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An introduction to some novel applications of Lie algebra
cohomology in mathematics and physics

J. A. de Azc arraga, J. M. Izquierdo and J. C. P érez Bueno

Abstract.  After a self-contained introduction to Lie algebra cohomology, we present some recent
applications in mathematics and in physics.

Introducci 6n a algunas aplicaciones novedosas de la cohomologia de
algebras de Lie en matem aticas y fisica

Resumen. En esta nota se presenta en primer lugar una introdn@itocontenida a la cohomolag
dealgebras de Lie, y en segundo lugar algunas de sus aplicaciones recientes efticaggnisica.

1. Preliminaries: Ly, ix, d

Let us briefly recall here some basic definitions and formulae which will be useful later. Consider a uni-
parametric group of diffeomorphisms of a manifdld, eX : M — M, which takes a point € M

of local coordinatez’} to z’* ~ 2 + €'(z) (= z' + X*(z)). Scalars and (covariant, say) tenstys

(¢ =0,1,2,...) transform as follows

Ol Oxi Hui
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(1)

¢'(a) = ¢(z), ti(a')=t;(x)

In physics it is customary to define ‘local’ variations, which compare the transformed and original tensors
at the same point:

Sp(a) = ¢'(x) — (), Sti(x) =t's(x) — ti(z) ... 2)
Then, the first order variation defines the Lie derivative:
5e¢ = 76J("E)ajd)(l’) = 7Lx¢, (5575)1 = 7(€j8jti —+ (&ej)t]) = 7(th)l,
(6€t),‘1i2 = —(ejajt7;17;2 + (6ilej)tm =+ (8i26j)ti1j) = —(th)z'“;?. (3)

Egs. (3) motivate the following general definition:
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Definition 1 Lie derivativeLet « be a (covariant, sayg tensor onM, a(z) = oz,;lmiquil ® - ® dxs,

and X = X’“% a vector fieldX € X(M). TheLie derivativeL x of « with respect taX is locally given

by

ox* ox*
(Lxa)iy..i, = Xx* Dk + Oékig...iq% +oe ail...iq_lk%~ (4)

1 _ . . .
Onag-forma(z) = Say, i, dz" A--- Nda', o € Ng(M), Ly ais defined by
q:

q

) =Y o X, Xi) =YXy, [V X X (5)

i=1

(Lya)(X X;

TEEEER)

on vector fieldsLx Y = [X, Y]. The action of.x on tensors of any typ& may be found using thdty is
a derivation,

Lx(t®t)=(Lxt)y®t +t® Lxt' . (6)

Definition 2 Exterior derivativeThe exterior derivatived is a derivation of degree +14 : A,(M) —
Ng+1(M); it satisfies Leibniz’s rule,

dlaNp)=danB+ (-1)andB, «ac€Al,, @)
and is nilpotentd? = 0. On theg-form above, it is locally defined by

1 0oy
doy = — 220

g

q! OxI

dzd Ndx™ Ao Adaxte (8)

The coordinate-free expression for the actior/d$ (Palais formula)

q+1
(da)(X1,..., Xg, Xgp1) = D (1) X;-a(Xy,.., X, Xgpa)
=1
+ Z(—l)iJrjOé([Xi,Xj],Xl,...,Xi,...,Xj,...,Xq+1). (9)
1<j
In particular, whena is a one-form,
do( X1, Xz) = X1 - a(Xz) — Xo - a(X7) — a[X7, Xo]). (10)

Definition 3 Inner producfTheinner product x is the derivation of degree 1 defined by
(ixa)( X1, .., Xgo1) =X, X1, .00, Xgo1). (11)
On forms (Cartan decomposition 6fx),
Lx =ixd+dix, (12)
from which[Lx, d] = 0 follows trivially. Other useful identity is
[Lx,iv] =[xy} (13)

from (12) and (13) itis easy to deduce thaty, Ly] = Lix,y]-
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Applications of Lie algebra cohomology

2. Elementary differential geometry on Lie groups
LetG be aLiegroupandlet, g = g'g = Ry’ (¢, g € G) be the left and right actionS x G — G with
obvious notation. The left (right) invariant vector fields LIVF (RIVF) 6hreproduce the commutator of
the Lie algebr&; of G

(X(5(9), X0y ()] = CE X1y (9),  [XT5(9), X[} ()] = =CE Xy (9),  CfL, Coiy =0, (14)

[1112 pPt3

where the square brackgltin the Jacobi identity (JI) means antisymmetrization of the indi¢es, 3. In
terms of the Lie derivative, the- (R-) invariance conditions read

LXR)(g)X( 1(9) = X (5 (9), X3y (9)] = 0, Lxt (o X (9) = (X0 (9), X[ (9)) =0. (15)

Let w¥(g) € A1(G) be the basis of LI one-forms dual to a basis @fgiven by LIVF
W D (g9)(X L5 (g)) = 6}). Using (10), we get the Maurer-Cartan (MC) equations

dw® D (g) = fcl wh D (g) Awt ®) (g). (16)

In the language of forms, the JI in (14) follows frafh = 0. If the g-form « is LI

do™ (X[, ... X£+1):Z( Dl (X F, XEL XE, L XEUXE SXE) (17)
s<t
sincea™(XF, ..., XE, ..., XL, ) in(9) is constant and does not contribfut@o facilitate the comparison

with the generalizeéfm to be introduced in Sec..5ve note here that, witl, = —d, eq. (17) is equivalent
to

1 1 571 ]q+1 L([XL XL] XL . XL ) (18)

L _
dzoz (X i) = 2-2=-2)!(g—1)! ™ g1 J1? FERR ig41

tq+1

The MC equations may be written in a more compact way by introducing the (canogealyed LI
one-formd on G, 8(g) = w¥(g)X(;(g); then, MC equations read

d9:—9/\6‘:—%[9,6] (19)

since, forG-valued forms|a, 8] := o A B9 @ [X (), X(;)].
The transformation properties of?) (g) follow from (5):

Ly, @ (g9) = —CLw™(g). (20)

1 | _
=i, 5,w D (g) A AWl (g)onG

For a general Li-form a(g) = '
q:

Lx ., (9)2(9) Z [Ciioi a0 (g) Ao AWl (g) AN (g) Ao AWl (g (22)

1The superindex L (R) in the fields refers to the left (right) invariance of them; LIVF (RIVF) generate right (left) translations.
2From now on we shall assume that vector fields and forms are left invariant{ € X~ (G), etc.) and drop the superindéx
Superindiced., R will be used to avoid confusion when both LI and RI vector fields appear.
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3. Lie algebra cohomology: a brief introduction

3.1. Lie algebra cohomology
Definition 4 V-valuedn-dimensional cochains ofi Let G be a Lie algebra and” a vector space. A
V-valuedn-cochain(2,, ong is a skew-symmetrie-linear mapping

0, :GAAG SV, Qf:ﬁQA WA A (22)

1.ty

where{w("} is a basis ofz* and the superindex labels the components ¥i. The (abelian) group of all
n-cochains is denoted by (G, V).

Definition 5 Coboundary operator (for the left actignof G on V) Let V' be a leftp(G)-module, where
p is a representation of the Lie algeb@ p(X:)tp(X;)G — p(X;)ep(X))G = p([Xi, X;])%. The
coboundary operatos : C"(G, V) — C"*1(G, V) is defined by

n+1

(SQH)A (le"‘7Xn+1) = Z(i)ZJrlp(Xl)AB (Qf(le"'inv"'7X7l+1))
=1
n+1 ) R R
+ D (TRNXG X, X X, X Xgn). (29)
gik=1

<k
Proposition 1 ThelLie algebra cohomologgperators is nilpotent,s? = 0.
PrROOF Looking at (9),s in (23) may be at this stage formally written as

()5 = 0pd+p(X)pe’ (s =d+p(X;)w'). (24)
Then, the proposition follows from the fact that

s = (p(Xi)w' + d)(p(X;)w! +d) = p(Xi)p(X;j)w’ Aw? + p(Xi)w'd + p(X;)dw! + d?
| A (25)
= —%p(Xj)Cl]kwl Awh + %[P(Xi),p(Xj)]w’” Aol —0. H

Definition 6 n-th cohomology groug\n n-cochain(2,, is a cocyclef,, € Z7(G, V), whens(,, = 0. If
a cocycleQ,, may be written a$2,, = sQ/,_, in terms of an(n — 1)-cochain{,_,, Q, is a coboundary,
Q, € B}(G,V). Then-th Lie algebra cohomology groufi;'(G, V') is defined by

H}(G,V)=2}(G,V)/By(G,V). (26)

3.2. Chevalley-Eilenberg formulation

LetV beR, p trivial. Then the first term in (23) is not present and, on LI one-forsremdd act in the same
manner. Since there is a one-to-one correspondence betwaetisymmetric maps og and LI n-forms
on G, ann-cochain inC™(G,R) may also be given by the LI form o

1

Qg) = — %, w (g) A Awln)(g) 27)

in

and the Lie algebra cohomology coboundary operator is é§i8] (the explicit dependence of the forms
Q(g), w(g) on g will be omitted henceforth).
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Applications of Lie algebra cohomology

Remark 1 It should be noticed that the Lie algebra (CE) cohomology is in general different from the de
Rham cohomology: a form on G may be de Rham exagt, = d«, but the potential fornax might not be
a cochairi.e,, a LI form®. Nevertheless, foff compact (see Proposition 8)pr(G) = Ho(G,R).

Example 1 Let G be the abelian two-dimensional algebra. The corresponding Lie grdf ishich is
de Rham trivial. However, the translation algeB%has non-trivial Lie algebra cohomology, and in fact it
admits a non-trivial two-cocycle giving rise to the three-dimensional Heisenberg-Weyl algebra.

3.3. Whitehead’s lemma for vector valued cohomology

Lemma 1 Whitehead’s lemmaetg be a finite-dimensional semisimple Lie algebra over a field of charac-
teristic zero and leV be a finite-dimensional irreduciblg G )-module such thai(G)V # 0 (p non-trivial).
Then,

HY(G,V)=0 VYg=>0. (28)

If ¢ = 0, the non-triviality ofp and the irreducibility imply thap(G) - v = 0 (v € V') holds only forv = 0.

PROOF.  Sinceg is semi-simple, the Cartan-Killing metrig; is invertible, g’ g;, = di. Let 7 be the
operator on the space gfcochainsr : C4(G,V) — C9=1(G, V) defined by

(TQ);Al...iq_l = gUp( )Bszl dg—1" (29)
It is not difficult to check that on cochains the Laplacian-like operétor+ s) gives'

[(s7 + )55 i, = Q5 i, L2(0)'B, (31)

11...2¢q 11...

wherelz(p)4; = g (p(X:)p(X,))*; is the quadratic Casimir operator in the representatidBy Schur’s
lemma it is proportional to the unit matrix. Hence, applying (31te Z4(G, V') we find

sTQ = QL (p) = s(TQa(p)~ ) = Q. (32)

Thus,( is the coboundary generated by the cochd,(p) ' € C2~1(G,V). R
For semisimple algebras apd= 0 we also havel/} = 0 and HZ = 0, but alreadyH{ # 0.

3.4. Lie algebra cohomology ala BRST

In many physical applications it is convenient to introduce the so-called BRST operator (for Becchi, Rouet,
Stora and Tyutin) acting on the space of BRST cochains. To this aim let us introduce anticommuting, ‘odd’
objects (in physics they correspond to titeost3

ded = -, i,j=1,...,dimgG. (33)

3This is,e.g, the case for certain forms which appear in the theory of supersymmetric extended objects (superstrings). This is not
surprising due to the absence of global considerations in the fermionic sector of supersymmetry. The Lie algebra cohomology notions
are easily extended to the ‘super Lie’ case @eg [2] for references on these subjects).

4For instance, for a two-cochain eq. (31) reads

[(s7 +78)Qf = " p(Xi)Bp(Xk) T Qg g"p(X )BP(Xk)B Qf — " p(Xp) BCmQf,
+  g*p(Xi) 4 p(X0)E QS +9 Lo(Xi) 5 p(X0) %, QC + g*p(Xe) Bp(X5) B0
- gMp(Xp)hCmOl, iy Mp(X1)% 0m957—g p( )5 C’”QB (30)

)
)
= gkl[P(Xz), (Xk)]A Qf —gkl[P(X ), P(Xi)’BQE + L (p ),A QB
- gMp(Xp) oML g Fp(Xi)% CT’ZQﬁi:h(p)f}gQﬁ-
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The operatos defined by

; 0
fc’@ de 5o (34)
acts on the ghosts as the exterior derivathacts on LI one-formss¢® = —1/2ijcicj, cf. (16)) and, as

d, is nilpotent,s? = 0. For the cohomology associated with a non-trivial actiasf G on V' we introduce
the BRSTS operator

§:=c'p(X;) + c’w @% (35)

Proposition 2 The BRST operatd¥ is nilpotents? = 0.
PROOF  First, we rewrites as
P 7 k 8 — 1 1
§=c'Ny)y, Ngy=p(Xi)+ 2C’]LCJ8 T =N+ 3
The operatoﬂ\f(,) has two different pieced’' and N2, each of them carrying a representatiorga$o that

[N(i),N(j)} = C (N(lk) 1N(2k)) Thus,

NEy. (36)

. i j L i j
§% = I Nwye! Ny = 5¢¢ [Ny, Nij] + ¢ (Nioy - )NG)
(37)

1 i L
= JACCh (N + VR + CCJCkNuc) *CCJCfJ‘ka)inCCJCﬁN(lk):0’

2 4

by virtue of the anticommutativity of thes, and using thattichij(Qk) = 0andN;).c/ = 1c*C,. Thus,
on the ‘BRST-cochains’ )
Q= =0 e, (38)

n nl e

the action ofs is the same as that efin (23) and may be used to define the Lie algebra cohomolgy.

4. Symmetric polynomials and higher order cocycles

4.1. Symmetric invariant tensors and higher order Casimirs

From now on, we shall restrict ourselves to simple Lie groups and algebras; by virtue of Lemma 1, only
the p = 0 case is interesting. The non-trivial cohomology groups are related to the primitive symmetric
invariant tensors [51, 22, 38, 27, 13, 49, 48, 47}oathcalG, which in turn determine Casimir elements

in the universal enveloping algetdG).

Definition 7 Symmetric and invariant polynomials ¢hA symmetric polynomial of is given by a sym-
metric covariant LI tensor. It may be expressed as a LI covariant tens6,én= k;, ; w' ® ... ® w'"
with symmetric constant coordinatés, . ; . k is said to be an invariant ordd-invariant) symmetric
polynomial if it is also right-invarianti.e.if Lx,k = 0V X; € X(G). Indeed, using (21), we find that

Lxlk = O = Cfilks'i2~-i7n + Clsizkils-ninl + ey Olsirmkil---inl—ls = 0 (39)

Since the coordinates éfare given byk;, . = k(X;,...,X;,, ), €q. (39) is equivalent to stating that
is ad-invariant, i.e.,
k(X X, X

Tm

)+ E(XG, [ X0, Xy, X

Tm

)+...+k(XZ-1,,..,[Xl,Xim]):0 (40)

or, equivalently,
k<Angi1; ey Angim) = k(XiN - aXim); (41)

from which eq. (40) follows by taking the derivati¥¢dg’ in g = e.
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Applications of Lie algebra cohomology

The invariant symmetric polynomials just described can be used to construct Casimir elements of the

enveloping algebr& (G) of G in the following way

Proposition 3 Letk be a symmetric invariant tensor. Théft= X; ... X, (coordinate indices ok
raised using the Killing metric), is a Casimir of ordet, i.e. [k*im X, ... X; | Y]=0VY €g.

PROOF
m
Bim X, X, X = Y R XG L[XG, X)L X
j=1
= Y kX, CL X X, =0 (42)
j=1
by (39).H

A well-known way of obtaining symmetrie¢-)invariant polynomials (useel.g, in the construction of
characteristic classes) is given by

Proposition 4 Let X; denote now a representation @f Then, the symmetrized trace
kil...im = STr(Xil - le) (43)
defines a symmetric invariant polynomial.

PROOF.  k is symmetric by construction and thé-invariance is obvious sincédg X := gXg=!. B

The simplest illustration of (43) is the Killing tensor for a simple Lie algelr&;; = Tr(ad X; ad X);
its associated Casimir is the second order Caslmir

Example 2 LetG = su(n), n > 2, and letX; be (hermitian) matrices in the defining representation. Then
STr(XZ-Xij) X 2Tr({X“XJ}X]€) = diij (44)

using that, for theu(n) algebra{X;, X;} = ¢d;; + d;y Xy, Tr(Xy) = 0and T(X,; X;) = %5”». This third
order polynomial leads to the Casindjy; for su(2) only k;; andI, exist.

Example 3 In the cas&; = su(n), n > 4, we have a fourth order polynomial
STH( X, Xiy Xig Xiy) X diyintiig)is + 260310065 )is (45)

where( ) indicates symmetrization. The first term leads to a fourth order Cagimithereas the second
one includes (see [6]) a term i.

Eq. (45) deserves a comment. The first plyt;, d;i,):, generalizes easily to higherby nesting more
d’s, leading to the Klein [38] form of theu(n) Casimirs. The second part includes a term that is the product
of Casimirs of order two: it is ngbrimitive.

Definition 8 Primitive symmetric invariant polynomials symmetric invariant polynomidl;, , ong
is called primitive if it is not of the form
k — k.(P) k(‘l)

Gelm = Mgy Vi i)

, prqg=m, (46)

wherek(®) andk(9 are two lower order symmetric invariant polynomials.

Of course, we could also have considered eq. (453498), but then it would not have led to a fourth-
order primitive polynomial, sinceu(3) is a rank 2 algebra. Indeedy; ;,:d;;,):, iS not primitive forsu(3)
and can be written in terms 6f,;, as in (46) (sees.g, [54]; see also [6] and references therein). In general,
for a simple algebra of rankthere ard invariant primitive polynomials and Casimirs [51, 22, 38, 27, 13,
49, 48, 47] and, as we shall show ndvgrimitive Lie algebra cohomology cocycles.
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4.2. Cocycles from invariant polynomials

We make now explicit the connection between the invariant polynomials and the non-trivial cocycles of a
simple Lie algebr&. To do this we may use the particular cas&of su(n) as a guide. On the manifold
of the groupSU (n) one can construct thedd ¢-form

1

AG), (47)
q!

wheref = w' X; and we takg X, } in the defining representatioghas to be odd since otherwiSewould
be zero (by virtue of the cyclic property of the trace and the anticommutativity of one-forms).

Proposition 5 The LI odd fornt2 on G in (47) is a non-trivial (CE) Lie algebra cohomology cocycle.

PrROOF Since(2 is LI by construction, it is sufficient to show th&t is closed and that it is not the
differential of another LI formi(e. it is not a coboundary). By using (19) we get

1 q+1
A0 = ———Tro A"t
TR

sinceq + 1 is even. Suppose now th@t= df2,_, with Q,_; LI. ThenQ,_; would be of the form (47)
and hence zero becauge- 1 is also evenll

A§) =0, (48)

All non-trivial g-cocycles inH{ (su(n),R) are of the form (47). The fact that they are closed and non-
exact GU(n) is compact) allows us to use them to construct Wess-Zumino-Witten [58, 57] terms on the
group manifold (see also [5]).

Let us sey = 2m — 1. The form(2 expressed in coordinates is

1 A A
QO = —'Tr(X“ e Xl-zm_l)w“ A At
q:
X Tr([Xil ) Xiz][Xis’ Xi4] s [Xisz?nXiszz]Xiszl)w“ A Aw'mt
=Tr(Xp, oo Xoy X )OOt WA AW AW (49)

We see here how the order symmetric (there is symmetry i .. .1, 1 because of the/’’s) invariant
polynomial T(X;_; ... X;, _, X,) appears in this context. Conversely, the following statement holds

Proposition 6 Letk;,. ;, be asymmetric invariant polynomial. Then, the polynomial

o _ lm—1 J2.--J2m—2
Qm2”'l2m—2’7 - Cj2j3 T Cj2mf20kpll"'lm—lgiz---i2mf2 (50)

is skew-symmetric and defines the closed form (cocycle)

1
Q= mﬂpizmiszz

s AW A Awim2 A WO, (51)
PROOF  To check the complete skew-symmetry$df;,.. i,.. .o in (50), it is sufficient, due to the, to
show the antisymmetry ip ando. This is done by using the invariance &f(39) and the symmetry
properties of: ande to rewriteQ,;, s, . .- as the sum of two terms. The first one,

m—2
j2~‘-j25j25+1j2'77L72.j25+2~~-j2'nL73k
Einerizm_2 pli.ds—1lm—1ls...ln—20
s=1
1 s lm—1 lsy1 lm—2
Cj2j3 to Cj2sj25+1Clsj27n—2cj25+2j23+3 T Cj2m74j2m73 (52)
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vanishes due to the Jacobi identity in (14), and the second one is

L _ J2---Jam—2 Iy m—1 L
Qpl2-'~7f2m720' - EZQ o — ngllu'l?n lcjzjf; . C]zm 2p QUZZ--JQ'mpr'

(53)
To show thati€2 = 0 we make use of the fact that any bi-invariant forine.( a form that is both LI and RI)

is closed (sees.g, [2]). Since2 is LI by construction, we only need to prove its right-invariance, but

2m—1

QocTr(OA " AG) (54)
is obviously Rl sinceR;6 = Adg~'0. W

Without discussing the origin of the invariant polynomials for the different groups [51, 22, 38, 27, 13,
49, 48, 47, 6], we may conclude that to each symmetric primitive invariant polynomial of erees can
associate a Lie algebra cohomolo@m — 1)-cocycle (see [6] for practical details). The question that
immediately arises is whether this construction may be extended since, from a ggtroitive invariant
polynomials, we can obtain an arbitrary number of non-primitive polynomials (see eq. (46)). This question
is answered negatively by Proposition 7 and Corollary 1 below.

Proposition 7 Letk;, ;  be asymmetriG-invariant polynomial. Then,
roemoh o Olm =0, (55)

i1 l2m  J1J2 J2m—1J2m

PrROOF By replacingC]l.;;L ki, .1m inthel.h.s of (55) by the other terms in (39) we get

71j2nz

m—

J1---Jam vl
€i1.iom lejz e jzm sjzm 2 Z Jam—1ls kll~~-ls—1k1e+1 A — 1]2m) (56)

which is zero due to the Jli

Corollary 1 Letk be a non-primitive symmetric invariant polynomial (46), Then(the — 1)-cocyclef)
associated to it (51) is zero.

Thus, to grimitive symmetricm-polynomial it is possible to associate uniquely a Lie alggbra—1)-
cocycle. Conversely, we also have the following
Proposition 8 LetQ(?™—1) pe a primitive cocycle. Thiepolynomials:(™ given by
i1 b 2m—1 m—2%m Y1 T —
t - [Q( )]jl Jam -2 lejz Cj27n713j2m,72 (57)

are invariant, symmetric and primitive (see [6, Lemma 3.2]).

This converse proposition relates the cocycles of the Lie algebra cohomology to Casimirs in the en-
veloping algebrd/(G). The polynomials in (57) have certain advantages (for instance, they have all traces
equal to zero) [6] over other more conventional ones suehgghose in (43).

4.3. The case of simple compact groups

We have seen that the Lie algebra cocycles may be expressed in terms of LI forms on the group manifold
G (Sec. 32.). For compact groups, the CE cohomology can be identified ésg418]) with the de Rham
cohomology:

Proposition 9 Let G be a compact and connected Lie group. Every de Rham cohomology cléss on
contains one and only one bi-invariant form. The bi-invariant forms span a ring isomorplieig(G).

The equivalence of the Lie algebra (CE) cohomology and the de Rham cohomology is specially inter-
esting because, since all primitive cocycles are odd, compact groups behave as products of odd spheres
from the point of view of real homology. This leads to a number of simple and elegant formulae con-
cerning the Poincér polynomials, Betti numbers, etc. We conclude by giving a table (table 1) which
summarizes many of these results. Details on the topological properties of Lie groups may be found in
[17, 50, 33, 53, 14, 15, 16]; for book references see [56, 30, 26, 2].
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g dimg order of invariants and Casimirs order@fcocycles
A (+1)2-1]1>1] 2,3,...,1+1 3,5,...,21+1

B 120+1)[>2] 2.4,...,2 3,7,...,4l—1

C, 120+ 1)[l >3] 2,4,...,2 3,7,...,41 — 1

Dy 120 —1)[l > 4] 2,4,. ,21 2,1 3,7,...,4 — 520 —1
Gy 14 2,6 3,11

Fy 52 2,6,8, 12 3,11,15,23

Eg 78 2,5,6,8,9,1 3,9,11,15,17,23
Er 133 2,6, 8 0 12, 14 18 3,11,15,19,23, 27,35
Eg 248 2,8,12,14,18,20, 24, 30 3,15,23,27,35,39,47, 59

Table 1. Order of the primitive invariant polynomials and associated cocycles for all the simple Lie
algebras.

5. Higher order simple and SH Lie algebras

We present here a construction for which the previous cohomology notions play a crucial role, namely the
construction of higher order Lie algebras. Recall that ordinary Lie algebras are defined as vector spaces
endowed with the Lie bracket, which obeys the JI. If the Lie algebra is simpje= k,,C7; is the non-

trivial three-cocycle associated with the Cartan-Killing metric, given by the structure constant themselves
(see (50)). The question arises as to whether higher order cocycles (and therefore Casimirs of order higher
than two) can be used to define the structure constants of a higher order bracket. Given the odd-dimension
of the cocycles, these multibrackets will involve an even number of Lie algebra elements. Since we already
have matrix realizations of the simple Lie algebras, let us use them to construct the higher order brackets.
Consider the case ofi(n), n > 2 and a four-bracket. LeX; be the matrices of the defining representation.
Since the bracket has to be totally skew-symmetric, a sensible definition for it is

[Xiys Xiyy Xy, Xy, ] 1= 020308 X0 X0 X0 X (58)

129 39 21221314

This four-bracket generalizes the ordinary (two-) bradkét , X;,] = aJmX . X, By using the skew-

1122

symmetry inj; . .. j4, we may rewrite (58) in terms of commutators as

1 1
(X,,, Xiy, Xiy, Xiy] = 6]1]2]334[Xj17X 11X; X; = —_ghizisjacl  olz X, X,

127 <213 92 “i1121314 I3 92 “t1izisiy J1Jj2 ~jsja
1 l l
= B O (1,7 X + )
1 l l
— el ICl O i, X = wiyi," X (59)
where in going from the first line to the second we have used that the factor multiplyjdg, is symmetric
inly, l2, so that we can replace;, X;, by %{le , X1, } and then write it in terms of thés. The contribution
of the term proportional tevanishes due to the JI. Thus, the structure constants of the four-bracket are given
by the5-cocycle corresponding to the primitive polynomi&l;,. These reasonings can be generalized to
higher order brackets and to the other simple algebras. This motivates the following

Definition 9 Higher order bracketet X; be arbitrary associative operators. The corresponding higher
order bracket or multibracket of order is defined by [10]

Xy X = ) (D)X X (60)
g€S,

The bracket (60) obviously satisfies the JI when= 2. In the general case, the situation depends on
whethern is even or odd, as stated by
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Proposition 10 For n even, then-bracket (60) satisfies the generalized Jacobi identity (GJI) [10]

Z (71)ﬂ—(0) [[Xo(l)v cee 5Xa(n)]7 Xo’(n-‘rl)a cee 7X0'(2n—1)] = 07 (61)

0€San_1
for n odd, the l.h.s. of (61) is proportional {&X4, . .., X2, —_1].

PrROOFE In terms of the Levi-Civita symbol, the I.h.s. of (61) reads

-l
5311 522” 11 711 Jn [Xh Xln7Xjn+1 yee ’Xj2'n,—1}' (62)
Notice that the produck;, --- X, is a single entry in thex-bracket[X; ---X; . X; . ..., X, .|
Since then entries in this bracket are also antisymmetrized, eq. (62) is equal to
n—1
li...lnJn n—1_ln dan
n!ali ...... ?..:;Lfo 163,:;1 322n 11 Z(_l)lenJrl s X Xy X, X X
s=0
n—1
l1...lap—
= n'(” - 1)!52’1...1'22,L,11X51 T Xl2n—1 Z(_l)s(_l)ns
s=0
= nln—Xs,..., X, , Z 1)s(nFD) (63)

s=0

where we have used the skew-symmetry tf relocate the blocK;, - -- X;  in the second equality. Thus,
the I.h.s. of (61) is proportional to a multibracket of ordgr — 1) times a sum, which for evemvanishes
and for oddn is equal ton. W

In view of the above result, we introduce the following definition [10]

Definition 10 Higher order Lie algebran ordern (n even) generalized Lie algebra is a vector sp&ce
of eIementsX € V endowed with a fully skew-symmetric brackéetx --- xV — V, (Xq,...,X,) —
[X1,...,X,] € V such that the GJI (61) is fulfilled.

Consequently, a finite-dimensional Lie algebra of order 2p, generated by the elemerdt&’; },—1 .
will be defined by an equation of the form

[Xi17 e ,X’igp] = C’LlZQFJXja (64)

WhereC,»l_._iij are the generalized structure constants. An example of this is provided by the construction
given in (59), where the bracket is defined as in (60) and the structure constafs-arg)-cocycles of the
simple Lie algebra used;, ...;,,,. Writing now the GJI (61) in terms of th@’s, the following equation is

obtained o
J1---Jap—1 aQ

Ei1...i4p_1 J1.--J2p

Ojopt1-Jap—1p — 0. (65)

This equation is known to hold due to Proposition 10 and a generalization of the argument given in (59),
which in fact provides the proof of

Theorem 1 Classification theorem for higher-order simple Lie algelt3agen a simple algebrg of rank

I, there arel — 1 (2m; — 2)-higher-order simple Lie algebras associated with They are given by the

[ — 1 Lie algebra cocycles of ordém; — 1 > 3 which may be obtained from tlie- 1 symmetric invariant
polynomials org of orderm,; > m; = 2. Them; = 2 case (Killing metric) reproduces the original simple
Lie algebrag; for the otherl — 1 cases, the skew-symmetfizn; — 2)-commutators define an element of

G by means of th€2m; — 1)-cocycles. These higher-order structure constants (as the ordinary structure
constants with all the indices written down) are fully antisymmetric cocycles and satisfy the GJI.
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Proposition 11  Mixed order generalized Jacobi identlitgt m, n be even. We introduce the mixed order
generalized Jacobi identity for even order multibrackets by

ghdmim= [[X5 o X ) X ] = 0. (66)
PrRoOOFE Following the same reasonings of Proposition 10,
1 Jntm—1 _l1...0n
E‘lefnimfllgjlljn [Xll e Xln ? Xj'n+1 1ty Xjn«#'m,fl]
m—1
. lodnfng1Jndm—1 Ing1edngfm—
- n|€11 --------- ZL1+M7:— lgjn-:»ll---jn-:»nl—ll Z (71)SXZT"+1 T XZTH—S Xll T Xlw,Xln+1+s e Xl7z+m,—1
s=0
m—1
i dppm—
= nl(m —Dle Xy X > (<1 (=D
s=0
m—1
= n'(m - 1)'[Xz1 yoee 7X’L.n+'m,—l} Z (71)(n+1)57 (67)
s=0
m—1

which is zero fom andm even. In contrast, it and/orm are odd the sumz (—1)(»*tVs s different from

s=0
zero ¢n if n is odd and 1 ifn is even). In this case, the l.h.s. of (66) is proportional to(the- m — 1)-
commutatofX;,,..., X ]

in+m—1]'

In particular, ifn andm are the orders of higher order algebras, the identity (66) leads to (cf. (65))
ghtinam=1Qy i Qi v 1p = 0. (68)

Forn =2 and[X;, X;] = CE Xy, [Xi,,. ... Xi,] = Q... " Xk €q. (68) gives

1. lm o _
€ ! +1Ci1i2 Qai3---i7n,+ll) - 07 (69)
which implies that?;, ;... is a cocyclej.e,
il im2 Ciffliz Qaig...i"ﬁli"&z =0. (70)

Expression (70) follows from (69), simply antisymmetrizing the index

5.1. Multibrackets and coderivations
Higher-order brackets can be used to generalize the ordinary coderivation of multivectors.
Definition 11 Let {X,} be a basis off given in terms of LIVF oz, and A*(G) the exterior algebra

of multivectors generated by theti{ A --- A X, = eil“"'“XZ-1 ® -+ ® X;,). The exterior coderivation
0: N1 — NI71is given by

1l...q

(D)X, XA X A AXIA A X Ao A X (71)

M=

XL A AX,) =

All
e

This definition is analogous to that of the exterior derivatiyas given by (9) with its first term missing
when one considers left-invariant forms (eq. (17)). dA% is nilpotent,0*> = 0, due to the JI for the
commutator.
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In order to generalize (71), let us note th&X; A X5) = [ X1, X»], so that (71) can be interpreted as a
formula that gives the action @f on ag-vector in terms of that on a bivector. For this reason we may write
05 for 9 above. It is then natural to introduce an operatpthat on as-vector gives the multicommutator
of orders. On ann-multivector its action is given by

Definition 12 Coderivationds The general coderivatiofl; of degree—(s — 1) (s even)d, : A"(G) —
AP=6=D(@Q) is defined by

1

as(Xl/\ /\X ) S'( )| Z11 'rzna ( : /\X )/\Xs+1 '/\Xina
0s \" (G) =0 fors>n,
Be(X1 A AXy) = [X1,.... X4 (72)

Proposition 12  The coderivation (72) is nilpotenitg., 9? = 0.
PROOF Letn ands be such that — (s — 1) > s (otherwise the statement is trivial). Then,
0:05(X1 N - NXp) =
1 1 1 1 i1 ated
— = temgl® KRN 1P, T, O I, ¢ T
st (n—s)!s!(n—2s+1)! e e s [ Ko

—(n—=2s4+1)[X;,,...., X;i, ] AN [X;

Jeg19

Xjpo 1| N Xy, N X

n

ij] A XJ25+1 Jn} =0. (73)
The first term vanishes becausis even and is proportional to the GJI. The second one is also zero because
the wedge product of the twebrackets is antisymmetric while the resultingymbol is symmetric under

the interchangé€iy, . ..is) < (jsa1,-.-,J25). M

Remark 2 A derivation satisfies Leibniz’s rule (see Proposition 14 below), which we may express as
dom =mo (d® 1+ 1® d) acting on the product: of two copies of the algebra. The coderivation
satisfies the dual propertfyocd = (0® 1 +1® J) o A, whereA is the ‘coproduct’. The simplest example
corresponds to

(Ao d) (X1 AXo)=A(0(X1 AX2)) =A[Xy,Xo] = [X1, Xo] AT+ 1A [Xq, Xo) = 74)
=0R14+1QINCXINIAXy+ X1 AXoAT+1IAX AXD)

sinceA(X1 A Xo) = AX1 A Xo+ X7 AAXS.
Let us now see how the nilpotency condition (or equivalently the GJI) looks like in the simplest cases.
Example 4 Considerd = d,. Then we have

(X1 A Xo A X3) =[X1, Xo] A X3 — [ X1, X3] A Xo + [Xo, X3] A X3 (75)

and
D% (X1 A Xo A X3) = [[X1, Xa], Xa] — [[X1, X3], Xa] + [[ X2, X3], X1] = 0. (76)

Example 5 When we move t@ = 9,, the number of terms grows very rapidly. The explicit expression
for 9?(X;, A --- A X;.) = 0 (which, as we know, is equivalent to the GJI) is given in [4, eq. (32)] (note
that the tenth term there should regd’;, , XQ,XWX |, Xiss Xiy» Xi5])- It contains() = 35 terms.

In general, the GJI which follows frod3,, _,(X1 A -+ A Xam—5) = 0 (s = 2m — 2) contains(;" %)
different terms.

These higher order Lie algebras turn out to be a special example of the strongly homotopy (SH) Lie
algebras [42, 41, 37]. These allow for violations of the generalized Jacobi identity, which are absent in our
case (for the physical relevance and applications of multialgebras, see below and the references in [42, 10]).

237



J. A. de Azcdrraga, J. M. Izquierdo and J. C. Pérez Bueno

Definition 13 Strongly homotopy Lie algebras [42]SH Lie structureon a vector spac¥ is a collection
of skew-symmetric linear maps: V ® --- ®V — V such that
L1 yme)_qyiG-D
Z Z mﬁ(fl) (71) li(lj(va(l)@)“'®Ua(j))®vg(j+1)®'"®UU(n)) =0. (77)
itj=n+10€S,

For a general treatment of SH Lie algebras includingyradings see [42, 41, 37] and references therein.

1 1 . . . .
Note thatW7 > is equivalent to the sum over the ‘unshufflé, over the permutations € S,
1 —1)!j!
ocESy,
suchthatr(1) < --- < o(j)ando(j +1) < --- < g(n).

Example 6 Forn = 1, eq. (77) just says that = 0 (I, is a differential). Fom = 2, eq. (77) gives

_%ll(b(vl ®@va) —la(v2 @ 1)) + la(l1(v1) ® v2 — 1 (v2) ®v1) =0 (78)

i.e., ll[’l)l, 'UQ] = [ll’Ul,’UQ] + [’Ul, 11’1}2] Wlth 12(’1}1 [024] UQ) = [’Ul,UQ}.
Forn = 3, we have three mags, I- , l3, and eq. (77) reduces to

[l2(l2(v1 ® v2) @ v3) + 2 (l2(v2 @ v3) @ v1) + la(l2(v3 ® V1) @ v2)] + [l1(I3(v1 @ V2 @ v3))]

(79)
+[I3(11(v1) @ v2 @ v3) +I3(11(v2) ® v3 @ v1) + I3(11(v3) ® V1 @ wa)] =0,
i.e., adopting the convention that(v; ® - - @ v,) = [v1, ..., V],
[[v1,v2], v3] + [[v2, v3], v1] + [[vs, V1], va]
(80)

= —liv1,v2,v3] = [l1(v1), v2,v3] — [v1, 11 (v2), v3] — [v1, V2,11 (v3)].
The second line in (80) shows the violation of the (standard) Jacobi identity given in the first line.

In the particular case in which a uniqug (n even) is defined, we recover Def. 10 of a higher order Lie
algebra since, for = j = n eq. (77) reproduces the GJI (61) in the form

11 .
> Em(—l) Dl (ln(v51) ® - @ Vg(n)) @ Vo(n1) @ -+ @ Vg(an-1)) =0.  (81)
0€Son_1 ’

We wish to conclude this subsection by pointing out thatigebras have also been considered in [28,
24, 25].

5.2. The complete BRST operator for a simple Lie algebra

We now generalize the BRST operator and MC equations of Sécto3the general case of higher-order
simple Lie algebras. The result is a new BRST-type operator that contains the information of iall the
possible algebras associated with a given simple Lie algglofarank!.

Let us first note that, in the notation of (19), the JI reads

1
d?’0 = —d(ON0) = 5 (16, 6],0] =0, (82)
and expresses the nilpotencydfNow, in Sec. 5l. we considered higher-order coderivations which also
had the property? = 0 as a result of the GJI. We may now introduce the corresponding dual higher-order

derivationsd, to provide a generalization of the Maurer-Cartan equations (16). Sinees defined on
multivectors that are product of left-invariant vector fields, the dualill be given for left-invariant forms.
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It is easy to introduce dual basis in, andA™. With w'(X;) = 5; a pair of dual basis in,,, A™ are
given byw ' A+ - Awn, L X AL AXG (I < - < L) since(elt T wt @ - @wdn ) (et X, ©

1! n!Elln- n
@ Xg,) =gl andefl'_'_"[gn is 1 if all indices coincide and O otherwise. Nevertheless it is customary
to use the non-minimal set’ A --- A w'» to write v = Loy, 5w A--- Awin. Since(w™ A A
wi")(le, - ’Xjn) = 6;111]7; itis clear thatail_”in = Oé(Xil, - 7Xin) = %Q(Xil VARERIVAN Xzﬂ)
Definition 14 The action ofi,, : A,, — An+(2m—3) (remember that = 2m — 2) ona € A, is given by
(cf. (18))

(dma) <XZ11 LA Xi7L+27n73) =
J1--Jn4+2m—3 ]
2m —2)! (n — 1)!€i1“‘in+2m73 (X

(d“ a) ] _ 1 1 Ej1<~.,7‘rn+2m73 ) . pOé . .
m=)i1...tn42m—3 (2m 7 2)| (n - 1)| 11 fpq2m—3 " J1-J2m—2. “PJ2m—1---Jn+2m—3"

X

jszz]’

X

J2m—17"" ">

Xjn+27n73)7 (83)

Proposition 13 d,, is dual to the coderivatiof,, o : A" — A"~ 2m=3) (dy = —d, dy : Ay — Ani1).

PROOF  We have to check the ‘duality’ relatiofh, o o< adam—2 (D2m—2 : Ant(2m—3) — An)- Indeed, if
ais ann-form, eq. (72) tells us that

1 1
o OomaXa o A X)) = G =i G om 3 2m + )1
XEZ;i:I;:Z:;a([Xh g 7Xj2'm—2] A Xj27n—1 ARERRA Xjn+2m—3)7 (84)
which is proportiondito (d,,a)(Xi, A+ A Xiy 1y ,). W

Proposition 14 The operatord,, satisfies Leibniz’s rule.

PROOF  Fora € A,, 8 € A, We get, using (83)

A (N B)iy.insprom—s = (

j1-<~jn+p+2m73 . X P
o2m — 2)' (n +p _ 1) 1. intptam—3 " J1--J2m—2.

1 k
. Teverrnnns ntp
( nip! € pjam—1--dn+pt2m—s Vk1-kn Brn 1 ~~kn+p>

1 1

& Jtedndpt2m-3(y 2 (e ) B; )
(2m—2)'n'p' 1. bnfptom—3  J1--J2m—2. PI2m—1---In+2m—3~In+2m—2---Jn+p+2m—3

n
+ ( - 1) Pjor 1. nt2m—2 /Bp.jn+27n.7 1 Jntptam—3 )

S 1 ~
_ Ji-In+p+2m-3 . . . .
- Eil...in+p+2m,3 (p'(n +om — 3)' (dma)jl--~]n+2mf3ﬁ]n+2m72---‘7n+p+2m73

1 ~
manm— 1 Jnt2m—2 (dm/B)jl cJoem—2n42m—1 --~jn,+p+2m—3)

= ((dm) A B+ (1) A (dn))

+(=1)"

i1t pt2m—3

z - - - (85)
Thus,d,, is odd andi,,,(a« A B) = dpma A G+ (-1)"a Ad,[5. R
The coordinates af,,,w° are given by
7 o 1 j1.--J2m—2 o
(dmw ) (Xiys ooy Xy, ) = mdlmimﬁ W ([ Xy s e X o)
= WU([XZ'N s 7Xi2m—2]) = wU(Qi1~»-i2m—2f)XP) = Qi1-~i2m—2ff (86)

50ne findsd,n o = Wcﬁgm,g, wheren is the order of the formx. The factor appears as a consequence of using the
same definition (antisymmetrization with no weight factor) for thproduct of forms and vectors.
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from which we conclude that
~ 1

dmwﬂ B (2m — 2)191»1“.1.27”7257(*}1'1 TARRRNA wiizm_Z' (87)

Form = 2, d» = —d, equations (87) reproduce the MC egs. (19). In the compact notation that uses the
canonical one-formd, we may now introduce the following

Proposition 15 Generalized Maurer-Cartan equatidrige action ofi,, on the canonical fornd is given

by

Al = m [9, e 9} : (88)

where the multibracket of forms is defined [lﬂymfz’ 9} =wh A AwRm2[XG L X, ] Using
Leibniz’s rule for the operatodm we arrive at

~ 1 1 2m—3 2m—2
29 T =
Il = = G =2y @m — 3! 0,770, 0.7 0] =0, (89)
which again expresses the GJI.
Each Maurer-Cartan-like equation (89) can be expressed in terms of the ghost variables introduced in
Sec. 34. by means of a ‘generalized BRST operator’,
1

, A D)
Som_9 = 7(70“ N VP 7

2m — 2)! Hiam2e oo (%0)

By adding together all thegeneralized BRST operators, the complete BRST operator is obtained. Then
we have the following

Theorem 2 Complete BRST operatdret G be a simple Lie algebra. Then, there exists a nilpotent asso-
ciated operator, the complete BRST operator associated@vitfiven by the odd vector field

L s 0 1 ; ; s 0
s = _icjchQle.jz. @ ____ mcﬁ ce CJQmi_2Qj1~-j2mifz, 87 -
1 j1 J2m;—2 o 0 _
(2my _2)!CJ .. G le-~~j27nl—2. 9co =sy+ -+ Som;—2+ -+ Sam—2,  (91)
wherei = 1,...,1,9Q;,;,7 = Cj,;,7 andQy, _j,, .7 are the correspondinghigher-order cocycles.

PROOF.  We have to show thdtsa;,, —2, S2m; -2} = 0 Vi, j. To prove it, let us write the anti-commutator
explicitly:

1 1
2mi — 2)' (2mj — 2)

{SQmi—Q;SQmj—Q} = ( 1 X

l lom . — pr T2m . —2 o a . .
X{(2mj72)cl"'02 ‘ ZQll---hmifz.CQ"'c / QIJT2---7"2m]-72' @4»2(—)]
0

P Hc”
rQ) o 0

cdom, -2 pra...Tom  —2
i . j . (’)c"

l1 lom,;—2 .T1 Tom ; —2 p o . .
o (RN i S Vo N Qll‘__lmi&_er_“,,MFZ_ +1ie )

1 1,

P T2m . —
= o demizere o otrmy 2y,

+i— g, (92)

where we have used the fact thgk -2 is antisymmetric inp, o while the parenthesis multiplying it is
symmetric. The term proportional to a sin%@g also vanishes as a consequence of equation #8).
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The coefficients 0b/0c? in sa,,—2 €an be viewed, in dual terms, as (even) multivectors of the type

1 o i1 i2m —2
A = mQhuﬂ&m—Z. "Ega A A 3 . (93)
(see (116)). They have the property of having zero Schouten-Nijenhuis bracket among themselves by virtue
of the GJI (65).

Definition 15 Let us consider the algebra()) of multivectors onV/. The Schouten-Nijenhuis bracket
(SNB) ofA € AP(M) and B € AY(M) is the unique extension of the Lie bracket of two vector fields
to a bilinear mapping/\?(M) x AY(M) — APT41(M) in such a way that\(M) becomes a graded
superalgebra.

For the expression of the SNB in coordinates we refer to [46, 43]. It turns out that the multivector
algebra with the exterior product and the SNB is a Gerstenhaber afgébrahich degA) = p — 1 if
A € AP. Thus, the multivectors of the form (93) form an abelian subalgebra of this Gerstenhaber algebra,
the commutativity (in the sense of the SNB) being a consequence of (65).

6. Higher order generalized Poisson structures

We shall consider in this section two possible generalizations of the ordinary Poisson structures (PS) by
brackets of more than two functions. The first one is the Nambu-Poisson structure (N-P) [45, 52, 55, 20]
(see also [44]). The second, named generalized PS (GPS) [9, 8], is based on the previous constructions
(and has been extended to the supersymmetric case [3]). We shall present both generalizations as well as
examples of the GPS, which are naturally obtained from the higher-order simple Lie algebras of 8ec. 5
comparison between both structures may be found in [4] and in table 2 (see also [36, 35]).

PS N-P GPS (even order)
Characteristic identity (CI): Eqg. (96) (JI)  Eqg. (105) (FI) Eq. (113) (GJI)
Defining conditions: Eq. (97) Egs. (108),(109) Eqg. (112)
Liouville theorem: Yes Yes Yes
Poisson theorem: Yes Yes No (in general)
Cl realization in terms of associa-
tive operators: Yes No (in general) Yes

Table 2. Some properties of Nambu-Poisson (N-P) and generalized Poisson (GP) structures.

Let us first review briefly the standard PS.

6.1. Standard Poisson structures

Definition 16 Let M be a differentiable manifold. A Poisson bracket (PBY&(\/) is a bilinear mapping
{,'}: F(M) x F(M) — F(M) that satisfies {, g, h € F(M))

6A Gerstenhaber algebra [23] isZagraded vector space (with homogeneous subspates being the grade) with two bilinear
multiplication operators,and][ , ] with the following propertiesy € A%, v € AY, w € A°):
a) dedu - v) = a+b,
b) dedu,v] =a+b-1,

O)(u-v) - w=u-(v-w),

d) [’U,,”U] = _(_1)(@—1)([7—1) [v,u],
e) (_1)(&71)(671)[,“7 [v,w]] + (_1)(Cil>(b71> [w7 [’U,,’UH + (_1)(1771)(&71)[’”7 [w,uﬂ =0,
f) [u,v ) w] = [uv ’U] e (71)((1_1)}7” ) [uv w]

For an analysis of various related algebras, including Poisson algebras, see [40] and references therein.
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a) Skew-symmetry

{fag}:_{gvf}7 (94)

b) Leibniz’s rule,
{f.gh} = g{f.h} +{f, g}h, (95)

¢) Jacobi identity
At f,{g, h}} ={f. {9, h}} +{g.{h, [}} +{h.{f, 9}} = 0. (96)

A PB onM defines a PS.
In local coordinategz*}, conditions a), b) and ¢c) mean that it is possible to write
{f(2),9(x)} =w"0;f0;9, w9 =—w wWkGW'™ + W™ + W™ oWt = 0.  (97)
It is possible to rewrite a)-c) in a geometrical way by using the bivector
A= %wikaj A O, (98)
in terms of which

{f, 9} = Adf,dg); (99)

the Jl imposes a condition ok, which is equivalent to the vanishing of the SNB [43]
[A,A] = 0. (100)

If the manifold M is the dual of a Lie algebra, there always exists a PS, the Lie-Poisson structure, which is
obtained by defining the fundamental Poisson bra¢ketz; } (where{z;} are coordinates og*). Since

G ~ (G*)*, we may think ofG as a subspace of the ring of smooth functi@f(&*). Then, the Lie algebra
commutation relations

{zi,z;} = C’fjxk (101)

define, by assuming b) above, a mappiR(G*) x F(G*) — F(G*) associated with the bivectdr =
3Char 5% A 52-. This is a PB since condition (97) (or (100)) is equivalent to the JI for the structure
constants ofj.

6.2. Nambu-Poisson structures

Already in 1973, Nambu [45] considered the possibility of extending Poisson brackets to brackets of three
functions. His attempt has been generalized since then, and all generalizations considered share the follow-
ing two properties

a){fi,.... fi,-- s iy =—{f1r,- -, fiv- ooy fir ooy fn} (Skew-symmetry) (102)
b) {fl7"'7fn—1agh} :g{f17-~-7fn—17h} +{fla"'af’n—lvg}h’ (Leibniz’s rU|e)

which will be guaranteed if the bracket is generated in local coordidatgson M by

1 ) )
A= =iy, O A A O (103)

asin (99),.e.by
{fi,.- s fu} = Aldf1,...,dfn). (104)
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The key difference among the higher order PS is the identity that generalizes c) in Definition 16. That
corresponding to Nambu’s mechanics was given by Sahoo and Valsakumar [52] and in the general case by
Takhtajan [55], who studied it in detail and named it thedamental identityFI)

{fl7"'7er—17{glv" '7971,}} = {{flv"'7f’n—1vgl}a92a"'7gn}
+{glv{f17"'afn71a92}7937"'>gn} +- {gl ~-~7gn717{f17" '7fn717gn}} (105)

(see also [20, 44]). The FI (105), together with (102), define the Nambu-Poisson structures [55]. To see the
signification of (105), let us consider— 1 ‘Hamiltonians’ (H;, ..., H, 1) and define the time evolution
of an observable by

g:{H17"'aHn—lag}' (106)
Then, the FI guarantees that

d . .
gt gl = e gad 4o g, (107)

i.e, that the time derivative is a derivation of the NsFbracket. In this way, the bracket of anyconstants
of the motion is itself a constant of the motion.

Inserting (103) into (105), one gets two conditions [55] for the coordingtes  of A. The firstis the
differential conditionwhich in local coordinates may be written as

.0y

1
Nis.in—1p0" iy g — (n— 1)!€j1“‘j" (OPNiy im0 )Mpla.., = O. (108)

The second is thalgebraic condition It follows from requiring the vanishing of the second derivatives in
(205). In local coordinates it reads

Y+ P(X)=0 , (109)
whereX is the2n-tensor
Bivvimgidn = MivewinMineein — Mirewvin 11 Mingaerdn — Mireoin_ 152 Mirinis...in (110)
Niv.iin—133Mj172inda G — " 7 Miteciin—14n j1j2- Jn—1%n -

It turns out [1, 21, 29] (see also [19]) that this last condition implies that (103) is decomposableg.,
that A can be written as the exterior product of vector fields.

6.3. Generalized Poisson structures

Instead of generalizing Jacobi’s identity through the FI (105), one may take a different path by following
a geometrical rather than a dynamical approach. Since for the ordinary PS the Jl is given by (100), it is
natural [9, 8] to introduce in the even case new GPS by means of

Definition 17 A 2p-multivectorA(??) defines a GPS if it satisfies
[A(2P),A(2p)] =0, (112)

where|[ , ] denotes again the SNB. Notice that foodd, [A(™), A()] vanishes identically and hence the
condition is empty. Written in terms of the coordinates\6¥) (now denoted;, .. ;,,), the GJI condition
(111) reads o

gl dan—t, 8"wj2p,,_j4p71 =0 (112)

Z‘l...i4p71 j1-~~j2p—10'

[cf. (65)]. Thus a GPS is defined by (102) and eq. (111) (or (112)), which in terms of the GPB is expressed
by
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Proposition 16 The GJI for the GPB

Alt{f17 LR f2p717 {f2p7 LR f4p71}}
= Z (_l)ﬂ(g){fa(l)a SERE) fa'(2p—1)7 {fa‘(?p)7 BRRE) f0(4p—1)}} =0, (113)

0€S4p_1
is equivalent [9, 8] to condition (112).

PROOF Let us write (113) as

Ji---Jap— [ lap—
Eill..,ij;_ll{fjn ey fj2pfl7wl2pu.l4p718 2pfj2p S0 1fj4p71}
J1---Jap— 11 lop— l lap—
= gill...i::_llwllmlz]aflffa 1fjl S0 1fj2p71(agwl2pml4p718 2pfj2p A 1fj4p71
2 12 lap—
+2pwiy, . tyy 070 f5,, 0 fy O ) =00 (114)

The second term vanishes because the factor multiplgfiif? fj., 1S antisymmetric with respect to the
interchanger « [5,. Hence, we are left with (112) becaugg, . .., f;,,_, are arbitrary®

Remark 3 1. It is also possible to define the GPS in tied case [4]. For GPB with an odd number

of arguments, the second term in (114) does not vanish, giving now rise (as for the N-P structures) to an
‘algebraic condition’ which is absent in the even case [4].

2. These constructions may also be extended t@thgraded (‘supersymmetric’) case [3].

3. The GJI does not imply the FI. Thus, the GPB of constants of the motion is not a constant of the motion
in general (see [8], however, for a weaker result). On the other hand, the FI does imply the GJdi ishen
even (and also when is odd). So the GPS’s may be viewed as a generalization of the Nambu-Takhtajan
one. As aresult, & defining a GPS is not decomposable in general.

6.4. Higher order linear Poisson structures

It is now easy to construct examples of GPS (infinitely many, in fact) in the linear case. They are obtained
by extending the argument at the end of Set. ® the GPS. Let; be a simple Lie algebra of rank
We know from Sec. 5that corresponding to it there afe— 1) higher order Lie algebras. Their structure

constants define a GPB, -, -} : g* x "2 xG* — G* by

{‘rila s axizml_z} = Qil...imn,l_fzaxaw (115)

[ea

whereQ is the(2m,; — 1)-cocycle. If one now computes the GJI (112) a‘@g,_hmﬁ = Qil___imﬂ. To,
or, alternatively[A, A] for
1 ‘ ,
A= (2m — 2)!Qi1--.z-2m,_2f’:voa“ A NOEmE, (116)
one sees thgi\, A] = 0 is satisfied since it expresses the GJI for the higher order structure corf3tants
given in (65). This means thatl higher-order simple Lie algebras define linear GPS. These structures are
not of the Nambu-Poisson type.

Conversely, given a linear GPS with fundamental GPB (115), the associated higher-order Lie algebra
provides a realization of it. This is what one might expect to achieve when quantizing the classical theory
if, that is, quantization implies the replacement of observableadspciativeoperators and the GPB by
multicommutators (the standard quantizatida Dirac implies the well known substitutiop, } — [, ]).

The physical difficulty for the GPS is the fact that time derivative is not a derivation of the bracket (Bgc. 6

The N-P structures are free from this problem, but the Fl is not an identity for the algebra of associative
operators. Thus, one is led to the conclusion that a standard quantization of higher order mechanics is not
possible (see, however, [19]) and that ordinary Hamiltonian mechanics is, in this sense, rather unique.
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7. Relative cohomology, coset spaces and effective WZW
actions

This is a topic of recent physical interest [32, 31, 7] since, for an action invariant under the compact symme-
try groupG which has a vacuum that is symmetric under the subgfduthe Goldstone fields parametrize
the coset space. Thus, the possible invariant effective actions of WZW type [58, 57] are related to the co-
homology onG/H. In particular, for the cohomology of degree 4 and 5 we may construct WZW actions
on 3- and 4- dimensional space-times respectively.

Let G be a compact Lie group andl a subgroup. The ‘left coseX’ = G/H is defined through the
projection mapr : G — K by

m:gh—{gH}=g9g , VheH. (117)

G(H, K) is a principal bundle where the structure gralipacts on the righk;, : g — gh and the base
space is the cosét/H.

Theorem 3 Projectable forméet G(H, K) be a principal bundle. A-form 2 on G is projectable to a
formQ on K, i.e, there exists a unique such that2 = 7*(Q) iff

Q(g)(X1(g),...,Xq(g9)) =0ifoneX € X(H) (2 is horizontal)
R; Q= Q (Qis invariant under the right action off).
PROOFE See [39].1

Definition 18 Relative Lie algebra cohomolodyet G be a Lie algebra and{ a subalgebra of;. The
space of relative (to the subalgebt#) ¢-cochainsC?(G, H) is that of theg-skew-symmetric mags :

G A-Y. NG — R such that (cf. Theorem 3)
QX, Xs,...,X,) =0 if X € H(Qishorizonta)
(118)
Q(X, X1], Xo, ., Xo) + -+ X1, Xoy .., [X, X)) =0 VX €H.
The cocycles and coboundaries are then defined by
Z%G,H) = 2%G)N CI (G, H), B (G, H)=sC"""(G,H) (119)

wheres is the standard Lie algebra cohomology operator. Télative Lie algebra cohomology groupse
now defined as usual,

H%(G, H) = 2%(G,H)/B*(G, H). (120)
Let us consider a horizontal LI for2 on G and which is invariant under the right action’f namely
iX(g)Q(g) =0 , LX(g)Q(g) =0 VX eH (121)

Since there is a one-to-one correspondence between LI forfsod multilinear mappings o, itis clear
that (121) is the translation of (118) (Theorem 3) in terms of differential forms on the group masifold

Theorem 4 The ring of invariant forms oid7/ H is given by the exterior algebra of multilinear antisym-
metric maps oy vanishing oriH and which arend H-invariant.

Remark 4 Definition 18 requires to prove thaC? c C9+!. But this may be seen using that (118) may
be written ag x Q(Xa, ..., X,) =0andLxQ(Xy,...,X,) =0, X € H. Now,

ix(sQ)(X1,...,X,) = (Lx — six)X1,...,X,) =0 (122)

and
Lx(sQ)(X1,...,Xq) = (sLx)Q(X1,....X4) =0 (123)

sinces ~ d, six +ixs = Lx and[Lx,s| =0.
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Theorem 5 The Lie algebra cohomology groups?(G, H) relative toH are given by the form& on G
which are a) LI b) closed and c) projectable.

PrROOF LI means that they can be put in one-to-one correspondence with skew-linear foginslosed
implies thatd$2 = 0 or, in terms of the cohomology operator, th& = 0. Finally, projectable means that
the relative cohomology conditions (118) are satisfilld.

Note that, again, the relative and the de Rham cohomology on the coset may be different. However, if
G is compact the following theorem [18, Theorem 22.1] holds

Theorem 6 Let G be a compact and connected Lie group,a closed connected subgroup ahdthe
homogeneous spadé = G/H. ThenH(G,’H) and H}, ,(K) are isomorphic, and so are their corre-
sponding ringsH*(G, H) and H},  (K).

The relative cohomology may be used to construct effective actions of WZW type on coset spaces
[32, 31, 7]; the obstruction may be expressed in terms of an anomaly. For instance, when it is absent, the
five cocycle onG/H has the form

Tr(U®) — 5TrOVU3) + 10Tr(WU), (124)

wherel{ is the (G\'H)-component of the canonical forthon G andWW = dV + V AV is the curvature of
the’H-valued connectioi¥ given by thel{-componentv® of 6. In fact, a similar procedure is also valid to
recover the obstructions to the process of gauging WZW actions found in [34]. It may be seen that this is
due to the relation between the relative Lie algebra cohomology and the equivariant (see [12]) cohomology,
but we shall not develop this point here (see [11] and references therein).
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