is completely integrable.

Theorem 4 The trajectory of a particle onQ = {(x, y, z) ∈ R3 / x2 + y2 − z2 = −R2 ; z > 0 }
with values{J1 = α1, J2 = α2, J3 = α3} for the constants of motion is given by the intersection of this
hyperboloid with the plane of equationα1x + α2y − α3z = eBR3.

PROOF. Bearing in mind that the hyperbolic angular momentum is
~J = ~r ×hyp ~p− eBR~r one has that if~r (t) is the trajectory of the particle onQ then it is verified

~J ∗ ~r (t) = ~α ∗ ~r (t) = −eBR~r (t) ∗ ~r (t) = eBR3

from whence it follows that the trajectory of the particle is contained in that plane.�

However, we shall give a geometrical method, based on the Darboux frame, to analyze the trajectory
that the particle follows on the hyperboloid and to prove that it is contained on a plane.

Theorem 5 LetD = vT be the velocity vector of the curveσ(t) that describes the motion of the particle
on the hyperboloid, then the trajectory of the particle is contained in the planeΩD ∗ σ(t) = eB

mvR with

ΩD = 1
RN − eB

mv NQ = 1
R

Φ(T )
B + eB

mv T ×hyp
Φ(T )

B being the hyperbolic angular velocity vector which is
constant on the trajectory.

PROOF. Let (R3, Thyp
2 ) be the hyperbolic space and let us denote by∇̂ the Levi-Civita connection as-

sociated with the hyperbolic metric. LetNQ be a normal vector to the hyperboloidQ with respect to the
metricThyp

2 and such thatThyp
2 (NQ, NQ) = −1. Let D = vT be the velocity field of the curveσ(t) that

the particle follows onQ and letN be a vector field, with support on the curve, tangent toQ and orthogonal
to T such that the vectors{T,N,NQ} are orthonormal at each point of the curve and such that

Thyp
2 (T, T ) = 1

Thyp
2 (N,N) = 1

Thyp
2 (NQ, NQ) = −1.

These vectors are the so-called Darboux frame of the curve. It is verified that

T ∇̂T = χgN + χnNQ

T ∇̂N = −χgT + τgNQ

T ∇̂NQ = χnT + τgN
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with χg = − eB
cmv being the geodesic curvature,τg the geodesic torsion andχn the normal curvature. In

particular one can take{T,N = Φ(T )
B , NQ = −T ×hyp

Φ(T )
B }. as a Darboux frame. It is not difficult to

check that for every vector fieldX tangent to the curve,

T ∇̂X = ΩD ×hyp X ∀X

whereΩD is the vector field with support on the curve that we shall call hyperbolic angular velocity, which
is given by

ΩD = −τgT + χnN + χgNQ

and it is verified thatΩD ∗ ΩD = τ2
g + χ2

n − χ2
g.

Let∇ be the Levi-Civita connection associated with the first fundamental formT2 (Riemannian) ofQ.
It is easy to see that the second fundamental formΦ2 of Q is Φ2 = 1

R T2. Hence ifD1 andD2 are vector
fields tangent toQ, the Gauss formula is written as

D∇̂
1 D2 = D∇

1 D2 + Φ2(D1, D2)NQ = D∇
1 D2 +

1
R

T2(D1, D2)NQ

therefore

ΩD ×hyp T = T ∇̂T = T∇T +
1
R

T2(T, T )NQ = χgN +
1
R

NQ

ΩD ×hyp N = T ∇̂N = T∇N +
1
R

T2(T,N)NQ = −χgT

thus

χg = − eB

mv
; χn =

1
R

; τg = 0

and therefore

ΩD =
1
R

N − eB

mv
NQ =

1
R

N − ωc

v
NQ

with ΩD ∗ ΩD = 1
R2 − ω2

c

v2 from which we conclude that

v2 =
ω2

cR2

[1−R2 (ΩD ∗ ΩD)]
.

If σ(t0) is a fixed point of the curve, thenf(t) = (σ(t)− σ(t0)) ∗ΩD verifiesḟ(t) = D ∗ΩD + v (σ(t)−
σ(t0))∗T∇ΩD = 0 sinceT ∗ΩD = 0 andT∇ΩD = 0 becauseΩD is constant on the trajectory. Therefore
f(t) = f(0) = 0, that is

(σ(t)− σ(t0)) ∗ ΩD = 0.

This means that the trajectory of the particle is contained in the plane that passes trough the pointσ(t0)
and is perpendicular, with respect to the hyperbolic metric, to the vectorΩD. Since the points of the curve
verify σ(t) = 1

R NQ, then

ΩD ∗ σ(t0) = ΩD ∗ σ(t) = ΩD ∗ 1
R

NQ = − ωc

vR
NQ ∗NQ =

ωc

vR
.

ThereforeΩD ∗ σ(t) = ωc

vR = eB
cmvR as was to be shown.�

Remark 4 If we compare this result with the preceding theorem~J ∗~r(t) = eBR3

c we see that the relation-

ship between the hyperbolic angular velocity and the angular momentum is given by~J = mvR4 ΩD.
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4. Symplectic reduction of the hyperbolic Landau-Hall prob-
lem

One can give a Hamiltonian formulation of the hyperbolic Landau-Hall problem by considering that the
configuration space is the hyperboloidQ = {(x, y, z) ∈ R3 / x2 + y2 − z2 = −R2 ; z > 0 }. Let
π : T ∗Q → Q be the cotangent bundle ofQ, then the phase space, as is well known, is the symplectic
manifold (T ∗Q,ωHall

2 = ω2 − e π∗(FHall) ) with ω2 being the canonical symplectic form ofT ∗Q and
FHall = B Ω2 with B 6= 0.

Let SO(2, 1)o be the connected component of the identity ofSO(2, 1). ThenSO(2, 1)o ' Sl(2, R)/Z2

acts transitively onQ (the isotropy group of each point ofQ is isomorphic toSO(2, R)) and it induces
a symplectic action on(T ∗Q,ωHall

2 ), without fixed points, that preserves the Hamiltonian of the system,
furthermore it admits a moment mapJ : T ∗Q → so(2, 1)∗ which is equivariant with respect to the coadjoint
action [1, 15, 22].

The fundamental vector fields of this action are nothing else but the restriction toT ∗Q ⊂ T ∗R3 of the
fundamental vector fields of the natural action ofSO(2, 1)o on T ∗R3. If we take a basis< A1, A2, A3 >
of the Lie algebraso(2, 1) with [A1, A2] = −A3, [A1, A3] = −A2 and[A2, A3] = A1, one has that the
fundamental vector field associated with these vector fields are, in Cartesian coordinates onQ,

DJ1 = A∗1 = −z
∂

∂y
− y

∂

∂z
− ż

∂

∂ẏ
− ẏ

∂

∂ż

DJ2 = A∗2 = z
∂

∂x
+ x

∂

∂z
+ ż

∂

∂ẋ
+ ẋ

∂

∂ż

DJ3 = A∗3 = y
∂

∂x
− x

∂

∂y
+ ẏ

∂

∂ẋ
− ẋ

∂

∂ẏ

with x2 + y2 − z2 = −R2, z > 0 andxẋ + yẏ − zż = 0.
Let {ω1, ω2, ω3} ∈ so(2, 1)∗ be the dual basis of{A1, A2, A3} and let us denote by(α1, α2, α3) the

coordinates of an elementω ∈ so(2, 1)∗ with respect to this basis. Then the moment mapJ : T ∗Q →
so(2, 1)∗ is defined by

J∗(α1) = J1 = m(yż − zẏ)− eBR x

J∗(α2) = J2 = m(zẋ− xż)− eBR y

J∗(α3) = J3 = m(yẋ− xẏ)− eBR z

with x2 + y2 − z2 = −R2, z > 0 andxẋ + yẏ − zż = 0. This expression can be written as~J =
~r ×hyp ~p− eBR~r. The energyE is a positive function onT ∗Q which is not independent of the conserved
hyperbolic momenta, since as we have previously indicated

E =
1

2mR2
(J2

1 + J2
2 − J2

3 + e2B2R4).

It is easy to check, thanks to equations 9,10 and 11 of section 3, that the Poisson brackets are

{J1, J2} = DJ1(J2) = −J3

{J1, J3} = DJ1(J3) = −J2

{J2, J3} = DJ2(J3) = J1.

Using the hyperbolic stereographic projection (isothermal coordinates) or hyperbolic coordinates onQ,
it is proved after a long but easy computation thatdJ1 ∧ dJ2 ∧ dJ3 = 0 if and only if E = 0, which implies
that
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Proposition 5 The moment mapJ : T ∗Q → so(2, 1)∗ is a regular projection on all points except for
those that verifẏx2 + ẏ2− ż2 = 0 (which correspond to the points of zero energy for whichJ2

1 +J2
2 −J2

3 =
−e2B2R4).

Theorem 6 Givenα = (α1, α2, α3) ∈ so(2, 1)∗ and rα = α2
1 + α2

2 − α2
3. If we suppose thateB < 0

(analogously ifeB > 0 ) then we have that:

1. If rα < −e2B2R4, thenJ−1(α) = ∅. ( Note that otherwise the particle would have a negative
energy, but this is impossible sinceE is positively defined onT ∗Q).

2. If rα = −e2B2R4, thenE = 0.

2a) If α3 < 0 thenJ−1(α) = {( α1
eBR , α2

eBR , α3
eBR , 0, 0, 0)} ∈ T ∗Q ⊂ T ∗R is a point on the

image of the zero section of the bundleπ : T ∗Q → Q; that is, the velocity is zero and the particle is
fixed at a point of the hyperboloidQ.

2b) If α3 > 0 thenJ−1(α) = ∅, since in that case( α1
eBR , α2

eBR , α3
eBR ) /∈ Q.

3. If−e2B2R4 < rα < 0, then0 < E < e2B2R2

2m .

3a) If α3 < 0 thenJ−1(α) = ∅, since in this case the intersection of the hyperboloidQ with the
planeα1x + α2y − α3z = eBR3 is empty.

3b) If α3 > 0 thenJ−1(α) is a one dimensional submanifold ofT ∗Q defined by the zeroes of
the functions{J1 −α1, J2 −α2, J3 −α3} and furthermoreπ(J−1(α)) is the closed trajectory onQ
given by the intersection of the hyperboloidQ with the planeα1x + α2y − α3z = eBR3.

4. If rα = 0, the energyE = e2B2R2

2m .

4a) If α = (0, 0, 0) then J−1(α) = ∅ since ~J = ~r ∗ ~p − eBR~r = (0, 0, 0) implies that
~r ∗ ~p = eBR~r and since~r ∗ ~p is orthogonal to~r, it turns out that~r = (0, 0, 0) but~r = (0, 0, 0) /∈ Q.

4b) If α 6= (0, 0, 0) thenJ−1(α) is a onedimensional submanifold ofT ∗Q defined by the zeroes
of the functions{J1 − α1, J2 − α2, J3 − α3} and one has thatπ(J−1(α)) is the open trajectory on
Q given by the intersection of the hyperboloidQ with the planeα1x + α2y − α3z = eBR3.

5. If rα > 0, thenE > e2B2R2

2m , withπ(J−1(α)) being the open trajectory onQ given by the intersection
of the hyperboloidQ with the planeα1x + α2y − α3z = eBR3.

Proposition 6 The distinct coadjoint orbits of the groupSO(2, 1)o are:

1. O0 = {(0, 0, 0)}

2. Ohyp
k2,+ = {(α1, α2, α3) / α2

1 + α2
2 − α2

3 = −k2 , α3 > 0} for eachk2 6= 0 ∈ R+.

3. Ohyp
k2,− = {(α1, α2, α3) / α2

1 + α2
2 − α2

3 = −k2 , α3 < 0} for eachk2 6= 0 ∈ R+.

4. Ocone
+ = {(α1, α2, α3) 6= (0, 0, 0) / α2

1 + α2
2 − α2

3 = 0 , α3 > 0} .

5. Ocone
− = {(α1, α2, α3) 6= (0, 0, 0) / α2

1 + α2
2 − α2

3 = 0 , α3 < 0} .

6. Ohip 1 leaf
k2 = {(α1, α2, α3) / α2

1 + α2
2 − α2

3 = k2} for eachk2 6= 0 ∈ R+.

Proposition 7 If Gα is the isotropy subgroup of a pointα ∈ so(2, 1)∗ with respect to the action of
SO(2, 1)o, then one has that

1. If α ∈ O0, thenGα = SO(2, 1)o.

2. If α ∈ Ohyp
k2,+, thenGα is isomorphic toSO(2).
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3. If α ∈ Ohyp
k2,−, thenGα is isomorphic toSO(2).

4. If α ∈ Ocone
+ , thenGα is isomorphic toE(1).

5. If α ∈ Ocone
− , thenGα is isomorphic toE(1).

6. If α ∈ Ohyp 1 leaf
k2 , thenGα is isomorphic toSO(1, 1)o.

Theorem 7 Let us denote byT ∗ε Q the submanifold ofT ∗Q of constant energyE = ε, then :

1. J−1(O0) = ∅.

2. (a) J−1(Ohyp
k2,+) = ∅ if −k2 < −e2B2R4.

(b) J−1(Ohyp
k2,+) = T ∗0 Q (zero section of the cotangent bundle ofQ) if −k2 = −e2B2R4.

(c) J−1(Ohyp
k2,+) = T ∗ε Q with ε = 1

2mR2 (−k2 + e2B2R4) if −e2B2R4 < −k2 < 0.

3. J−1(Ohyp
k2,−) = ∅ , ∀k2 6= 0.

4. J−1(Ocone
+ ) = T ∗ε Q with ε = e2B2R2

2m .

5. J−1(Ocone
− ) = ∅.

6. J−1(Ohip 1 leaf
k2 ) = T ∗ε Q with ε = 1

2mR2 (k2 + e2B2R4).

Corollary 4 LetE = ε be the energy of the particle, then:
1) If ε = 0, then the trajectory onQ is a point.
2) If 0 < ε < e2B2R2

2m , then the trajectory onQ is closed (periodic).

3) If ε ≥ e2B2R2

2m , then the trajectory onQ is open.

Remark 5 It may be expected that when one quantizes this problem, the states of energy0 < ε < e2B2R2

2m
will represent localized quantum states and therefore will contribute to the Hall resistivity, whereas for
ε ≥ e2B2R2

2m , where ergodicity phenomena appear, these states will represent extended states which will
contribute to the Hall conductivity.

5. The manifold of orbits of constant energy on the hyperbolic
Landau-Hall problem

As we have indicated, the submanifold of constant energyE = 0 is identified with the image of the zero
section of the bundleT ∗Q, whereas in the other casesE = ε 6= 0, it is a tridimensional submanifold of
T ∗ε Q of T ∗Q, which is defined by the zeroes of the function12mR2 (J2

1 +J2
2 −J2

3 +e2B2R4). Let us denote
by I(ε) the ideal ofC∞(T ∗Q) generated by this function.

If ε 6= 0, let wHall
2 |T∗

ε Q be the restriction toT ∗ε Q of the 2-formwHall
2 .

Proposition 8 If ε 6= 0, T ∗ε Q is a coisotropic submanifold of(T ∗Q,wHall
2 ) and the radical ofwHall

2 |T∗
ε Q

is the restriction toT ∗ε Q of the Hamiltonian vector fields associated to the functionsI(ε).

Therefore it is easy to check that the vector fieldD = J1 DJ1 + J2 DJ2 − J3 DJ3 is tangent to the
submanifold of constant energyE = ε 6= 0 and their restrictions to everyT ∗ε Q generate the radical or null
kernelrad wHall

2 |T∗
ε Q of wHall

2 |T∗
ε Q.

274



Geometrical aspects of the Landau-Hall problem on the hyperbolic plane

Proposition 9 The trajectory that passes through the point

(x0, y0, z0, ẋ0, ẏ0, ż0) ∈ T ∗Q

with J(x0, y0, z0, ẋ0, ẏ0, ż0) = (α1, α2, α3) andε = 1
2mR2 (α2

1 + α2
2 − α2

3 + e2B2R4) 6= 0, is the integral
curve of the vector fieldD = J1 DJ1 + J2 DJ2 − J3 DJ3 which fort = 0 passes through that point.

Since the moment mapJ intersects the coadjoint orbits corresponding to non-zero energy cleanly, as a
consequence of the Kazhdan-Kostant-Sternberg theorem [15], we have that

Theorem 8 If ε 6= 0, the integral curve of the radical that passes through the pointT ∗ε Q is the orbit under
the connected component of the isotropy group of the image byJ of that point.

With the above notations and results, bearing in mind thatSO(2, 1)o acts transitively onT ∗ε Q, if we fix
a point of this submanifold we have that

Proposition 10 The morphisms

1. J : T ∗ε Q → Ohyp
k2,+ for ε = 1

2mR2 (−k2 + e2B2R4) with−e2B2R4 < −k2 < 0.

2. J : T ∗ε Q → Ocone
+ with ε = e2B2R2

2m .

3. J : T ∗ε Q → Ohyp 1 leaf
k2 for ε = 1

2mR2 (k2 + e2B2R4) with e2B2R4 < k2

are principal fiber bundles whose structure groups areSO(2), E(1) andSO(1, 1)o respectively.

The manifold of orbits of constant energyε is nothing else but the reduced phase spaceT∗
ε Q

rad wHall
2 |T∗ε Q

.

Taking into account theorem 26.6 in [15] and that the isotropy subgroups with respect to the coadjoint action
are connected for everyα ∈ so(2, 1)∗ one has that

Theorem 9 The moment mapJ induces diffeomorphisms, that will be denoted byJ̄

1. J̄ : T∗
ε Q

rad wHall
2 |T∗ε Q

→ Ohyp
k2,+ if −e2B2R4 < −k2 < 0.

2. J̄ : T∗
ε Q

rad wHall
2 |T∗ε Q

→ Ocone
+ if k2 = 0.

3. J̄ : T∗
ε Q

rad wHall
2 |T∗ε Q

→ Ohyp 1 leaf
k2 if k2 > 0).

with ε = 1
2mR2 (−k2 + e2B2R4). In this sense, every manifold of orbits of constant energyE = ε 6= 0, is

identified, via the moment mapJ , with the corresponding coadjoint orbit.

Let us analyze the manifold of orbits of constant energyε < e2B2R2

2m for which the trajectories are
closed

Theorem 10 If ε < e2B2R2

2m , then there exists a unique symplectic structurewHall
red onOhyp

k2,+ such that

J̄∗wHall
red = wHall

2 |T∗
ε Q.

PROOF. In hyperbolic coordinates

α1 = k sh ζ1 cos ζ2

α2 = k sh ζ1 sin ζ2

α3 = k ch ζ1
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on the coadjoint orbitOhyp
k2,+, its Kirillov-Kostant symplectic 2-form is given bywhyp

k2,+ = k2 shζ1 dζ1 ∧
dζ2. One has then thatwHall

red = λ whyp
k2,+ = λ k2 shζ1 dζ1 ∧ dζ2. It is sufficient to calculate the value ofλ

such that the required condition is fulfilled. For doing this note that since onOhyp
k2,+, it is verified that

ζ1 = arc ch(
J3

k
)

ζ2 = arc tg(
J2

J1
)

One has that

J̄∗wHall
red = J̄∗(λ k2 shζ1 dζ1 ∧ dζ2) = J̄∗(λ k2 d(chζ1) ∧ dζ2) =

= λ k2 d(
J3

k
) ∧ d(arctg

J2

J1
) = λ k d(

J3

k
) ∧ J1dJ2 − J2dJ1

J2
1 + J2

2

=

= λ k
dJ1 ∧ dJ2

J3

since, asJ2
1 + J2

2 − J2
3 = −k2, is dJ3 = J1 dJ1+J2 dJ2

J3
.

But wHall
2 |T∗

ε Q = dJ1∧dJ2
J3

and comparing it turns out thatλ = 1
k and sincek2 = 2mR2ε− e2B2R4

c2 ,

wHall
red =

[
2mR2ε− e2B2R4

] 1
2 shζ1 dζ1 ∧ dζ2

as was to be shown.�

Remark 6 The application of geometric quantization to the manifold of constant energy0 < ε < e2B2R2

2m
leads to a quantization of energy that will be developed and compared to the results given in the physics
literature elsewhere.
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