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Equivariant tori which are critical points
of the conformal total tension functional

M. Barros

Abstract. We give a new method to obtain Willmore tori over principal circle bundles. This method
can be viewed as a reduction of variables criterion for the Willmore variational problem in conformal
structures associated with metrics, on principal circle bundles, which are obtained via the generalized
inverse Kaluza-Klein mechanism. The problem of finding critical points for the conformal total tension
functional in those conformal structures is transfered to the search of critical points for certain elastic
energy functionals acting on spaces of curves in the base. This technique is applied to construct wide
families of equivariant tori which are critical points for the conformal total tension functional in an ample
class of conformal structures.

Toros equivariantes que son puntos criticos de la tensi on total conforme

Resumen. Se obtiene un nuevo &wodo para obtener toros de Willmore en estructuras conformes de
Kaluza-Klein sobre fibrados principales con fibra la circunferencia. Diversas aplicaciones @emrista t
son consideradas.

1. Introduction

Let \/ be the space of immersions of a compact, smooth suffaaea Riemannian manifoldL, ds? =<

,>). The tension field of» € A is the Euler-Lagrange operator associated with the energy [&]. It is

known from the time of Laplace that the tension fieldofs precisely its mean curvature vector figitl

We can measure the tension globally and then wonder for the minimal amount of total tension that a surface
receives from the surrounding spade ds? =<, >). More generally, we ask for the critical points of the
functional€ : N' — R defined by

E(p) :/ < H,H > dv,
N

wheredu is the volume element of the induced metpit(<, >) on N.

To obtain a functional invariant under conformal transformations of the ambient space, we need to
modify the integrand of by attaching the extrinsic Gaussian curvature as a potential. To be precise, the
Willmore functionalV : N/ — R is defined to be
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Wip) = /N(< H,H > +K)do,

where K is the sectional curvature ¢f., ds?> =<, >) restricted top. (T'N) (notice that both functionals
coincide if the ambient space is flat). This action is also known asdh#ormal total mean curvature (or
conformal total tension) functiongbecause its invariance by conformal transformatior{g.ofls> =<, >).

The critical points of\V are calledwillmore surfacesand its associated variational problem is actually
stated in(L, [ds?]), where[ds?] standard for the conformal structure defineddsy. The importance

of this variational problem partially comes from the Willmore conjecture. In 1965, T.J.Willmore [22, 23]
conjectured that ifV has genus one ands?] is the standard conformal class on the sphere((L.eds? =<

,>) is a round sphere) then’ > 272 and the equality is attained for any conformal image of the Clifford
torus in the unit round-sphere. The conjecture is still an open problem.

In this paper we are going to exhibit a method to ob&lirinvariant, Willmore tori in Kaluza-Klein
conformal structures over princip&f-bundles. The core of this process is the principle of symmetric
criticality, [15], which combined with the above mentioned extrinsic conformal invariance allows one to
reduce the search of Willmore tori in those conformal structures to that for critical points of certain elastic
energy functionals defined on spaces of curves in the base of the prifitipahdle.

Itis well known that the Clifford torus is the only Willmore torus with constant mean curvature (actually
it is minimal) one can find in the rourttsphere. This is not true if we remove the conformal structure on
the3-sphere. A torus immersed in a Riemannian manifold is said to be conformal constant mean curvature
if there exists a conformal transformation of that Riemannian manifold which carries the torus to one with
constant mean curvature. Among the Willmore tori, those with constant mean curvature (respectively con-
formal total mean curvature) have great interest because they naturally appear as critical points of a certain
functional associated with another classical variational problem (respectively up to conformal transforma-
tion). As an illustration, we will give many examples where our procedure is applied to obtain Willmore
tori in different conformal structures. Also, by applying the algorithm, we will obtain conformal total mean
curvature Willmore tori in a wide class of conformal structures.

2. The inverse Kaluza-Klein mechanism

The inverse Kaluza-Klein method of interpreting gravity pls a= U (1) gauge field as pure gravity in one
higher dimension can be explained in the following general frameworkp L&t — M be a principal fibre
S*-bundle endowed with principal connection and denotevlitg connectiori-form. For any Riemannian
metric h on M and any positive smooth functianin M, we define the generalized Kaluza-Klein metric
h, on P by

h = p*(h) + (u o p)’w* (dt?),

wheredt? denotes the standard metric on the unit circle.

These metrics are like local warped product metrics. In particular,isfchosen to be constant, then
it works as a global scalling factor on the fibres, which is usually called constaigishingparameter. In
these cases, the metrikg are simply called Kaluza-Klein dsundle likemetrics. It is not difficult to see
that the projection map : (P, h,) — (M, h) has the following properties

1. This is a Riemannian submersion whose leaves are the fibres. Furthermore it has geodesic leaves if
and only ifu is constant, that ig,, is bundle like.

2. The natura$'-action onP is carried out by isometries ¢®, h.,).

This paper concerns the Willmore variational problem(i [h.]). 1t should be noticed that in any
Kaluza-Klein conformal clas$h.,], we can find a unique bundle like metric. In fact, just put= (u%

) hay,
and then
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1
by = p* <u2h> + w*(dt?).

With this choice in[h,,], we obtain a Riemannian submersign; (P, h,) — (M, 2.h), with geodesic
fibres. Actuallyh,, is the only Riemannian metric ift such thap : (P, Eu) — (M, %h) is a Riemannian
submersion with geodesic fibres isometric to the unit circle, [18]. This conformal change will be very useful
in the next section.

3. The principle of symmetric criticality

In many areas, including mathematics and physics, it has proved extremely useful to look for symmetries
and to exploit them, if they exist, in problem solving. The sucess of this procedure is based on the principle
of symmetric criticality. This has been used in many applications of the calculus of variations, in particular
in theoretical physics, without being particulary noticed. A typical example of this implicit use can be found
in the H.Wey! derivation of the Schwarschild solution of the Einstein field equations, [21]. A suggestive
formulation of this principle, although it is not valid in this general form Asy critical symmetric point is
a symmetric critical pointThe precise formulation of the principle is due to R.S.Palais [15]. In this paper
we will discuss a simplified version of the Palais formulation, which will be enough for our purposes.

The starting point is a smooth manifolef on which a group acts through diffeomorphisms. One
also has & -invariant functional3 : M — R, e.g.B(a.p) = B(y), foralla € G andp € M. The set of
symmetric points is defined to bl = {¢ € M : a.p = ¢, Va € G}. LetX be the set of critical points
of B and denote by the set of critical points o8 when it is restricted toV. Naturally this setting
forces Mg to be a differentiable manifold and this is assuredAf; is a smooth submanifold of1. A
sufficient condition to guarantee this is to assume €h# a compact Lie group and then the principle of
symmetric criticality simply states that

YN Mg =3qg.

4. An algorithm to reduce variables in the Willmore variational
problem

We consider the Willmore functiond : N/ — R, acting on the smooth manifoldd” of immersions from
a genus one, compact surfadein (P, h,,). The set of critical pointsy, of this functional is nothing but
the set of Willmore tori in( P, [,]).

On the other hand, for any curgeimmersed inM, its complete lift, N, = p~'(v), is aS*-invariant
surface immersed it®. It is not difficult to see that the converse also holds, indeed forSryvariant
surfaceN in P, one can integrate the distributidn,-orthogonal to the fibres because it has dimension
one. Hence, one finds a curgeimmersed inM such thatN = p~!(y). We also observe thaV, is
embedded if and only ify is simple. To obtainV.,, we begin from a horizontal lifty, of v and then
N, = {a7(s) : a € S'}, thus we can obtain a natural parametrizatiomgfwhere coordinate curves
are fibres and horizontal lifts of, respectively. In general the horizontal lifts of a closed curve are not
closed, because the holonomywtould be non trivial. However, i is closed, thenV,, is compact. As a
consequence, the set of symmetric poim’g;, is identified with

Ngt = {N, = p~1(7) : yisaclosed curve immersed in M}.

Since the Willmore functional i§*-invariant, because th&'-action onP is made up through isometries,
we have all the ingredients to apply the above stated formulation of the principle of symmetric criticality.
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Therefore, to obtain Willmore tori itiP, [h,]) which do not break th&'-symmetry of the problem, we
only need to computgy over/\/S1 and then to proceed in due course.

To calculateV(N,,) we will useh,, and recall thap : (P, h,) — (M, 2 .h) is a Riemannian submer-
sion with geodesic fibres. In [2], the author obtained the following relationship between the mean curvature
functiona of IV, in (P, h,,) and the curvature functiomof  in (M, %.h)

o? = {(s*op) )

this formula holds for any harmonic Riemannian submersion.

The computation of the second terfi, appearing in the integrand of the Willmore functional involves
several concepts from the theory of Riemannian submersions. In this framework, a pair of geometric in-
variants appear, they are usually called the O’Neill invariants and denoteddnd T, respectively [7].

The later is defined using the second fundamental form of the fibres, in particular it vanishes identically
when those are totally geodesic. The former invariant measures the obstruction to integrability of the hori-
zontal distribution, in particular it vanishes identically wheiis flat. In terms of these invariants, one can
compute the fundamental relationships between the curvatures of the Riemannian manifolds involved in the
Riemannian submersion. On the other hand, the tangent plaig &f a mixed(also calledvertizontal

[20]) section in( P, Bu) anywhere. Since in our cagevanishes identically, theA is given [7]

where{X,V}is ah,-orthonormal basis in the above mentioned mixed section made up by the horizontal
lift X =4’ of the unit tangent vector field =+’ (assuming that is arclength parametrized {/, -5 .h))

andV is nothing but the fundamental vector field associated with the standard unit vector field in the Lie
algebra o' = U(1) (actuallyV defines the unit global vector field id generating the leaves flow). Next,

we denote by and+ the Ricci curvatures of M, u%.h) and (P, Eu), respectively. Again we use that the
Riemannian submersion has geodesic fibres to see [7]

ha(AgV,AxV) = 5 (r(X, X) op — #(X, X)) . ©)

N =

Now, we combine (2,3) to obtain
1 o
K= (r(X,X)op—7(X,X)). (4)
Let UM be the unit tangent bundle 6}/, u%.h), we definep : UM — R, such that

(Y )op=2(r(y,7)op—7(7,7)). (5)
We put (1) and (4) in the integrand of the Willmore functional to obtain

1 1 TR
W) = [ (§02on + 500 ) 0p =737 o
N
and so
™ !
W(N,) = 5/ (nz + (7)) ds.
N
The last formula suggests to defineaastic energy densityvith potentialg, for closed curves g/, 712~h), by

() = K>+ (7)),

then, we consider the following elastic energy functional acting on closed cur¢s, iﬁg.h)
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F(y) = / Y(y)ds.

As a consequence of all this information, we have

WN,) = SF().

That can be summed up in the following theorem, which is regarded as a criterion to reduce variables for
Willmore surfaces.

Theorem 1 Letp: P — M be aS'-bundle endowed with a principal connection. ketbe a generalized
Kaluza-Klein metric onP and [h,] its conformal class. Given an immersed closed cunia M, then
N, = p~1(v) is a Willmore surface i P, [1,,] if and only if+ is a critical point of the elastic energy action
F acting on closed curves i/, -5 .h).

Corollary 1 Letw be the connectioi-form of a principal connection on the princip&f-bundlep : P —

M. For any Riemannian metrit on M, leth = p*(h) + w*(dt?) be the only metric o which makes

p: (P,h) — (M, h) to be a Riemannian submersion with geodesic fibres isometric to the unit circle. Given
an immersed closed curvein M, thenN, = p~!(v) is a Willmore surface i P, [] if and only if is a
critical point of F in (M, h).

5. Early applications

Most of the important applications of this result occur when the potepigtonstant. In this case, we will
refer the critical points ofF aselasticae(or elastic curves), [12], and works as a Lagrange multiplier for
the total squared curvature functional. A sufficient condition to guarantee the constapdy obtained
when we assume that both/, k) and(P, h) are Einstein. In this caseand\ will denote the corresponding
Einstein constants and then, [7]

b =201 —N). (6)

However, the previous sufficient condition is not necessary. To do clear this claim, we consider a Rieman-
nian submersiop : (P, h) — (M, h) with geodesic fibres isometric to the unit circle and assume that both
(M, h) an(P, h) are Einstein, so we get a constant potentiaNow, we deformate the metric of P by
changing the relative scales of the base and the fibre. To be precise, for any positive real humgber
considerh; to be the unique Riemannian metric hwhich makes : (P, h;) — (M, h) a Riemannian
submersion with geodesic fibres isometric to the radiascircle and horizontal distribution defined via
the samev. In this way, we get a one-parameter family of Riemannian submersionshwith i, which
constitutes the so calledhnonical variatiorof the starting Riemannian submersion. Since we are assuming
thath is Einstein, then there is at most one more Einstein metr{&in: ¢ > 0}, (see [7] for details). On

the other hand, i, denotes the potential associated with it is not difficult to see that, = t.¢ and so

this is constant for any.

5.1. Example 1

Let (S®,h) and (S?, h) be the round spheres of radiiand 1/2, respectively. The usual Hopf map:
(S®,h) — (S?, h) is a Riemannian submersion with fibres being geodesics. Since both metrics are Einstein,
we apply (8) to obtaip = 4. Corollary 1 gives the following result due to U.Pinkall, [17]

Corollary 2 Let be a closed curve, immersedSA. Thenp—!(v) is a Willmore torus in(S?, [A]) if and
only if v is an elastica in(S?, k) (with Lagrange multiplier 4)
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In [12], J. Langer and D.A. Singer have shown the existence of infinitely many elasticae)(in (S?, h).
Even one can get an infinite series of simple elasticae. Hence, we have the following result, [17]

Corollary 3 There exist infinitely many Willmore tori it§?, [A]) which are obtained as Hopf tori over
closed elasticagp = 4) in (827 h). Furthermore, the only such a torus with constant mean curvature in
(S, h) is the Clifford torus which is shaped on a geodesi¢S3f /) and so it is minimal.

5.2. Example 2

Let{p: (S h:) — (S*,h) : t > 0} be the canonical variation of the previous Hopf Riemannian submer-
sion. It is obvious thak; = £ is the unique Einstein metric in this one-parameter family of metric§®on
However,h; has constant scalar curvature for any 0. Actually these three-spheres can be considered as
geodesic spheres in a complex projective plane. The potentialcomputed to bdt¢ and so we can use
once more the results of [12] to obtain the following result, [2]

Corollary 4 There exist infinitely many Willmore tori i8>, [2,]) which are obtained as Hopf tori over
closed elasticaép = 4t) in (S, h). Furthermore, for0 < t < 1, there exist Willmore torp—(v) in this
series such that

W(p~(v)) < 2n.

The last claim in the above statement, strongly contrasts with the well known Willmore conjecture, which

ensures tha(T') > 2x2 for any torusT” immersed in(S*, 7).

5.3. Example 3

A particular case in Corollary 1 was obtained in [4]. It corresponds with the case whis flat connec-
tion. In this case the O'Neill invaria, of p : (P, h) — (M, h) vanishes identically. Thus, we combine
(3) with (5) to see thap vanishes identically too.

Let m (M) be the Poincare group of the smooth maniféll It is well known thatG-bundles on
M admitting a flat connection are classified by the class of monomorphisms#fréM)/H (H being
a normal subgroup of;(M)) into G. Our next example can be regarded in this context. We consider
M =R xS, its fundamental group is isomorphic @, +). The universal covering? of M is a principal
Z-bundle which admits an obvious trivial flat connection Let! be a real number such thitr is not
rational, the mag; : Z — S' defined byf;(a) = ¢** is a monomorphism frontZ, +) in S ¢ C regarded
as a multiplicative group. The transition functionsR#(M, Z) can be extended, vig, to be valued in
S* and then considered as transition functions to define a prinSipaundle, sayP;(M,S"), over M.
Now, f; can also be extended to a monomorphigimfrom R?(M, Z) to P,(M,S") which mapsw, in a
flat connection, also called,, on P,(M,S"). It should be noticed that the holonomy subbundle of this
connection is isomorphic tRQ(M, Z). Corollary 1 can be translated to this case giving

Corollary 5 Let h be a Riemannian metric o/ = R x S' andh = p*(h) + wi(dt?) the unique
Riemannian metric o, such thatp : (P, h) — (M, h) is a Riemannian submersion with fibres being
geodesics isometric to the unit cirq8', dt?). Lety be any closed curve immersedif, thenp=—!(v) is a
Willmore torus in( P;, [h]) if and only ify is a critical point of the total squared curvature functional acting
on closed curves iiM, g). Moreover, ify has constant curvature i, h), thenp=*(v) has constant

mean curvature if P, h).

The critical points of the elastic energy actiify) = f,y x2ds are calledfree elasticae because any con-
straint on the length of curves is required. As an illustration, we consider the following particular case.
Chooseh on M such that( M, h) is a catenoid. In other words, we lodi as the surface of revolution in

RR? which is obtained when rotate a catenary and thenthe induced metric of/ for the Euclidean one in
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R3. It was shown in [5] thaf M, h) has exactly two non-geodesic parallels,and-y,, being free elastica.

They are placed symmetrically with respect to the unique geodesic pasigll@ind so they are congruent

in (M:;h). Now, p~1(v,) andp~—!(v;) are non-congruent Willmore tori itP;, [A]). The former is minimal

in (P, h) while the later has non-zero constant mean curvatu(@jn). This result nicely contrasts with

the unigeness for the Clifford torus {8, /) previously stated in Corollary 3. It should be finally observed

that (compact) minimal surfaces in, for example, a three space are Willmore surfaces, and so considered as

trivial, only if this three space has constant curvature.

5.4. Example 4

The next example uses the extrinsic conformal invariance of the Willmore variational problem as an addi-
tional ingredient, [1] (see also [13] for another conformal model). debe the open hemisphere in the

unit round two-sphere defined &* by z; > 0 andz, = 0. Denote by its standard metric of constant
curvature one. Ther? = M x S' is the three-sphere where one geodesic was removed. It is evident that
it admits a flat connectiom as a principaS'-bundle over)/. The metric of constant curvature one Bris

given byh = h + f2dt?, with the obvious meaning anfibeing the positive smooth function dd defined

as ther;-projection. In other wordg,P, h) is the warped produdt/ fol (see [7] for details about warped
products). It is noteworthy that: (P,h) — (M, k) is a Riemannian submersion althougth the fibres are
not geodesics. In spite of this, we take advantage of the above mentioned conformal invariance to give
the following argument. First, we make the conformal changeFrh) by consideringh = 72-h. Now,

p: (Ph) — (M, f%.h)is a Riemannian submersion with geodesic fibres. Moreover, it is not difficult to
see that M, #.h) is the standard hyperbolic two-plane with constant curvatire Since the complete

classification of free elasticae in this surface was provided in [12], we can use it to obtain Willmore tori in
the three-sphere endowed with its standard conformal structure. Of course the family of Willmore tori so

obtained is different to that obtained by U. Pinkall, [17] and which was reported in Corollary 3.

6. Further applications

We recall thatS*-bundles on a compact manifold are classified by the cohomology grodf? (M, Z).
Giveng € H%(M,Z), we denote by?]R € H?(M,R) its image under the universal change of coefficients
morphismH?(M,Z) — H?*(M,R). Letp : P — M be a principaS'-bundle associated with andw a
principal connection with curvaturform Q. Then,Q2 = p*(0©) for a close®-form © on M. Moreover,
the cohomology clag®)] satisfie§©] = 273 The converse also holds, i.e. for any cloggidrm © with

O] = 276K one can find a principal connectianon theS'-bundle associated with, whose curvature is

Q =p*(0).

Let (M, h)) be a compact Kaehler-Einstein manifold with Kaelldorm F'. Suppose it has positive scalar
curvature. We denote hy (M) the first Chern class d¥f/ and take3 as a rational multiple of;, (M). Since

[F] = 271'1(M)R, then[F] is a multiple ofﬂR Now, a classical result of S. Kobayashi, [11], guarantees
the existence of a uniqu# -invariant Einstein Riemannian metri, on P such thap : (P,h) — (M, h)

is a Riemannian submersion with totally geodesic fibres. In partidularp*(h) + w*(dt?).

6.1. Example 5

We chooseMl = CP", the complex projective space, endowed with its canonical (Fubini-Study) Kaehler-
Einstein metrich and takes as the positive generator éf?(CP",Z). In this setting,P = S***! with

its standard metric and the usual Hopf fibratipn $2"+! — CP" gives aS'-bundle associated with.

A natural principal connectiow can be defined in this bundle. By choosilgvith constant holomorphic
sectional curvaturé andh with constant sectional curvature one, then(S2"+1 h) — (CP", h) becames
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a Riemannian submersion between Einstein spaces with geodesic fibres isometric to the unit circle. Then
we have

Corollary 6 Let~ be a closed curve, immersed GP". The N, = p~'(v) is a Willmore torus in

(827 +1 [h)] if and only ify is an elastica i CP", h) (with potentialg = 4).

A curvey immersed iNCP", h) is said to have constant slant if the angle between the complex tangent
plane and the osculating plane-pis constant along. Curves with osculating plane either holomorphic
or Lagrangian obviously have constant slandr 7, respectively. In [6], the author joint O.J.Garay and
D.A.Singer have obtained the complete classification of elasticae with constant sl@iin). This
essentially consists in three families of elasticae. Two of them are torsion free elasticae, they lie fully in
totally geodesic surfaces GEP?, h) and their slants reach the extremal valdesd? according the surface
is holomorphic or Lagrangian, respectively. The third family is a real two-parameter class of helices lying
fully in ((C]PQ, h). This contains a rational one-parameter subfamily of closed helices which are elasticae in
(CPP?, h) for an arbitrary given potential. Combining this classification with Corollary 1, we have [6]

Corollary 7 There exist infinitely many Willmore tori {8, [1]). This class includes the following three
subfamilies:

1. % = {p~'(y) : yisaclosedelasticainS?(1/2)}, whereS?(1/2) is a holomorphic and totally
geodesic surface i@P". This subfamily essentially coincides with that studied by Pinkall which was
reported in Example 1.

2. % = {p~!(y) : yisaclosedelasticain RP*}, whereRP* is a Lagrangian and totally geodesic

surface inCPP?. The tori of this subfamily lie fully ifS®, &) and contains to the Ejiri torus, [10],
which is the only constant mean curvature torus of this family.

3. X3 = {p~ () : yisaclosed elastic helix in_((CIP’2, h)}. This subfamily is a rational one-parameter
class of constant mean curvature tori(§°, ).

In all the cases, the potential is= 4.

6.2. Example 6

Let M = Q,,_1 be the Grassmannian of oriented two plane®in !, it can be viewed as the complex
guadric inCP". Itis well known thatQ,,_; is the only non totally geodesic, Einstein, complex hypersurface
in CP™ and so it admits a natural symmetric Kaehler-Einstein structuréje takes = %cl(Qn,l). Now,

the associate8'-bundle, P, is nothing but the unit tangent bundle $t and it admits a homogeneous
Einstein metrich (the Stiefel manifold). Therefore, we have a Riemannian submegsiofi}S™, h) —
(Qn—1, h) between Einstein spaces, which has geodesic fibres isometric to the unit circle.

Corollary 8 Let~y be a closed curve, immersed(i€Q,,_1, k). Then,N, = p~!(v) is a Willmore torus in

(T1S™, [R]) if and only ify is an elastica iNQ,,—1, h).

Now, we are going to construct elastic helices in the complex quadric of complex dimension two.
Therefore, we start by standing the following question.4;eand~, be a couple of closed curvesSA, we
consider the flat toru® = ~; x ~, which is immersed as a product in the complex qua@ric= S* x S
Given a closed geodesig,In 7, the question is: When ig an elastica irQ,? In [3], the author answered
this question by showing

Proposition 1  The following statements hod:

1. If a geodesic of = ~; X 9 is an elastica iny),, then bothy; and~, have constant curvature.
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2. In that case and for any constant potential, there exists a rational one-parameter family of closed
geodescis irf = 1 x 72 which are elastic helices ).

As a consequence, we have

Corollary 9 There exists a rational one-parameter class of conformal constant mean curvature Willmore
toriin (71S", [h]).

6.3. Example 7

The above mentioned construction of Kobayashi can be extended as follows, [1Q)/Lé&t), 1 <i <m,
be compact Kaehler-Einstein manifolds with positive scalar curvature. Chipasél?(M;,Z) anda; € Z
with ¢; (M;) = a;8;, 1 < i < m. If M = My x --- x M, andIl; denotes the projection dff onto M;,
then we consider th&'-bundlell : Py, ..., — M with Euler clas27* , b,I17 (5), b; € Z. The following
existence argument is due to M.Wang and W.Ziller, [1B¢rr every choice of integers;, ..., b,, which
do not vanish simultaneously, ti§&- bundle P, ;. admits an Einstein metridj, with positive scalar
curvature. These Einstein metrics are obtained in a similar fashion as in the above mentioned Kobayashi's
result. That is]II is made into a Riemannian submersion with geodesic fibres. Moreover, the Yang-Mills
connectiorw has the harmonic representative of the Euler form as curvature.form

The examples one gets from this construction in dimension sevéi 4mendles ove€P' x CP' x CP*
and ovelCP? x CP' and the corresponding Einstein metrics were independently discovered in [8, 14, 16].

Let consider the space3**c = SU(Q)UX(%UX%)(T)SU , Where the integers, b, ¢ determine the embedding

of U(1) x U(1) into SU(2) x SU(2) x SU(2). These spaces can equivalently be observed as the above
mentionedS'-bundles oveB? x S? x S? and the integers characterize the twisting degree oStHibres
overS? x S? x S2. The inverse Kaluza-Klein method allows to obtain the above mentioned Einstein metric,
sayh on Q. We combine, once more the Corollary 1 with the Proposition 1, to deduce

Corollary 10 For any choice of integers, b, ¢, there exists a rational one-parameter family of Willmore

tori in (Q?%¢, [h]), which have constant mean curvature @<, ).

The second posibility gives the spaces of E.Witten, [24], nafdétF, which can be regarded 85-bundles
overCP? x CP'. If h denotes the above obtained Einstein metric, then we have

Corollary 11 For any choice ofi, b, ¢ € Z, there exists a rational one-parameter class of Willmore tori

in (M<b¢, [h]) which have constant mean curvature(il/“*¢, ). These tori are obtained as liftings of a
corresponding family of closed elastic helices in a complex quadric totally geode&i?inx CP*.

we also have

Corollary 12 For any choice ofi, b, ¢ € Z, there exists a rational one-parameter class of Willmore tori in

(M [h]) which have constant mean curvature(ib/ 2, h). They are obtained by lifting the subfamily
¥3 of closed elastic helices in a complex projective plane totally geode&l®inx CP'.
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