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Equivariant tori which are critical points
of the conformal total tension functional

M. Barros

Abstract. We give a new method to obtain Willmore tori over principal circle bundles. This method
can be viewed as a reduction of variables criterion for the Willmore variational problem in conformal
structures associated with metrics, on principal circle bundles, which are obtained via the generalized
inverse Kaluza-Klein mechanism. The problem of finding critical points for the conformal total tension
functional in those conformal structures is transfered to the search of critical points for certain elastic
energy functionals acting on spaces of curves in the base. This technique is applied to construct wide
families of equivariant tori which are critical points for the conformal total tension functional in an ample
class of conformal structures.

Toros equivariantes que son puntos crı́ticos de la tensi ón total conforme

Resumen. Se obtiene un nuevo ḿetodo para obtener toros de Willmore en estructuras conformes de
Kaluza-Klein sobre fibrados principales con fibra la circunferencia. Diversas aplicaciones de esta técnica
son consideradas.

1. Introduction

LetN be the space of immersions of a compact, smooth surfaceN in a Riemannian manifold(L, ds2 =<
,>). The tension field ofϕ ∈ N is the Euler-Lagrange operator associated with the energy ofϕ, [9]. It is
known from the time of Laplace that the tension field ofϕ is precisely its mean curvature vector fieldH.
We can measure the tension globally and then wonder for the minimal amount of total tension that a surface
receives from the surrounding space(L, ds2 =<,>). More generally, we ask for the critical points of the
functionalE : N → R defined by

E(ϕ) =
∫

N

< H,H > dv,

wheredv is the volume element of the induced metricϕ∗(<,>) onN .
To obtain a functional invariant under conformal transformations of the ambient space, we need to

modify the integrand ofE by attaching the extrinsic Gaussian curvature as a potential. To be precise, the
Willmore functionalW : N → R is defined to be
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W(ϕ) =
∫

N

(< H,H > +K)dv,

whereK is the sectional curvature of(L, ds2 =<,>) restricted toϕ∗(TN) (notice that both functionals
coincide if the ambient space is flat). This action is also known as theconformal total mean curvature (or
conformal total tension) functional, because its invariance by conformal transformations of(L, ds2 =<,>).
The critical points ofW are calledWillmore surfacesand its associated variational problem is actually
stated in(L, [ds2]), where [ds2] standard for the conformal structure defined byds2. The importance
of this variational problem partially comes from the Willmore conjecture. In 1965, T.J.Willmore [22, 23]
conjectured that ifN has genus one and[ds2] is the standard conformal class on the sphere (i.e.(L, ds2 =<
,>) is a round sphere) thenW ≥ 2π2 and the equality is attained for any conformal image of the Clifford
torus in the unit round3-sphere. The conjecture is still an open problem.

In this paper we are going to exhibit a method to obtainS1-invariant, Willmore tori in Kaluza-Klein
conformal structures over principalS1-bundles. The core of this process is the principle of symmetric
criticality, [15], which combined with the above mentioned extrinsic conformal invariance allows one to
reduce the search of Willmore tori in those conformal structures to that for critical points of certain elastic
energy functionals defined on spaces of curves in the base of the principalS1-bundle.

It is well known that the Clifford torus is the only Willmore torus with constant mean curvature (actually
it is minimal) one can find in the round3-sphere. This is not true if we remove the conformal structure on
the3-sphere. A torus immersed in a Riemannian manifold is said to be conformal constant mean curvature
if there exists a conformal transformation of that Riemannian manifold which carries the torus to one with
constant mean curvature. Among the Willmore tori, those with constant mean curvature (respectively con-
formal total mean curvature) have great interest because they naturally appear as critical points of a certain
functional associated with another classical variational problem (respectively up to conformal transforma-
tion). As an illustration, we will give many examples where our procedure is applied to obtain Willmore
tori in different conformal structures. Also, by applying the algorithm, we will obtain conformal total mean
curvature Willmore tori in a wide class of conformal structures.

2. The inverse Kaluza-Klein mechanism

The inverse Kaluza-Klein method of interpreting gravity plus aS1 = U(1) gauge field as pure gravity in one
higher dimension can be explained in the following general framework. Letp : P →M be a principal fibre
S1-bundle endowed with principal connection and denote byω its connection1-form. For any Riemannian
metrich onM and any positive smooth functionu in M , we define the generalized Kaluza-Klein metric
h̄u on P by

h̄ = p∗(h) + (u ◦ p)2ω∗(dt2),

wheredt2 denotes the standard metric on the unit circle.
These metrics are like local warped product metrics. In particular, ifu is chosen to be constant, then

it works as a global scalling factor on the fibres, which is usually called constantsquashingparameter. In
these cases, the metricsh̄u are simply called Kaluza-Klein orbundle likemetrics. It is not difficult to see
that the projection mapp : (P, h̄u) → (M,h) has the following properties

1. This is a Riemannian submersion whose leaves are the fibres. Furthermore it has geodesic leaves if
and only ifu is constant, that is̄hu is bundle like.

2. The naturalS1-action onP is carried out by isometries of(P, h̄u).

This paper concerns the Willmore variational problem in(P, [h̄u]). It should be noticed that in any
Kaluza-Klein conformal class,[h̄u], we can find a unique bundle like metric. In fact, just puth̃u = 1

(u◦p)2 h̄u

and then
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h̃u = p∗
(

1
u2
.h

)
+ ω∗(dt2).

With this choice in[h̄u], we obtain a Riemannian submersion,p : (P, h̃u) →
(
M, 1

u2 .h
)
, with geodesic

fibres. Actuallyh̃u is the only Riemannian metric inP such thatp : (P, h̃u) →
(
M, 1

u2 .h
)

is a Riemannian
submersion with geodesic fibres isometric to the unit circle, [18]. This conformal change will be very useful
in the next section.

3. The principle of symmetric criticality

In many areas, including mathematics and physics, it has proved extremely useful to look for symmetries
and to exploit them, if they exist, in problem solving. The sucess of this procedure is based on the principle
of symmetric criticality. This has been used in many applications of the calculus of variations, in particular
in theoretical physics, without being particulary noticed. A typical example of this implicit use can be found
in the H.Weyl derivation of the Schwarschild solution of the Einstein field equations, [21]. A suggestive
formulation of this principle, although it is not valid in this general form, is:Any critical symmetric point is
a symmetric critical point. The precise formulation of the principle is due to R.S.Palais [15]. In this paper
we will discuss a simplified version of the Palais formulation, which will be enough for our purposes.

The starting point is a smooth manifoldM on which a groupG acts through diffeomorphisms. One
also has aG-invariant functionalB : M→ R, e.g.B(a.ϕ) = B(ϕ), for all a ∈ G andϕ ∈ M. The set of
symmetric points is defined to beMG = {ϕ ∈M : a.ϕ = φ , ∀a ∈ G}. LetΣ be the set of critical points
of B and denote byΣG the set of critical points ofB when it is restricted toMG. Naturally this setting
forcesMG to be a differentiable manifold and this is assured ifMG is a smooth submanifold ofM. A
sufficient condition to guarantee this is to assume thatG is a compact Lie group and then the principle of
symmetric criticality simply states that

Σ ∩MG = ΣG.

4. An algorithm to reduce variables in the Willmore variational
problem

We consider the Willmore functionalW : N → R, acting on the smooth manifoldN of immersions from
a genus one, compact surfaceN in (P, h̄u). The set of critical points,Σ, of this functional is nothing but
the set of Willmore tori in(P, [h̄u]).

On the other hand, for any curveγ immersed inM , its complete lift,Nγ = p−1(γ), is aS1-invariant
surface immersed inP . It is not difficult to see that the converse also holds, indeed for anyS1-invariant
surfaceN in P , one can integrate the distribution̄hu-orthogonal to the fibres because it has dimension
one. Hence, one finds a curveγ immersed inM such thatN = p−1(γ). We also observe thatNγ is
embedded if and only ifγ is simple. To obtainNγ , we begin from a horizontal lift,̄γ, of γ and then
Nγ = {a.γ̄(s) : a ∈ S1}, thus we can obtain a natural parametrization ofNγ where coordinate curves
are fibres and horizontal lifts ofγ, respectively. In general the horizontal lifts of a closed curve are not
closed, because the holonomy ofω could be non trivial. However, ifγ is closed, thenNγ is compact. As a
consequence, the set of symmetric points,NS1 , is identified with

NS1 = {Nγ = p−1(γ) : γ is a closed curve immersed inM}.

Since the Willmore functional isS1-invariant, because theS1-action onP is made up through isometries,
we have all the ingredients to apply the above stated formulation of the principle of symmetric criticality.
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Therefore, to obtain Willmore tori in(P, [h̄u]) which do not break theS1-symmetry of the problem, we
only need to computeW overNS1 and then to proceed in due course.

To calculateW(Nγ) we will useh̃u and recall thatp : (P, h̃u) → (M, 1
u2 .h) is a Riemannian submer-

sion with geodesic fibres. In [2], the author obtained the following relationship between the mean curvature
functionα of Nγ in (P, h̃u) and the curvature functionκ of γ in (M, 1

u2 .h)

α2 =
1
4
(κ2 ◦ p), (1)

this formula holds for any harmonic Riemannian submersion.
The computation of the second term,K, appearing in the integrand of the Willmore functional involves

several concepts from the theory of Riemannian submersions. In this framework, a pair of geometric in-
variants appear, they are usually called the O’Neill invariants and denoted byA andT , respectively [7].
The later is defined using the second fundamental form of the fibres, in particular it vanishes identically
when those are totally geodesic. The former invariant measures the obstruction to integrability of the hori-
zontal distribution, in particular it vanishes identically whenω is flat. In terms of these invariants, one can
compute the fundamental relationships between the curvatures of the Riemannian manifolds involved in the
Riemannian submersion. On the other hand, the tangent plane ofNγ is a mixed(also calledvertizontal,
[20]) section in(P, h̃u) anywhere. Since in our caseT vanishes identically, thenK is given [7]

K = h̃u(AX̄V,AX̄V ), (2)

where{X̄, V } is a h̃u-orthonormal basis in the above mentioned mixed section made up by the horizontal
lift X̄ = γ̄′ of the unit tangent vector fieldX = γ′ (assuming thatγ is arclength parametrized in(M, 1

u2 .h))
andV is nothing but the fundamental vector field associated with the standard unit vector field in the Lie
algebra ofS1 = U(1) (actuallyV defines the unit global vector field inP generating the leaves flow). Next,
we denote byr and r̃ the Ricci curvatures of(M, 1

u2 .h) and(P, h̃u), respectively. Again we use that the
Riemannian submersion has geodesic fibres to see [7]

h̃u(AX̄V,AX̄V ) =
1
2

(
r(X,X) ◦ p− r̃(X̄, X̄)

)
. (3)

Now, we combine (2,3) to obtain

K =
1
2

(
r(X,X) ◦ p− r̃(X̄, X̄)

)
. (4)

LetUM be the unit tangent bundle of(M, 1
u2 .h), we defineφ : UM → R, such that

φ(γ′) ◦ p = 2 (r(γ′, γ′) ◦ p− r̃(γ̄′, γ̄′)) . (5)

We put (1) and (4) in the integrand of the Willmore functional to obtain

W(Nγ) =
∫

N

(
1
4
(κ2 ◦ p) +

1
2

(r(γ′, γ′) ◦ p− r̃(γ̄′, γ̄′))
)
dv,

and so

W(Nγ) =
π

2

∫
N

(
κ2 + φ(γ′)

)
ds.

The last formula suggests to define anelastic energy density, with potentialφ, for closed curves in(M, 1
u2 .h), by

ψ(γ) = κ2 + φ(γ′),

then, we consider the following elastic energy functional acting on closed curves in(M, 1
u2 .h)
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F(γ) =
∫

γ

ψ(γ)ds.

As a consequence of all this information, we have

W(Nγ) =
π

2
F(γ).

That can be summed up in the following theorem, which is regarded as a criterion to reduce variables for
Willmore surfaces.

Theorem 1 Letp : P →M be aS1-bundle endowed with a principal connection. Leth̄u be a generalized
Kaluza-Klein metric onP and [h̄u] its conformal class. Given an immersed closed curveγ in M , then
Nγ = p−1(γ) is a Willmore surface in(P, [h̄u] if and only ifγ is a critical point of the elastic energy action
F acting on closed curves in(M, 1

u2 .h).

Corollary 1 Letω be the connection1-form of a principal connection on the principalS1-bundlep : P →
M . For any Riemannian metrich onM , let h̄ = p∗(h) + ω∗(dt2) be the only metric onP which makes
p : (P, h̄) → (M,h) to be a Riemannian submersion with geodesic fibres isometric to the unit circle. Given
an immersed closed curveγ in M , thenNγ = p−1(γ) is a Willmore surface in(P, [h̄] if and only ifγ is a
critical point ofF in (M,h).

5. Early applications

Most of the important applications of this result occur when the potentialφ is constant. In this case, we will
refer the critical points ofF aselasticae(or elastic curves), [12], andφ works as a Lagrange multiplier for
the total squared curvature functional. A sufficient condition to guarantee the constancy ofφ is obtained
when we assume that both(M,h) and(P, h̄) are Einstein. In this caseλ andλ̄will denote the corresponding
Einstein constants and then, [7]

φ = 2(λ− λ̄). (6)

However, the previous sufficient condition is not necessary. To do clear this claim, we consider a Rieman-
nian submersionp : (P, h̄) → (M,h) with geodesic fibres isometric to the unit circle and assume that both
(M,h) an (P, h̄) are Einstein, so we get a constant potentialφ. Now, we deformate the metric̄h of P by
changing the relative scales of the base and the fibre. To be precise, for any positive real numbert, we
consider̄ht to be the unique Riemannian metric onP which makesp : (P, h̄t) → (M,h) a Riemannian
submersion with geodesic fibres isometric to the radius

√
t circle and horizontal distribution defined via

the sameω. In this way, we get a one-parameter family of Riemannian submersions, withh̄1 = h̄, which
constitutes the so calledcanonical variationof the starting Riemannian submersion. Since we are assuming
that h̄ is Einstein, then there is at most one more Einstein metric in{h̄t : t > 0}, (see [7] for details). On
the other hand, ifφt denotes the potential associated withh̄t, it is not difficult to see thatφt = t.φ and so
this is constant for anyt.

5.1. Example 1

Let (S3, h̄) and (S2, h) be the round spheres of radii1 and1/2, respectively. The usual Hopf mapp :
(S3, h̄) → (S2, h) is a Riemannian submersion with fibres being geodesics. Since both metrics are Einstein,
we apply (8) to obtainφ = 4. Corollary 1 gives the following result due to U.Pinkall, [17]

Corollary 2 Letγ be a closed curve, immersed inS2. Thenp−1(γ) is a Willmore torus in(S3, [h̄]) if and
only if γ is an elastica in(S2, h) (with Lagrange multiplier 4).
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In [12], J. Langer and D.A. Singer have shown the existence of infinitely many elasticae (φ = 4) in (S2, h).
Even one can get an infinite series of simple elasticae. Hence, we have the following result, [17]

Corollary 3 There exist infinitely many Willmore tori in(S3, [h̄]) which are obtained as Hopf tori over
closed elasticae(φ = 4) in (S2, h). Furthermore, the only such a torus with constant mean curvature in
(S3, h̄) is the Clifford torus which is shaped on a geodesic of(S2, h) and so it is minimal.

5.2. Example 2

Let {p : (S3, h̄t) → (S2, h) : t > 0} be the canonical variation of the previous Hopf Riemannian submer-
sion. It is obvious that̄h1 = h̄ is the unique Einstein metric in this one-parameter family of metrics onS3.
However,̄ht has constant scalar curvature for anyt > 0. Actually these three-spheres can be considered as
geodesic spheres in a complex projective plane. The potentialφt is computed to be4t and so we can use
once more the results of [12] to obtain the following result, [2]

Corollary 4 There exist infinitely many Willmore tori in(S3, [h̄t]) which are obtained as Hopf tori over
closed elasticae(φ = 4t) in (S2, h). Furthermore, for0 < t < 1, there exist Willmore torip−1(γ) in this
series such that

W(p−1(γ)) < 2π2.

The last claim in the above statement, strongly contrasts with the well known Willmore conjecture, which
ensures thatW(T ) ≥ 2π2 for any torusT immersed in(S3, h̄).

5.3. Example 3

A particular case in Corollary 1 was obtained in [4]. It corresponds with the case whereω is a flat connec-
tion. In this case the O’Neill invariantA, of p : (P, h̄) → (M,h) vanishes identically. Thus, we combine
(3) with (5) to see thatφ vanishes identically too.

Let π1(M) be the Poincare group of the smooth manifoldM . It is well known thatG-bundles on
M admitting a flat connection are classified by the class of monomorphisms fromπ1(M)/H (H being
a normal subgroup ofπ1(M)) into G. Our next example can be regarded in this context. We consider
M = R×S1, its fundamental group is isomorphic to(Z,+). The universal coveringR2 ofM is a principal
Z-bundle which admits an obvious trivial flat connectionωo. Let l be a real number such thatl/π is not
rational, the mapfl : Z → S1 defined byfl(a) = eial is a monomorphism from(Z,+) in S1 ⊂ C regarded
as a multiplicative group. The transition functions ofR2(M,Z) can be extended, viafl, to be valued in
S1 and then considered as transition functions to define a principalS1-bundle, sayPl(M,S1), overM .
Now, fl can also be extended to a monomorphism,f̄l, from R2(M,Z) to Pl(M,S1) which mapsωo in a
flat connection, also calledωo, on Pl(M,S1). It should be noticed that the holonomy subbundle of this
connection is isomorphic toR2(M,Z). Corollary 1 can be translated to this case giving

Corollary 5 Let h be a Riemannian metric onM = R × S1 and h̄ = p∗(h) + ω∗o(dt2) the unique
Riemannian metric onPl such thatp : (Pl, h̄) → (M,h) is a Riemannian submersion with fibres being
geodesics isometric to the unit circle(S1, dt2). Letγ be any closed curve immersed inM , thenp−1(γ) is a
Willmore torus in(Pl, [h̄]) if and only ifγ is a critical point of the total squared curvature functional acting
on closed curves in(M, g). Moreover, ifγ has constant curvature in(M,h), thenp−1(γ) has constant
mean curvature in(Pl, h̄).

The critical points of the elastic energy actionF(γ) =
∫

γ
κ2ds are calledfreeelasticae because any con-

straint on the length of curves is required. As an illustration, we consider the following particular case.
Chooseh onM such that(M,h) is a catenoid. In other words, we lookM as the surface of revolution in
R3 which is obtained when rotate a catenary and thenh is the induced metric onM for the Euclidean one in
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R3. It was shown in [5] that(M,h) has exactly two non-geodesic parallels,γ1 andγ2, being free elastica.
They are placed symmetrically with respect to the unique geodesic parallel,γo, and so they are congruent
in (M ;h). Now,p−1(γo) andp−1(γ1) are non-congruent Willmore tori in(Pl, [h̄]). The former is minimal
in (Pl, h̄) while the later has non-zero constant mean curvature in(Pl, h̄). This result nicely contrasts with
the uniqeness for the Clifford torus in(S3, h̄) previously stated in Corollary 3. It should be finally observed
that (compact) minimal surfaces in, for example, a three space are Willmore surfaces, and so considered as
trivial, only if this three space has constant curvature.

5.4. Example 4

The next example uses the extrinsic conformal invariance of the Willmore variational problem as an addi-
tional ingredient, [1] (see also [13] for another conformal model). LetM be the open hemisphere in the
unit round two-sphere defined inR4 by x1 > 0 andx2 = 0. Denote byh its standard metric of constant
curvature one. Then,P = M × S1 is the three-sphere where one geodesic was removed. It is evident that
it admits a flat connectionω as a principalS1-bundle overM . The metric of constant curvature one onP is
given byh̄ = h+ f2dt2, with the obvious meaning andf being the positive smooth function onM defined
as thex1-projection. In other words,(P, h̄) is the warped productM×f S1 (see [7] for details about warped
products). It is noteworthy thatp : (P, h̄) → (M,h) is a Riemannian submersion althougth the fibres are
not geodesics. In spite of this, we take advantage of the above mentioned conformal invariance to give
the following argument. First, we make the conformal change in(P, h̄) by considering̃h = 1

f2 .h̄. Now,

p : (P, h̃) → (M, 1
f2 .h)is a Riemannian submersion with geodesic fibres. Moreover, it is not difficult to

see that(M, 1
f2 .h) is the standard hyperbolic two-plane with constant curvature−1. Since the complete

classification of free elasticae in this surface was provided in [12], we can use it to obtain Willmore tori in
the three-sphere endowed with its standard conformal structure. Of course the family of Willmore tori so
obtained is different to that obtained by U. Pinkall, [17] and which was reported in Corollary 3.

6. Further applications

We recall thatS1-bundles on a compact manifoldM are classified by the cohomology groupH2(M,Z).
Givenβ ∈ H2(M,Z), we denote byβR ∈ H2(M,R) its image under the universal change of coefficients
morphismH2(M,Z) → H2(M,R). Let p : P → M be a principalS1-bundle associated withβ andω a
principal connection with curvature2-form Ω. Then,Ω = p∗(Θ) for a closed2-form Θ onM . Moreover,

the cohomology class[Θ] satisfies[Θ] = 2πβR. The converse also holds, i.e. for any closed2-form Θ with

[Θ] = 2πβR, one can find a principal connectionω on theS1-bundle associated withβ, whose curvature is
Ω = p∗(Θ).
Let (M,h) be a compact Kaehler-Einstein manifold with Kaehler2-form F . Suppose it has positive scalar
curvature. We denote byc1(M) the first Chern class ofM and takeβ as a rational multiple ofc1(M). Since

[F ] = 2π1(M)R, then[F ] is a multiple ofβR. Now, a classical result of S. Kobayashi, [11], guarantees
the existence of a uniqueS1-invariant Einstein Riemannian metric,h̄, onP such thatp : (P, h̄) → (M,h)
is a Riemannian submersion with totally geodesic fibres. In particular,h̄ = p∗(h) + ω∗(dt2).

6.1. Example 5

We chooseM = CPn, the complex projective space, endowed with its canonical (Fubini-Study) Kaehler-
Einstein metrich and takeβ as the positive generator ofH2(CPn,Z). In this setting,P = S2n+1 with
its standard metric and the usual Hopf fibrationp : S2n+1 → CPn gives aS1-bundle associated withβ.
A natural principal connectionω can be defined in this bundle. By choosingh with constant holomorphic
sectional curvature4 andh̄with constant sectional curvature one, thenp : (S2n+1, h̄) → (CPn, h) becames
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a Riemannian submersion between Einstein spaces with geodesic fibres isometric to the unit circle. Then
we have

Corollary 6 Let γ be a closed curve, immersed inCPn. TheNγ = p−1(γ) is a Willmore torus in
(S2n+1, [h̄)] if and only ifγ is an elastica in(CPn, h) (with potentialφ = 4).

A curveγ immersed in(CPn, h) is said to have constant slant if the angle between the complex tangent
plane and the osculating plane ofγ is constant alongγ. Curves with osculating plane either holomorphic
or Lagrangian obviously have constant slant0 or π

2 , respectively. In [6], the author joint O.J.Garay and
D.A.Singer have obtained the complete classification of elasticae with constant slant in(CP2, h). This
essentially consists in three families of elasticae. Two of them are torsion free elasticae, they lie fully in
totally geodesic surfaces of(CP2, h) and their slants reach the extremal values0 andπ

2 according the surface
is holomorphic or Lagrangian, respectively. The third family is a real two-parameter class of helices lying
fully in (CP2, h). This contains a rational one-parameter subfamily of closed helices which are elasticae in
(CP2, h) for an arbitrary given potential. Combining this classification with Corollary 1, we have [6]

Corollary 7 There exist infinitely many Willmore tori in(S5, [h̄]). This class includes the following three
subfamilies:

1. Σ1 = {p−1(γ) : γ is a closed elastica in S2(1/2)}, whereS2(1/2) is a holomorphic and totally
geodesic surface inCPn. This subfamily essentially coincides with that studied by Pinkall which was
reported in Example 1.

2. Σ2 = {p−1(γ) : γ is a closed elastica in RP2}, whereRP2 is a Lagrangian and totally geodesic
surface inCP2. The tori of this subfamily lie fully in(S5, h̄) and contains to the Ejiri torus, [10],
which is the only constant mean curvature torus of this family.

3. Σ3 = {p−1(γ) : γ is a closed elastic helix in (CP2, h)}. This subfamily is a rational one-parameter
class of constant mean curvature tori in(S5, h̄).

In all the cases, the potential isφ = 4.

6.2. Example 6

Let M = Qn−1 be the Grassmannian of oriented two planes inRn+1, it can be viewed as the complex
quadric inCPn. It is well known thatQn−1 is the only non totally geodesic, Einstein, complex hypersurface
in CPn and so it admits a natural symmetric Kaehler-Einstein structure,h. We takeβ = 1

nc1(Qn−1). Now,
the associatedS1-bundle,P , is nothing but the unit tangent bundle ofSn and it admits a homogeneous
Einstein metric̄h (the Stiefel manifold). Therefore, we have a Riemannian submersionp : (T1Sn, h̄) →
(Qn−1, h) between Einstein spaces, which has geodesic fibres isometric to the unit circle.

Corollary 8 Letγ be a closed curve, immersed in(Qn−1, h). Then,Nγ = p−1(γ) is a Willmore torus in
(T1Sn, [h̄]) if and only ifγ is an elastica in(Qn−1, h).

Now, we are going to construct elastic helices in the complex quadric of complex dimension two.
Therefore, we start by standing the following question. Letγ1 andγ2 be a couple of closed curves inS2, we
consider the flat torusT = γ1 × γ2 which is immersed as a product in the complex quadricQ2 = S2 × S2.
Given a closed geodesic,γ In T , the question is: When isγ an elastica inQ2? In [3], the author answered
this question by showing

Proposition 1 The following statements hod:

1. If a geodesic ofT = γ1 × γ2 is an elastica inQ2, then bothγ1 andγ2 have constant curvature.
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2. In that case and for any constant potential, there exists a rational one-parameter family of closed
geodescis inT = γ1 × γ2 which are elastic helices inQ2.

As a consequence, we have

Corollary 9 There exists a rational one-parameter class of conformal constant mean curvature Willmore
tori in (T1Sn, [h̄]).

6.3. Example 7

The above mentioned construction of Kobayashi can be extended as follows, [19]. Let(Mi, hi), 1 ≤ i ≤ m,
be compact Kaehler-Einstein manifolds with positive scalar curvature. Chooseβi ∈ H2(Mi,Z) andai ∈ Z
with c1(Mi) = aiβi, 1 ≤ i ≤ m. If M = M1 × · · · ×Mm andΠi denotes the projection ofM ontoMi,
then we consider theS1-bundleΠ : Pb1,...,bm

→ M with Euler classΣm
i=1biΠ

∗
i (β), bi ∈ Z. The following

existence argument is due to M.Wang and W.Ziller, [19]:For every choice of integersb1, ..., bm which
do not vanish simultaneously, theS1-bundlePb1,...,bm admits an Einstein metric,̄h, with positive scalar
curvature. These Einstein metrics are obtained in a similar fashion as in the above mentioned Kobayashi’s
result. That is,Π is made into a Riemannian submersion with geodesic fibres. Moreover, the Yang-Mills
connectionω has the harmonic representative of the Euler form as curvature form.

The examples one gets from this construction in dimension seven areS1-bundles overCP1×CP1×CP1

and overCP2 × CP1 and the corresponding Einstein metrics were independently discovered in [8, 14, 16].

Let consider the spacesQabc = SU(2)×SU(2)×SU(2)
U(1)×U(1) , where the integersa, b, c determine the embedding

of U(1) × U(1) into SU(2) × SU(2) × SU(2). These spaces can equivalently be observed as the above
mentionedS1-bundles overS2 × S2 × S2 and the integers characterize the twisting degree of theS1 fibres
overS2×S2×S2. The inverse Kaluza-Klein method allows to obtain the above mentioned Einstein metric,
sayh̄ onQabc. We combine, once more the Corollary 1 with the Proposition 1, to deduce

Corollary 10 For any choice of integersa, b, c, there exists a rational one-parameter family of Willmore
tori in (Qabc, [h̄]), which have constant mean curvature in(Qabc, h̄).

The second posibility gives the spaces of E.Witten, [24], namedMabc, which can be regarded asS1-bundles
overCP2 × CP1. If h̄ denotes the above obtained Einstein metric, then we have

Corollary 11 For any choice ofa, b, c ∈ Z, there exists a rational one-parameter class of Willmore tori
in (Mabc, [h̄]) which have constant mean curvature in(Mabc, h̄). These tori are obtained as liftings of a
corresponding family of closed elastic helices in a complex quadric totally geodesic inCP2 × CP1.

we also have

Corollary 12 For any choice ofa, b, c ∈ Z, there exists a rational one-parameter class of Willmore tori in
(Mabc, [h̄]) which have constant mean curvature in(Mabc, h̄). They are obtained by lifting the subfamily
Σ3 of closed elastic helices in a complex projective plane totally geodesic inCP2 × CP1.
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