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An introduction to some novel applications of Lie algebra
cohomology in mathematics and physics

J. A. de Azc árraga, J. M. Izquierdo and J. C. P érez Bueno

Abstract. After a self-contained introduction to Lie algebra cohomology, we present some recent
applications in mathematics and in physics.

Introducci ón a algunas aplicaciones novedosas de la cohomologı́a de
álgebras de Lie en matem áticas y fı́sica

Resumen. En esta nota se presenta en primer lugar una introducción autocontenida a la cohomologı́a
deálgebras de Lie, y en segundo lugar algunas de sus aplicaciones recientes en matemáticas y f́ısica.

1. Preliminaries: LX , iX , d

Let us briefly recall here some basic definitions and formulae which will be useful later. Consider a uni-
parametric group of diffeomorphisms of a manifoldM , eX : M → M , which takes a pointx ∈ M
of local coordinates{xi} to x′

i ' xi + εi(x) (= xi + Xi(x)). Scalars and (covariant, say) tensorstq
(q = 0, 1, 2, . . . ) transform as follows

φ′(x′) = φ(x), t′i(x′) = tj(x)
∂xj

∂x′i
, t′i1i2(x

′) = tj1j2(x)
∂xj1

∂x′i1
∂xj2

∂x′i2
. . . (1)

In physics it is customary to define ‘local’ variations, which compare the transformed and original tensors
at the same pointx:

δφ(x) ≡ φ′(x)− φ(x), δti(x) ≡ t′i(x)− ti(x) . . . (2)

Then, the first order variation defines the Lie derivative:

δεφ = −εj(x)∂jφ(x) := −LXφ, (δεt)i = −(εj∂jti + (∂iε
j)tj) := −(LXt)i,

(δεt)i1i2 = −(εj∂jti1i2 + (∂i1ε
j)tji2 + (∂i2ε

j)ti1j) := −(LXt)i1i2 . (3)

Eqs. (3) motivate the following general definition:
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J. A. de Azcárraga, J. M. Izquierdo and J. C. Pérez Bueno

Definition 1 Lie derivativeLetα be a (covariant, say)q tensor onM , α(x) = αi1...iqdxi1 ⊗ · · · ⊗ dxiq ,
andX = Xk ∂

∂xk a vector fieldX ∈ X(M). TheLie derivativeLX of α with respect toX is locally given
by

(LXα)i1...iq = Xk ∂αi1...iq

∂xk
+ αki2...iq

∂Xk

∂xi1
+ · · ·+ αi1...iq−1k

∂Xk

∂xiq
. (4)

On aq-formα(x) =
1
q!

αi1...iqdxi1 ∧ · · · ∧ dxiq , α ∈ ∧q(M), LY α is defined by

(LY α)(Xi1 , . . . , Xiq
) := Y · α(Xi1 , . . . , Xiq

)−
q∑

i=1

α(Xi1 , . . . , [Y, Xi], . . . , Xiq
); (5)

on vector fields,LXY = [X, Y ]. The action ofLX on tensors of any typetpq may be found using thatLX is
a derivation,

LX(t⊗ t′) = (LXt)⊗ t′ + t⊗ LXt′ . (6)

Definition 2 Exterior derivativeTheexterior derivatived is a derivation of degree +1,d : ∧q(M) →
∧q+1(M); it satisfies Leibniz’s rule,

d(α ∧ β) = dα ∧ β + (−1)qα ∧ dβ, α ∈ Λq, (7)

and is nilpotent,d2 = 0. On theq-form above, it is locally defined by

dα =
1
q!

∂αi1...iq

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxiq . (8)

The coordinate-free expression for the action ofd is (Palais formula)

(dα)(X1, . . . , Xq, Xq+1) :=
q+1∑
i=1

(−1)i+1Xi · α(X1, . . . , X̂i, . . . , Xq+1)

+
∑
i<j

(−1)i+jα([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xq+1). (9)

In particular, whenα is a one-form,

dα(X1, X2) = X1 · α(X2)−X2 · α(X1)− α([X1, X2]). (10)

Definition 3 Inner productTheinner productiX is the derivation of degree−1 defined by

(iXα)(X1, . . . , Xq−1) = α(X, X1, . . . , Xq−1). (11)

On forms (Cartan decomposition ofLX ),

LX = iXd + diX , (12)

from which[LX , d] = 0 follows trivially. Other useful identity is

[LX , iY ] = i[X,Y ]; (13)

from (12) and (13) it is easy to deduce that[LX , LY ] = L[X,Y ].
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2. Elementary differential geometry on Lie groups

Let G be a Lie group and letLg′g = g′g = Rgg
′ (g′, g ∈ G) be the left and right actionsG×G → G with

obvious notation. The left (right) invariant vector fields LIVF (RIVF) onG reproduce the commutator of
the Lie algebraG of G

[XL
(i)(g), XL

(j)(g)] = Ck
ijX

L
(k)(g), [XR

(i)(g), XR
(j)(g)] = −Ck

ijX
R
(k)(g), Cρ

[i1i2
Cσ

ρi3]
= 0, (14)

where the square bracket[ ] in the Jacobi identity (JI) means antisymmetrization of the indicesi1, i2, i3. In
terms of the Lie derivative, theL- (R-) invariance conditions read1

LXR
(j)(g)X

L
(i)(g) = [XR

(j)(g), XL
(i)(g)] = 0, LXL

(i)(g)X
R
(j)(g) = [XL

(i)(g), XR
(j)(g)] = 0. (15)

Let ωL(i)(g) ∈ ∧1(G) be the basis of LI one-forms dual to a basis ofG given by LIVF
(ωL(i)(g)(XL(j)(g)) = δi

j). Using (10), we get the Maurer-Cartan (MC) equations

dωL (i)(g) = −1
2
Ci

jkωL (j)(g) ∧ ωL (k)(g). (16)

In the language of forms, the JI in (14) follows fromd2 = 0. If the q-form α is LI

dαL(XL
i1 , . . . , X

L
iq+1

) =
∑
s<t

(−1)s+tαL([XL
is

, XL
it

], XL
i1 , . . . , X̂

L
is

, . . . , X̂L
it

, . . . , XL
iq+1

) , (17)

sinceαL(XL
1 , . . . , X̂L

i , . . . , XL
q+1) in (9) is constant and does not contribute2. To facilitate the comparison

with the generalized̃dm to be introduced in Sec. 5., we note here that, with̃d2 ≡ −d, eq. (17) is equivalent
to

d̃2α
L(XL

i1 , . . . , X
L
iq+1

) =
1

(2 · 2− 2)!
1

(q − 1)!
ε

j1...jq+1
i1...iq+1

αL([XL
j1 , X

L
j2 ], X

L
j3 , . . . , X

L
iq+1

). (18)

The MC equations may be written in a more compact way by introducing the (canonical)G-valued LI
one-formθ onG, θ(g) = ω(i)(g)X(i)(g); then, MC equations read

dθ = −θ ∧ θ = −1
2
[θ, θ] (19)

since, forG-valued forms,[α, β] := α(i) ∧ β(j) ⊗ [X(i), X(j)].
The transformation properties ofω(i)(g) follow from (5):

LX(i)(g)ω
(j)(g) = −Cj

ikω(k)(g). (20)

For a general LIq-form α(g) =
1
q!

αi1...iqω
(i1)(g) ∧ · · · ∧ ω(iq)(g) onG

LX(i)(g)α(g) = −
q∑

s=1

1
q!

Cis

ikαi1...iqω
(i1)(g) ∧ · · · ∧ ω̂(is)(g) ∧ ω(k)(g) ∧ · · · ∧ ω(iq)(g. (21)

1The superindex L (R) in the fields refers to the left (right) invariance of them; LIVF (RIVF) generate right (left) translations.
2From now on we shall assume that vector fields and forms are left invariant (i.e., X ∈ XL(G), etc.) and drop the superindexL.

SuperindicesL, R will be used to avoid confusion when both LI and RI vector fields appear.
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3. Lie algebra cohomology: a brief introduction

3.1. Lie algebra cohomology

Definition 4 V -valuedn-dimensional cochains onG Let G be a Lie algebra andV a vector space. A
V -valuedn-cochainΩn onG is a skew-symmetricn-linear mapping

Ωn : G ∧ n· · · ∧G → V, ΩA
n =

1
n!

ΩA
i1...in

ωi1 ∧ · · · ∧ ωin , (22)

where{ω(i)} is a basis ofG∗ and the superindexA labels the components inV . The (abelian) group of all
n-cochains is denoted byCn(G, V ).

Definition 5 Coboundary operator (for the left actionρ of G on V ) Let V be a leftρ(G)-module, where
ρ is a representation of the Lie algebraG, ρ(Xi)A

.Cρ(Xj)C
.B − ρ(Xj)A

.Cρ(Xi)C
.B = ρ([Xi, Xj ])A

.B . The
coboundary operators : Cn(G, V ) → Cn+1(G, V ) is defined by

(sΩn)A (X1, ..., Xn+1) :=
n+1∑
i=1

(−)i+1ρ(Xi)A
.B (ΩB

n (X1, ..., X̂i, ..., Xn+1))

+
n+1∑

j,k=1
j<k

(−)j+kΩA
n ([Xj , Xk], X1, ..., X̂j , ..., X̂k, ..., Xn+1). (23)

Proposition 1 TheLie algebra cohomologyoperators is nilpotent,s2 = 0.

PROOF. Looking at (9),s in (23) may be at this stage formally written as

(s)A
.B = δA

Bd + ρ(Xi)A
.Bωi , (s = d + ρ(Xi)ωi). (24)

Then, the proposition follows from the fact that

s2 = (ρ(Xi)ωi + d)(ρ(Xj)ωj + d) = ρ(Xi)ρ(Xj)ωi ∧ ωj + ρ(Xi)ωid + ρ(Xj)dωj + d2

= −1
2
ρ(Xj)C

j
lkωl ∧ ωk +

1
2
[ρ(Xi), ρ(Xj)]ωi ∧ ωj = 0. �

(25)

Definition 6 n-th cohomology groupAn n-cochainΩn is a cocycle,Ωn ∈ Zn
ρ (G, V ), whensΩn = 0. If

a cocycleΩn may be written asΩn = sΩ′
n−1 in terms of an(n − 1)-cochainΩ′

n−1, Ωn is a coboundary,
Ωn ∈ Bn

ρ (G, V ). Then-th Lie algebra cohomology groupHn
ρ (G, V ) is defined by

Hn
ρ (G, V ) = Zn

ρ (G, V )/Bn
ρ (G, V ). (26)

3.2. Chevalley-Eilenberg formulation

Let V beR, ρ trivial. Then the first term in (23) is not present and, on LI one-forms,s andd act in the same
manner. Since there is a one-to-one correspondence betweenn-antisymmetric maps onG and LI n-forms
onG, ann-cochain inCn(G, R) may also be given by the LI form onG

Ω(g) =
1
n!

Ωi1...inω(i1)(g) ∧ · · · ∧ ω(in)(g) (27)

and the Lie algebra cohomology coboundary operator is nowd [18] (the explicit dependence of the forms
Ω(g), ωi(g) ong will be omitted henceforth).
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Remark 1 It should be noticed that the Lie algebra (CE) cohomology is in general different from the de
Rham cohomology: a formβ onG may be de Rham exact,β = dα, but the potential formα might not be
a cochaini.e., a LI form3. Nevertheless, forG compact (see Proposition 9)HDR(G) = H0(G, R).

Example 1 Let G be the abelian two-dimensional algebra. The corresponding Lie group isR2, which is
de Rham trivial. However, the translation algebraR2 has non-trivial Lie algebra cohomology, and in fact it
admits a non-trivial two-cocycle giving rise to the three-dimensional Heisenberg-Weyl algebra.

3.3. Whitehead’s lemma for vector valued cohomology

Lemma 1 Whitehead’s lemmaLetG be a finite-dimensional semisimple Lie algebra over a field of charac-
teristic zero and letV be a finite-dimensional irreducibleρ(G)-module such thatρ(G)V 6= 0 (ρ non-trivial).
Then,

Hq
ρ(G, V ) = 0 ∀ q ≥ 0. (28)

If q = 0, the non-triviality ofρ and the irreducibility imply thatρ(G) · v = 0 (v ∈ V ) holds only forv = 0.

PROOF. SinceG is semi-simple, the Cartan-Killing metricgij is invertible,gijgjk = δi
k. Let τ be the

operator on the space ofq-cochainsτ : Cq(G, V ) → Cq−1(G, V ) defined by

(τΩ)A
i1...iq−1

= gijρ(Xi)A
.BΩB

ji1...iq−1
. (29)

It is not difficult to check that on cochains the Laplacian-like operator(sτ + τs) gives4

[(sτ + τs)Ω]Ai1...iq
= ΩB

i1...iq
I2(ρ)A

.B , (31)

whereI2(ρ)A
.B = gij(ρ(Xi)ρ(Xj))A

.B is the quadratic Casimir operator in the representationρ. By Schur’s
lemma it is proportional to the unit matrix. Hence, applying (31) toΩ ∈ Zq

ρ(G, V ) we find

sτΩ = ΩI2(ρ) ⇒ s(τΩI2(ρ)−1) = Ω. (32)

Thus,Ω is the coboundary generated by the cochainτΩI2(ρ)−1 ∈ Cq−1
ρ (G, V ). �

For semisimple algebras andρ = 0 we also haveH1
0 = 0 andH2

0 = 0, but alreadyH3
0 6= 0.

3.4. Lie algebra cohomology à la BRST

In many physical applications it is convenient to introduce the so-called BRST operator (for Becchi, Rouet,
Stora and Tyutin) acting on the space of BRST cochains. To this aim let us introduce anticommuting, ‘odd’
objects (in physics they correspond to theghosts)

cicj = −cjci , i, j = 1, . . . , dimG. (33)

3This is,e.g., the case for certain forms which appear in the theory of supersymmetric extended objects (superstrings). This is not
surprising due to the absence of global considerations in the fermionic sector of supersymmetry. The Lie algebra cohomology notions
are easily extended to the ‘super Lie’ case (seee.g., [2] for references on these subjects).

4For instance, for a two-cochain eq. (31) reads

[(sτ + τs)Ω]Aij = gklρ(Xi)
A
.Bρ(Xk)B

.CΩC
lj − gklρ(Xj)

A
.Bρ(Xk)B

.CΩC
li − gklρ(Xk)A

.BCm
ij ΩB

lm

+ gklρ(Xk)A
.Bρ(Xl)

B
.CΩC

ij + gklρ(Xk)A
.Bρ(Xi)

B
.CΩC

jl + gklρ(Xk)A
.Bρ(Xj)

B
.CΩC

li

− gklρ(Xk)A
.BCm

ij ΩB
ml − gklρ(Xk)A

.BCm
li ΩB

mj − gklρ(Xk)A
.BCm

jl ΩB
mi

= gkl[ρ(Xi), ρ(Xk)]A.BΩB
lj − gkl[ρ(Xj), ρ(Xk)]A.BΩB

li + I2(ρ)A
.BΩB

ij

− gklρ(Xk)A
.BCm

li ΩB
mj − gklρ(Xk)A

.BCm
jl ΩB

mi = I2(ρ)A
.BΩB

ij .

(30)
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The operators defined by

s :=
1
2
Ck

ijc
jci ∂

∂ck
(34)

acts on the ghosts as the exterior derivatived acts on LI one-forms (sck = −1/2Ck
ijc

icj , cf. (16)) and, as
d, is nilpotent,s2 = 0. For the cohomology associated with a non-trivial actionρ of G on V we introduce
the BRSTs̃ operator

s̃ := ciρ(Xi) +
1
2
Ck

ijc
jci ∂

∂ck
. (35)

Proposition 2 The BRST operator̃s is nilpotents̃2 = 0.

PROOF. First, we rewritẽs as

s̃ = ciN(i), N(i) = ρ(Xi) +
1
2
Ck

jic
j ∂

∂ck
≡ N1

(i) +
1
2
N2

(i). (36)

The operatorN(i) has two different piecesN1 andN2, each of them carrying a representation ofG so that
[N(i), N(j)] = Ck

ij(N
1
(k) + 1

4N2
(k)). Thus,

s̃2 = ciN(i)c
jN(j) =

1
2
cicj [N(i), N(j)] + ci(N(i).c

j)N(j)

=
1
2
cicjCk

ij(N
1
(k) +

1
4
N2

(k)) +
1
2
cicjCk

jiN(k) =
1
2
cicjCk

ijN
1
(k) +

1
2
cicjCk

jiN
1
(k) = 0 ,

(37)

by virtue of the anticommutativity of thec’s, and using thatcicjCk
ijN

2
(k) = 0 andN(i).c

j = 1
2ckCj

ki. Thus,
on the ‘BRST-cochains’

Ω̃A
n =

1
n!

ΩA
i1...in

ci1 . . . cin , (38)

the action of̃s is the same as that ofs in (23) and may be used to define the Lie algebra cohomology.�

4. Symmetric polynomials and higher order cocycles

4.1. Symmetric invariant tensors and higher order Casimirs

From now on, we shall restrict ourselves to simple Lie groups and algebras; by virtue of Lemma 1, only
the ρ = 0 case is interesting. The non-trivial cohomology groups are related to the primitive symmetric
invariant tensors [51, 22, 38, 27, 13, 49, 48, 47] onmathcalG, which in turn determine Casimir elements
in the universal enveloping algebraU(G).

Definition 7 Symmetric and invariant polynomials onG A symmetric polynomial onG is given by a sym-
metric covariant LI tensor. It may be expressed as a LI covariant tensor onG, k = ki1...imωi1 ⊗ ...⊗ ωim

with symmetric constant coordinateski1...im . k is said to be an invariant or (ad-invariant) symmetric
polynomial if it is also right-invariant,i.e. if LXl

k = 0 ∀Xl ∈ XL(G). Indeed, using (21), we find that

LXl
k = 0 ⇒ Cs

li1ksi2...im + Cs
li2ki1s...im + · · ·+ Cs

lim
ki1...im−1s = 0. (39)

Since the coordinates ofk are given byki1...im
= k(Xi1 , . . . , Xim

), eq. (39) is equivalent to stating thatk
is ad-invariant, i.e.,

k([Xl, Xi1 ], . . . , Xim
) + k(Xi1 , [Xl, Xi2 ], . . . , Xim

) + · · ·+ k(Xi1 , . . . , [Xl, Xim
]) = 0 (40)

or, equivalently,
k(Ad g Xi1 , . . . , Ad g Xim) = k(Xi1 , . . . , Xim), (41)

from which eq. (40) follows by taking the derivative∂/∂gl in g = e.

230



Applications of Lie algebra cohomology

The invariant symmetric polynomials just described can be used to construct Casimir elements of the
enveloping algebraU(G) of G in the following way

Proposition 3 Let k be a symmetric invariant tensor. Thenki1...imXi1 . . . Xim
(coordinate indices ofk

raised using the Killing metric), is a Casimir of orderm, i.e. [ki1...imXi1 . . . Xim , Y ] = 0 ∀Y ∈ G.

PROOF.

[ki1...imXi1 . . . Xim , Xs] =
m∑

j=1

ki1...imXi1 . . . [Xij , Xs] . . . Xim

=
m∑

j=1

ki1...imXi1 . . . Ct
ijsXt . . . Xim = 0 (42)

by (39).�

A well-known way of obtaining symmetric (ad-)invariant polynomials (usede.g., in the construction of
characteristic classes) is given by

Proposition 4 LetXi denote now a representation ofG. Then, the symmetrized trace

ki1...im
= sTr(Xi1 . . . Xim

) (43)

defines a symmetric invariant polynomial.

PROOF. k is symmetric by construction and thead-invariance is obvious sinceAdg X := gXg−1. �

The simplest illustration of (43) is the Killing tensor for a simple Lie algebraG, kij = Tr(ad Xi ad Xj);
its associated Casimir is the second order CasimirI2.

Example 2 LetG = su(n), n ≥ 2, and letXi be (hermitian) matrices in the defining representation. Then

sTr(XiXjXk) ∝ 2Tr({Xi, Xj}Xk) = dijk, (44)

using that, for thesu(n) algebra,{Xi, Xj} = cδij +dijlXl, Tr(Xk) = 0 and Tr(XiXj) = 1
2δij . This third

order polynomial leads to the CasimirI3; for su(2) only kij andI2 exist.

Example 3 In the caseG = su(n), n ≥ 4, we have a fourth order polynomial

sTr(Xi1Xi2Xi3Xi4) ∝ d(i1i2ldli3)i4 + 2cδ(i1i2δi3)i4 , (45)

where( ) indicates symmetrization. The first term leads to a fourth order CasimirI4 whereas the second
one includes (see [6]) a term inI2

2 .

Eq. (45) deserves a comment. The first partd(i1i2ldli3)i4 generalizes easily to highern by nesting more
d’s, leading to the Klein [38] form of thesu(n) Casimirs. The second part includes a term that is the product
of Casimirs of order two: it is notprimitive.

Definition 8 Primitive symmetric invariant polynomialsA symmetric invariant polynomialki1...im
on G

is called primitive if it is not of the form

ki1...im = k
(p)
(i1...ip

k
(q)
ip+1...im) , p + q = m, (46)

wherek(p) andk(q) are two lower order symmetric invariant polynomials.

Of course, we could also have considered eq. (45) forsu(3), but then it would not have led to a fourth-
order primitive polynomial, sincesu(3) is a rank 2 algebra. Indeed,d(i1i2ldli3)i4 is not primitive forsu(3)
and can be written in terms ofδi1i2 as in (46) (see,e.g., [54]; see also [6] and references therein). In general,
for a simple algebra of rankl there arel invariant primitive polynomials and Casimirs [51, 22, 38, 27, 13,
49, 48, 47] and, as we shall show now,l primitive Lie algebra cohomology cocycles.
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4.2. Cocycles from invariant polynomials

We make now explicit the connection between the invariant polynomials and the non-trivial cocycles of a
simple Lie algebraG. To do this we may use the particular case ofG = su(n) as a guide. On the manifold
of the groupSU(n) one can construct theoddq-form

Ω =
1
q!

Tr(θ ∧
q
· · · ∧θ), (47)

whereθ = ωiXi and we take{Xi} in the defining representation;q has to be odd since otherwiseΩ would
be zero (by virtue of the cyclic property of the trace and the anticommutativity of one-forms).

Proposition 5 The LI odd formΩ onG in (47) is a non-trivial (CE) Lie algebra cohomology cocycle.

PROOF. SinceΩ is LI by construction, it is sufficient to show thatΩ is closed and that it is not the
differential of another LI form (i.e. it is not a coboundary). By using (19) we get

dΩ = − 1
(q − 1)!

Tr(θ ∧
q+1
· · · ∧θ) = 0, (48)

sinceq + 1 is even. Suppose now thatΩ = dΩq−1, with Ωq−1 LI. ThenΩq−1 would be of the form (47)
and hence zero becauseq − 1 is also even.�

All non-trivial q-cocycles inHq
0 (su(n), R) are of the form (47). The fact that they are closed and non-

exact (SU(n) is compact) allows us to use them to construct Wess-Zumino-Witten [58, 57] terms on the
group manifold (see also [5]).

Let us setq = 2m− 1. The formΩ expressed in coordinates is

Ω =
1
q!

Tr(Xi1 . . . Xi2m−1)ω
i1 ∧ · · · ∧ ωi2m−1

∝ Tr([Xi1 , Xi2 ][Xi3 , Xi4 ] . . . [Xi2m−3 , Xi2m−2 ]Xi2m−1)ω
i1 ∧ · · · ∧ ωi2m−1

= Tr(Xl1 . . . Xlm−1Xσ)Cl1
i1i2

. . . C
lm−1
i2m−3i2m−2

ωi1 ∧ · · · ∧ ωi2m−2 ∧ ωσ. (49)

We see here how the orderm symmetric (there is symmetry inl1 . . . lm−1 because of theωi’s) invariant
polynomial Tr(Xl−1 . . . Xlm−1Xσ) appears in this context. Conversely, the following statement holds

Proposition 6 Letki1...im
be a symmetric invariant polynomial. Then, the polynomial

Ωρi2...i2m−2σ = Cl1
j2j3

. . . C
lm−1
j2m−2σkρl1...lm−1ε

j2...j2m−2
i2...i2m−2

(50)

is skew-symmetric and defines the closed form (cocycle)

Ω =
1

(2m− 1)!
Ωρi2...i2m−2σωρ ∧ ωi2 ∧ · · · ∧ ωi2m−2 ∧ ωσ. (51)

PROOF. To check the complete skew-symmetry ofΩρi2...i2m−2σ in (50), it is sufficient, due to theε, to
show the antisymmetry inρ and σ. This is done by using the invariance ofk (39) and the symmetry
properties ofk andε to rewriteΩρi2...i2m−2σ as the sum of two terms. The first one,

m−2∑
s=1

ε
j2...j2sj2s+1j2m−2j2s+2...j2m−3
i2...i2m−2

kρl1...ls−1lm−1ls...lm−2σ

Cl1
j2j3

. . . Cls
j2sj2s+1

C
lm−1
lsj2m−2

C
ls+1
j2s+2j2s+3

. . . C
lm−2
j2m−4j2m−3

(52)
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vanishes due to the Jacobi identity in (14), and the second one is

Ωρi2...i2m−2σ = −ε
j2...j2m−2
i2...i2m−2

kσl1...lm−1C
l1
j2j3

. . . C
lm−1
j2m−2ρ = −Ωσi2...i2m−2ρ. (53)

To show thatdΩ = 0 we make use of the fact that any bi-invariant form (i.e., a form that is both LI and RI)
is closed (see,e.g., [2]). SinceΩ is LI by construction, we only need to prove its right-invariance, but

Ω ∝ Tr(θ ∧ 2m−1· · · ∧θ) (54)

is obviously RI sinceR∗
gθ = Adg−1θ. �

Without discussing the origin of the invariant polynomials for the different groups [51, 22, 38, 27, 13,
49, 48, 47, 6], we may conclude that to each symmetric primitive invariant polynomial of orderm we can
associate a Lie algebra cohomology(2m − 1)-cocycle (see [6] for practical details). The question that
immediately arises is whether this construction may be extended since, from a set ofl primitive invariant
polynomials, we can obtain an arbitrary number of non-primitive polynomials (see eq. (46)). This question
is answered negatively by Proposition 7 and Corollary 1 below.

Proposition 7 Letki1...im
be a symmetricG-invariant polynomial. Then,

εj1...j2m

i1...i2m
Cl1

j1j2
. . . Clm

j2m−1j2m
kl1...lm = 0. (55)

PROOF. By replacingClm
j2m−1j2m

kl1...lm in thel.h.s of (55) by the other terms in (39) we get

εj1...j2m

i1...i2m
Cl1

j1j2
. . . C

lm−1
j2m−3j2m−2

(
m−1∑
s=1

Ck
j2m−1lskl1...ls−1kls+1...lm−1 j2m), (56)

which is zero due to the JI.�

Corollary 1 Letk be a non-primitive symmetric invariant polynomial (46), Then the(2m− 1)-cocycleΩ
associated to it (51) is zero.

Thus, to aprimitivesymmetricm-polynomial it is possible to associate uniquely a Lie algebra(2m−1)-
cocycle. Conversely, we also have the following

Proposition 8 LetΩ(2m−1) be a primitive cocycle. Thel polynomialst(m) given by

ti1...im = [Ω(2m−1)]j1...j2m−2imCi1
j1j2

. . . C
im−1
j2m−3j2m−2

(57)

are invariant, symmetric and primitive (see [6, Lemma 3.2]).

This converse proposition relates the cocycles of the Lie algebra cohomology to Casimirs in the en-
veloping algebraU(G). The polynomials in (57) have certain advantages (for instance, they have all traces
equal to zero) [6] over other more conventional ones such ase.g., those in (43).

4.3. The case of simple compact groups

We have seen that the Lie algebra cocycles may be expressed in terms of LI forms on the group manifold
G (Sec. 3.2.). For compact groups, the CE cohomology can be identified (see,e.g.[18]) with the de Rham
cohomology:

Proposition 9 Let G be a compact and connected Lie group. Every de Rham cohomology class onG
contains one and only one bi-invariant form. The bi-invariant forms span a ring isomorphic toHDR(G).

The equivalence of the Lie algebra (CE) cohomology and the de Rham cohomology is specially inter-
esting because, since all primitive cocycles are odd, compact groups behave as products of odd spheres
from the point of view of real homology. This leads to a number of simple and elegant formulae con-
cerning the Poincaré polynomials, Betti numbers, etc. We conclude by giving a table (table 1) which
summarizes many of these results. Details on the topological properties of Lie groups may be found in
[17, 50, 33, 53, 14, 15, 16]; for book references see [56, 30, 26, 2].
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G dimG order of invariants and Casimirs order ofG-cocycles

Al (l + 1)2 − 1 [l > 1] 2, 3, . . . , l + 1 3, 5, . . . , 2l + 1
Bl l(2l + 1) [l > 2] 2, 4, . . . , 2l 3, 7, . . . , 4l − 1
Cl l(2l + 1) [l > 3] 2, 4, . . . , 2l 3, 7, . . . , 4l − 1
Dl l(2l − 1) [l > 4] 2, 4, . . . , 2l − 2, l 3, 7, . . . , 4l − 5, 2l − 1
G2 14 2, 6 3, 11
F4 52 2, 6, 8, 12 3, 11, 15, 23
E6 78 2, 5, 6, 8, 9, 12 3, 9, 11, 15, 17, 23
E7 133 2, 6, 8, 10, 12, 14, 18 3, 11, 15, 19, 23, 27, 35
E8 248 2, 8, 12, 14, 18, 20, 24, 30 3, 15, 23, 27, 35, 39, 47, 59

Table 1. Order of the primitive invariant polynomials and associated cocycles for all the simple Lie
algebras.

5. Higher order simple and SH Lie algebras

We present here a construction for which the previous cohomology notions play a crucial role, namely the
construction of higher order Lie algebras. Recall that ordinary Lie algebras are defined as vector spaces
endowed with the Lie bracket, which obeys the JI. If the Lie algebra is simpleωijρ = kρσCσ

ij is the non-
trivial three-cocycle associated with the Cartan-Killing metric, given by the structure constant themselves
(see (50)). The question arises as to whether higher order cocycles (and therefore Casimirs of order higher
than two) can be used to define the structure constants of a higher order bracket. Given the odd-dimension
of the cocycles, these multibrackets will involve an even number of Lie algebra elements. Since we already
have matrix realizations of the simple Lie algebras, let us use them to construct the higher order brackets.
Consider the case ofsu(n), n > 2 and a four-bracket. LetXi be the matrices of the defining representation.
Since the bracket has to be totally skew-symmetric, a sensible definition for it is

[Xi1 , Xi2 , Xi3 , Xi4 ] := εj1j2j3j4
i1i2i3i4

Xj1Xj2Xj3Xj4 . (58)

This four-bracket generalizes the ordinary (two-) bracket[Xi1 , Xi2 ] = εj1j2
i1i2

Xj1Xj2 . By using the skew-
symmetry inj1 . . . j4, we may rewrite (58) in terms of commutators as

[Xi1 , Xi2 , Xi3 , Xi4 ] =
1
22

εj1j2j3j4
i1i2i3i4

[Xj1 , Xj2 ][Xj3 , Xj4 ] =
1
22

εj1j2j3j4
i1i2i3i4

Cl1
j1j2

Cl2
j3j4

Xl1Xl2

=
1
22

εj1j2j3j4
i1i2i3i4

Cl1
j1j2

Cl2
j3j4

1
2
(dl1l2

σ
. Xσ + cδl1l2)

=
1
23

εj1j2j3j4
i1i2i3i4

Cl1
j1j2

Cl2
j3j4

dl1l2
σ
. Xσ = ωi1...i4

σ
. Xσ, (59)

where in going from the first line to the second we have used that the factor multiplyingXl1Xl2 is symmetric
in l1, l2, so that we can replaceXl1Xl2 by 1

2{Xl1 , Xl2} and then write it in terms of thed’s. The contribution
of the term proportional toc vanishes due to the JI. Thus, the structure constants of the four-bracket are given
by the5-cocycle corresponding to the primitive polynomialdijk. These reasonings can be generalized to
higher order brackets and to the other simple algebras. This motivates the following

Definition 9 Higher order bracketLet Xi be arbitrary associative operators. The corresponding higher
order bracket or multibracket of ordern is defined by [10]

[X1, . . . , Xn] :=
∑

σ∈Sn

(−1)π(σ)Xiσ(1) . . . Xiσ(n) . (60)

The bracket (60) obviously satisfies the JI whenn = 2. In the general case, the situation depends on
whethern is even or odd, as stated by
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Proposition 10 For n even, then-bracket (60) satisfies the generalized Jacobi identity (GJI) [10]∑
σ∈S2n−1

(−1)π(σ)
[
[Xσ(1), . . . , Xσ(n)], Xσ(n+1), . . . , Xσ(2n−1)

]
= 0; (61)

for n odd, the l.h.s. of (61) is proportional to[X1, . . . , X2n−1].

PROOF. In terms of the Levi-Civita symbol, the l.h.s. of (61) reads

ε
j1...j2n−1
i1...i2n−1

εl1...ln
j1...jn

[Xl1 · · ·Xln , Xjn+1 , . . . , Xj2n−1 ]. (62)

Notice that the productXl1 · · ·Xln is a single entry in then-bracket[Xl1 · · ·Xln , Xjn+1 , . . . , Xj2n−1 ].
Since then entries in this bracket are also antisymmetrized, eq. (62) is equal to

n!εl1...lnjn+1...j2n−1
i1.........i2n−1

ε
ln+1...l2n−1
jn+1...j2n−1

n−1∑
s=0

(−1)sXln+1 · · ·Xln+sXl1 · · ·XlnXln+1+s · · ·Xl2n−1

= n!(n− 1)!εl1...l2n−1
i1...i2n−1

Xl1 · · ·Xl2n−1

n−1∑
s=0

(−1)s(−1)ns

= n!(n− 1)![Xi1 , . . . , Xi2n−1 ]
n−1∑
s=0

(−1)s(n+1), (63)

where we have used the skew-symmetry ofε to relocate the blockXl1 · · ·Xln in the second equality. Thus,
the l.h.s. of (61) is proportional to a multibracket of order(2n− 1) times a sum, which for evenn vanishes
and for oddn is equal ton. �

In view of the above result, we introduce the following definition [10]

Definition 10 Higher order Lie algebraAn ordern (n even) generalized Lie algebra is a vector spaceV

of elementsX ∈ V endowed with a fully skew-symmetric bracketV × n· · · ×V → V , (X1, . . . , Xn) 7→
[X1, . . . , Xn] ∈ V such that the GJI (61) is fulfilled.

Consequently, a finite-dimensional Lie algebra of ordern = 2p, generated by the elements{Xi}i=1,...,r

will be defined by an equation of the form

[Xi1 , . . . , Xi2p
] = Ci1...i2p

jXj , (64)

whereCi1...i2p

j are the generalized structure constants. An example of this is provided by the construction
given in (59), where the bracket is defined as in (60) and the structure constants are(2p+1)-cocycles of the
simple Lie algebra used,Ωi1...i2pσ. Writing now the GJI (61) in terms of theΩ’s, the following equation is
obtained

ε
j1...j4p−1
i1...i4p−1

Ωj1...j2p

σΩσj2p+1...j4p−1ρ = 0. (65)

This equation is known to hold due to Proposition 10 and a generalization of the argument given in (59),
which in fact provides the proof of

Theorem 1 Classification theorem for higher-order simple Lie algebrasGiven a simple algebraG of rank
l, there arel − 1 (2mi − 2)-higher-order simple Lie algebras associated withG. They are given by the
l− 1 Lie algebra cocycles of order2mi− 1 > 3 which may be obtained from thel− 1 symmetric invariant
polynomials onG of ordermi > m1 = 2. Them1 = 2 case (Killing metric) reproduces the original simple
Lie algebraG; for the otherl − 1 cases, the skew-symmetric(2mi − 2)-commutators define an element of
G by means of the(2mi − 1)-cocycles. These higher-order structure constants (as the ordinary structure
constants with all the indices written down) are fully antisymmetric cocycles and satisfy the GJI.

235
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Proposition 11 Mixed order generalized Jacobi identityLetm,n be even. We introduce the mixed order
generalized Jacobi identity for even order multibrackets by

εj1...jn+m−1
[
[Xj1 , . . . , Xjn

], . . . , Xjn+m−1

]
= 0. (66)

PROOF. Following the same reasonings of Proposition 10,

ε
j1...jn+m−1
i1...in+m−1

εl1...ln
j1...jn

[Xl1 · · ·Xln , Xjn+1 , . . . , Xjn+m−1 ]

= n!εl1...lnjn+1...jn+m−1
i1.........in+m−1

ε
ln+1...ln+m−1
jn+1...jn+m−1

m−1∑
s=0

(−1)sXln+1 · · ·Xln+s
Xl1 · · ·XlnXln+1+s

· · ·Xln+m−1

= n!(m− 1)!εl1...ln+m−1
i1...in+m−1

Xl1 · · ·Xln+m−1

m−1∑
s=0

(−1)s(−1)ns

= n!(m− 1)![Xi1 , . . . , Xin+m−1 ]
m−1∑
s=0

(−1)(n+1)s, (67)

which is zero forn andm even. In contrast, ifn and/orm are odd the sum
m−1∑
s=0

(−1)(n+1)s is different from

zero (m if n is odd and 1 ifn is even). In this case, the l.h.s. of (66) is proportional to the(n + m − 1)-
commutator[Xi1 , . . . , Xin+m−1 ]. �

In particular, ifn andm are the orders of higher order algebras, the identity (66) leads to (cf. (65))

εi1...in+m−1Ωi1...in

σΩσin+1...in+m−1ρ = 0. (68)

Forn = 2 and[Xi, Xj ] = Ck
ijXk, [Xi1 , . . . , Xim ] = Ωi1...im

kXk eq. (68) gives

εi1...im+1Cσ
i1i2Ωσi3...im+1ρ = 0, (69)

which implies thatΩi1...im+1 is a cocycle,i.e.,

εi1...im+2Cσ
i1i2Ωσi3...im+1im+2 = 0. (70)

Expression (70) follows from (69), simply antisymmetrizing the indexρ.

5.1. Multibrackets and coderivations

Higher-order brackets can be used to generalize the ordinary coderivation of multivectors.

Definition 11 Let {Xi} be a basis ofG given in terms of LIVF onG, and∧∗(G) the exterior algebra
of multivectors generated by them (X1 ∧ · · · ∧ Xq ≡ ε

i1...iq

1...q Xi1 ⊗ · · · ⊗ Xiq
). The exterior coderivation

∂ : ∧q → ∧q−1 is given by

∂(X1 ∧ · · · ∧Xq) =
q∑

l=1
l<k

(−1)l+k+1[Xl, Xk] ∧X1 ∧ · · · ∧ X̂l ∧ · · · ∧ X̂k ∧ · · · ∧Xq. (71)

This definition is analogous to that of the exterior derivatived, as given by (9) with its first term missing
when one considers left-invariant forms (eq. (17)). Asd, ∂ is nilpotent,∂2 = 0, due to the JI for the
commutator.
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In order to generalize (71), let us note that∂(X1 ∧X2) = [X1, X2], so that (71) can be interpreted as a
formula that gives the action of∂ on aq-vector in terms of that on a bivector. For this reason we may write
∂2 for ∂ above. It is then natural to introduce an operator∂s that on as-vector gives the multicommutator
of orders. On ann-multivector its action is given by

Definition 12 Coderivation∂s The general coderivation∂s of degree−(s − 1) (s even)∂s : ∧n(G) →
∧n−(s−1)(G) is defined by

∂s(X1 ∧ · · · ∧Xn) :=
1
s!

1
(n− s)!

εi1...in
1...n ∂s(Xi1 ∧ · · · ∧Xis

) ∧Xis+1 ∧ · · · ∧Xin
,

∂s ∧n (G) = 0 for s > n,

∂s(X1 ∧ · · · ∧Xs) = [X1, . . . , Xs]. (72)

Proposition 12 The coderivation (72) is nilpotent,i.e., ∂2
s ≡ 0.

PROOF. Let n ands be such thatn− (s− 1) ≥ s (otherwise the statement is trivial). Then,

∂s∂s(X1 ∧ · · · ∧Xn) =
1
s!

1
(n− s)!

1
s!

1
(n− 2s + 1)!

εi1...in
1...n ε

js+1...jn

is+1...in

{
s
[
[Xi1 , . . . , Xis

] , Xjs+1 , . . . , Xj2s−1

]
∧Xj2s

∧ . . . Xjn

−(n− 2s + 1)[Xi1 , . . . , Xis
] ∧ [Xjs+1 , . . . , Xj2s

] ∧Xj2s+1 ∧ · · · ∧Xjn

}
= 0. (73)

The first term vanishes becauses is even and is proportional to the GJI. The second one is also zero because
the wedge product of the twos-brackets is antisymmetric while the resultingε symbol is symmetric under
the interchange(i1, . . . is) ↔ (js+1, . . . , j2s). �

Remark 2 A derivation satisfies Leibniz’s rule (see Proposition 14 below), which we may express as
d ◦ m = m ◦ (d ⊗ 1 + 1 ⊗ d) acting on the productm of two copies of the algebra. The coderivation
satisfies the dual property∆ ◦ ∂ = (∂ ⊗ 1 + 1⊗ ∂) ◦∆, where∆ is the ‘coproduct’. The simplest example
corresponds to

(∆ ◦ ∂)(X1 ∧X2)= ∆(∂(X1 ∧X2)) = ∆[X1, X2] = [X1, X2] ∧ 1 + 1 ∧ [X1, X2] =

= (∂ ⊗ 1 + 1⊗ ∂)(2X1 ∧ 1 ∧X2 + X1 ∧X2 ∧ 1 + 1 ∧X1 ∧X2)
(74)

since∆(X1 ∧X2) = ∆X1 ∧X2 + X1 ∧∆X2.

Let us now see how the nilpotency condition (or equivalently the GJI) looks like in the simplest cases.

Example 4 Consider∂ ≡ ∂2. Then we have

∂(X1 ∧X2 ∧X3) = [X1, X2] ∧X3 − [X1, X3] ∧X2 + [X2, X3] ∧X1 (75)

and
∂2(X1 ∧X2 ∧X3) = [[X1, X2], X3]− [[X1, X3], X2] + [[X2, X3], X1] = 0. (76)

Example 5 When we move to∂ ≡ ∂4, the number of terms grows very rapidly. The explicit expression
for ∂2(Xi1 ∧ · · · ∧ Xi7) = 0 (which, as we know, is equivalent to the GJI) is given in [4, eq. (32)] (note
that the tenth term there should read[[Xi1 , Xi2 , Xi6 , Xi7 ], Xi3 , Xi4 , Xi5 ]). It contains

(
7
3

)
= 35 terms.

In general, the GJI which follows from∂2
2m−2(X1 ∧ · · · ∧ X4m−5) = 0 (s = 2m − 2) contains

(
4m−5
2m−1

)
different terms.

These higher order Lie algebras turn out to be a special example of the strongly homotopy (SH) Lie
algebras [42, 41, 37]. These allow for violations of the generalized Jacobi identity, which are absent in our
case (for the physical relevance and applications of multialgebras, see below and the references in [42, 10]).
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Definition 13 Strongly homotopy Lie algebras [42]A SH Lie structureon a vector spaceV is a collection
of skew-symmetric linear mapsln : V ⊗ n· · · ⊗V → V such that∑

i+j=n+1

∑
σ∈Sn

1
(i− 1)!

1
j!

(−1)π(σ)(−1)i(j−1) li(lj(vσ(1)⊗· · ·⊗vσ(j))⊗vσ(j+1)⊗· · ·⊗vσ(n)) = 0. (77)

For a general treatment of SH Lie algebras includingv gradings see [42, 41, 37] and references therein.

Note that
1

(i− 1)!
1
j!

∑
σ∈Sn

is equivalent to the sum over the ‘unshuffles’,i.e., over the permutationsσ ∈ Sn

such thatσ(1) < · · · < σ(j) andσ(j + 1) < · · · < σ(n).

Example 6 Forn = 1, eq. (77) just says thatl21 = 0 (l1 is a differential). Forn = 2, eq. (77) gives

−1
2
l1(l2(v1 ⊗ v2)− l2(v2 ⊗ v1)) + l2(l1(v1)⊗ v2 − l1(v2)⊗ v1) = 0 (78)

i.e., l1[v1, v2] = [l1v1, v2] + [v1, l1v2] with l2(v1 ⊗ v2) = [v1, v2].
Forn = 3, we have three mapsl1 , l2 , l3, and eq. (77) reduces to

[l2(l2(v1 ⊗ v2)⊗ v3) + l2(l2(v2 ⊗ v3)⊗ v1) + l2(l2(v3 ⊗ v1)⊗ v2)] + [l1(l3(v1 ⊗ v2 ⊗ v3))]

+ [l3(l1(v1)⊗ v2 ⊗ v3) + l3(l1(v2)⊗ v3 ⊗ v1) + l3(l1(v3)⊗ v1 ⊗ v2)] = 0,
(79)

i.e., adopting the convention thatln(v1 ⊗ · · · ⊗ vn) = [v1, . . . , vn],

[[v1, v2], v3] + [[v2, v3], v1] + [[v3, v1], v2]

= −l1[v1, v2, v3]− [l1(v1), v2, v3]− [v1, l1(v2), v3]− [v1, v2, l1(v3)].
(80)

The second line in (80) shows the violation of the (standard) Jacobi identity given in the first line.

In the particular case in which a uniqueln (n even) is defined, we recover Def. 10 of a higher order Lie
algebra since, fori = j = n eq. (77) reproduces the GJI (61) in the form∑

σ∈S2n−1

1
n!

1
(n− 1)!

(−1)π(σ)ln(ln(vσ(1) ⊗ · · · ⊗ vσ(n))⊗ vσ(n+1) ⊗ · · · ⊗ vσ(2n−1)) = 0. (81)

We wish to conclude this subsection by pointing out thatn-algebras have also been considered in [28,
24, 25].

5.2. The complete BRST operator for a simple Lie algebra

We now generalize the BRST operator and MC equations of Sec. 3.4. to the general case of higher-order
simple Lie algebras. The result is a new BRST-type operator that contains the information of all thel
possible algebras associated with a given simple Lie algebraG of rankl.

Let us first note that, in the notation of (19), the JI reads

d2θ = −d(θ ∧ θ) =
1
2

[[θ, θ], θ] = 0, (82)

and expresses the nilpotency ofd. Now, in Sec. 5.1. we considered higher-order coderivations which also
had the property∂2

s = 0 as a result of the GJI. We may now introduce the corresponding dual higher-order
derivationsd̃s to provide a generalization of the Maurer-Cartan equations (16). Since∂s was defined on
multivectors that are product of left-invariant vector fields, the duald̃s will be given for left-invariant forms.
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It is easy to introduce dual basis in∧n and∧n. With ωi(Xj) = δi
j , a pair of dual basis in∧n, ∧n are

given byωI1∧· · ·∧ωIn , 1
n!XI1∧· · ·∧XIn

(I1 < · · · < In) since(εi1...in
j1...jn

ωj1⊗· · ·⊗ωjn)( 1
n!ε

k1...kn

l1...ln
Xk1⊗

· · · ⊗Xkn) = εi1...in

l1...ln
andεI1...In

L1...Ln
is 1 if all indices coincide and 0 otherwise. Nevertheless it is customary

to use the non-minimal setωi1 ∧ · · · ∧ ωin to write α = 1
n!αi1...in

ωi1 ∧ · · · ∧ ωin . Since(ωi1 ∧ · · · ∧
ωin)(Xj1 , . . . , Xjn

) = εi1...in
j1...jn

it is clear thatαi1...in = α(Xi1 , . . . , Xin) = 1
n!α(Xi1 ∧ · · · ∧Xin

).

Definition 14 The action ofd̃m : ∧n → ∧n+(2m−3) (remember thats = 2m− 2) onα ∈ ∧n is given by
(cf. (18))

(d̃mα)(Xi1 , . . . , Xin+2m−3) :=
1

(2m− 2)!
1

(n− 1)!
ε

j1...jn+2m−3
i1...in+2m−3

α([Xj1 , . . . , Xj2m−2 ], Xj2m−1 , . . . , Xjn+2m−3),

(d̃mα)i1...in+2m−3 =
1

(2m− 2)!
1

(n− 1)!
ε

j1...jn+2m−3
i1...in+2m−3

Ωj1...j2m−2
ρ
· αρj2m−1...jn+2m−3 .

(83)

Proposition 13 d̃m is dual to the coderivation∂2m−2 : ∧n → ∧n−(2m−3), (d̃2 = −d, d̃2 : ∧n → ∧n+1).

PROOF. We have to check the ‘duality’ relatioñdmα ∝ α∂2m−2 (∂2m−2 : ∧n+(2m−3) → ∧n). Indeed, if
α is ann-form, eq. (72) tells us that

α
(
∂2m−2(Xi1 ∧ · · · ∧Xin+2m−3)

)
=

1
(2m− 2)!

1
(n + 2m− 3− 2m + 2)!

×

×ε
j1...jn+2m−3
i1...in+2m−3

α([Xj1 , . . . , Xj2m−2 ] ∧Xj2m−1 ∧ · · · ∧Xjn+2m−3), (84)

which is proportional5 to (d̃mα)(Xi1 ∧ · · · ∧Xin+2m−3). �

Proposition 14 The operatord̃m satisfies Leibniz’s rule.

PROOF. Forα ∈ ∧n, β ∈ ∧p we get, using (83)

d̃m(α ∧ β)i1...in+p+2m−3 =
1

(2m− 2)!
1

(n + p− 1)
ε

j1...jn+p+2m−3
i1...in+p+2m−3

Ωj1...j2m−2
ρ
·

·
( 1

n!p!
ε

k1.........kn+p

ρj2m−1...jn+p+2m−3
αk1...kn

βkn+1...kn+p

)
=

1
(2m− 2)!

1
n!p!

ε
j1...jn+p+2m−3
i1...in+p+2m−3

Ωj1...j2m−2
ρ
·

(
nαρj2m−1...jn+2m−3βjn+2m−2...jn+p+2m−3

+(−1)npαj2m−1...jn+2m−2βρjn+2m−1...jn+p+2m−3

)
= ε

j1...jn+p+2m−3
i1...in+p+2m−3

( 1
p!(n + 2m− 3)!

(d̃mα)j1...jn+2m−3βjn+2m−2...jn+p+2m−3

+(−1)n 1
n!(p + 2m− 3)!

αj2m−1...jn+2m−2(d̃mβ)j1...j2m−2jn+2m−1...jn+p+2m−3

)
=

(
(d̃mα) ∧ β + (−1)nα ∧ (d̃mβ)

)
i1...in+p+2m−3

.

(85)
Thus,d̃m is odd andd̃m(α ∧ β) = d̃mα ∧ β + (−1)nα ∧ d̃mβ. �

The coordinates of̃dmωσ are given by

(d̃mωσ)(Xi1 , . . . , Xi2m−2) =
1

(2m− 2)!
ε
j1...j2m−2
i1...i2m−2

ωσ([Xj1 , . . . , Xj2m−2 ])

= ωσ([Xi1 , . . . , Xi2m−2 ]) = ωσ(Ωi1...i2m−2
ρ
· Xρ) = Ωi1...i2m−2

σ
· (86)

5One findsd̃mα =
(n+2m−3)!

n!
α∂2m−2, wheren is the order of the formα. The factor appears as a consequence of using the

same definition (antisymmetrization with no weight factor) for the∧ product of forms and vectors.
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from which we conclude that

d̃mωσ =
1

(2m− 2)!
Ωi1...i2m−2

σ
· ωi1 ∧ · · · ∧ ωi2m−2 . (87)

For m = 2, d̃2 = −d, equations (87) reproduce the MC eqs. (19). In the compact notation that uses the
canonical one-formθ, we may now introduce the following

Proposition 15 Generalized Maurer-Cartan equationsThe action ofd̃m on the canonical formθ is given
by

d̃mθ =
1

(2m− 2)!

[
θ,

2m−2· · · , θ
]
, (88)

where the multibracket of forms is defined by
[
θ,

2m−2· · · , θ
]

= ωi1 ∧ · · · ∧ ωi2m−2 [Xi1 , . . . , Xi2m−2 ]. Using

Leibniz’s rule for the operator̃dm we arrive at

d̃2
mθ = − 1

(2m− 2)!
1

(2m− 3)!

[
θ,

2m−3· · · , θ,
[
θ,

2m−2· · · , θ
]]

= 0, (89)

which again expresses the GJI.
Each Maurer-Cartan-like equation (89) can be expressed in terms of the ghost variables introduced in

Sec. 3.4. by means of a ‘generalized BRST operator’,

s2m−2 = − 1
(2m− 2)!

ci1 . . . ci2m−2Ωi1...i2m−2
σ
·

∂

∂cσ
. (90)

By adding together all thel generalized BRST operators, the complete BRST operator is obtained. Then
we have the following

Theorem 2 Complete BRST operatorLetG be a simple Lie algebra. Then, there exists a nilpotent asso-
ciated operator, the complete BRST operator associated withG, given by the odd vector field

s = −1
2
cj1cj2Ωj1j2

σ
·

∂

∂cσ
− · · · − 1

(2mi − 2)!
cj1 . . . cj2mi−2Ωj1...j2mi−2

σ

·
∂

∂cσ
− . . .

− 1
(2ml − 2)!

cj1 . . . cj2ml−2Ωj1...j2ml−2
σ

·
∂

∂cσ
≡ s2 + · · ·+ s2mi−2 + · · ·+ s2ml−2, (91)

wherei = 1, . . . , l, Ωj1j2
σ
· ≡ Cj1j2

σ
· andΩj1...j2mi−2

σ

· are the correspondingl higher-order cocycles.

PROOF. We have to show that{s2mi−2, s2mj−2} = 0 ∀ i, j. To prove it, let us write the anti-commutator
explicitly:

{s2mi−2, s2mj−2} =
1

(2mi − 2)!
1

(2mj − 2)!
×

×{(2mj − 2)cl1 . . . cl2mi−2Ωl1...l2mi−2
ρ

· c
r2 . . . cr2mj−2Ωρr2...r2mj−2

σ

·

∂

∂cσ
+ i ↔ j

+(cl1 . . . cl2mi−2cr1 . . . cr2mj−2Ωl1...l2mi−2
ρ

· Ωr1...r2mj−2
σ

·
+ i ↔ j)

∂

∂cρ

∂

∂cσ
}

=
1

(2mi − 2)!
1

(2mj − 3)!
cl1 . . . cl2mi−2cr2 . . . cr2mj−2Ωl1...l2mi−2

ρ

· Ωρr2...r2mj−2
σ

·

∂

∂cσ

+i ↔ j , (92)

where we have used the fact that∂∂cρ
∂

∂cσ is antisymmetric inρ, σ while the parenthesis multiplying it is
symmetric. The term proportional to a single∂∂cσ also vanishes as a consequence of equation (68).�
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The coefficients of∂/∂cσ in s2mi−2 can be viewed, in dual terms, as (even) multivectors of the type

Λ =
1

(2m− 2)!
Ωi1...i2m−2

σ
· xσ∂i1 ∧ · · · ∧ ∂i2m−2 . (93)

(see (116)). They have the property of having zero Schouten-Nijenhuis bracket among themselves by virtue
of the GJI (65).

Definition 15 Let us consider the algebra∧(M) of multivectors onM . The Schouten-Nijenhuis bracket
(SNB) ofA ∈ ∧p(M) and B ∈ ∧q(M) is the unique extension of the Lie bracket of two vector fields
to a bilinear mapping∧p(M) × ∧q(M) → ∧p+q−1(M) in such a way that∧(M) becomes a graded
superalgebra.

For the expression of the SNB in coordinates we refer to [46, 43]. It turns out that the multivector
algebra with the exterior product and the SNB is a Gerstenhaber algebra6, in which deg(A) = p − 1 if
A ∈ ∧p. Thus, the multivectors of the form (93) form an abelian subalgebra of this Gerstenhaber algebra,
the commutativity (in the sense of the SNB) being a consequence of (65).

6. Higher order generalized Poisson structures

We shall consider in this section two possible generalizations of the ordinary Poisson structures (PS) by
brackets of more than two functions. The first one is the Nambu-Poisson structure (N-P) [45, 52, 55, 20]
(see also [44]). The second, named generalized PS (GPS) [9, 8], is based on the previous constructions
(and has been extended to the supersymmetric case [3]). We shall present both generalizations as well as
examples of the GPS, which are naturally obtained from the higher-order simple Lie algebras of Sec. 5.. A
comparison between both structures may be found in [4] and in table 2 (see also [36, 35]).

PS N-P GPS (even order)

Characteristic identity (CI): Eq. (96) (JI) Eq. (105) (FI) Eq. (113) (GJI)
Defining conditions: Eq. (97) Eqs. (108),(109) Eq. (112)
Liouville theorem: Yes Yes Yes
Poisson theorem: Yes Yes No (in general)
CI realization in terms of associa-
tive operators: Yes No (in general) Yes

Table 2. Some properties of Nambu-Poisson (N-P) and generalized Poisson (GP) structures.

Let us first review briefly the standard PS.

6.1. Standard Poisson structures

Definition 16 LetM be a differentiable manifold. A Poisson bracket (PB) onF(M) is a bilinear mapping
{·, ·} : F(M)×F(M) → F(M) that satisfies (f, g, h ∈ F(M))

6A Gerstenhaber algebra [23] is aZ-graded vector space (with homogeneous subspaces∧a, a being the grade) with two bilinear
multiplication operators,· and[ , ] with the following properties (u ∈ ∧a, v ∈ ∧b, w ∈ ∧c):

a) deg(u · v) = a + b,
b) deg[u, v] = a + b− 1,
c) (u · v) · w = u · (v · w),
d) [u, v] = −(−1)(a−1)(b−1)[v, u],
e) (−1)(a−1)(c−1)[u, [v, w]] + (−1)(c−1)(b−1)[w, [u, v]] + (−1)(b−1)(a−1)[v, [w, u]] = 0,
f) [u, v · w] = [u, v] · w + (−1)(a−1)bv · [u, w].

For an analysis of various related algebras, including Poisson algebras, see [40] and references therein.
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a) Skew-symmetry
{f, g} = −{g, f}, (94)

b) Leibniz’s rule,
{f, gh} = g{f, h}+ {f, g}h, (95)

c) Jacobi identity
Alt{f, {g, h}} = {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0. (96)

A PB onM defines a PS.

In local coordinates{xi}, conditions a), b) and c) mean that it is possible to write

{f(x), g(x)} = ωij∂if∂jg, ωij = −ωji, ωjk∂kωlm + ωlk∂kωmj + ωmk∂kωjl = 0. (97)

It is possible to rewrite a)-c) in a geometrical way by using the bivector

Λ =
1
2
ωjk∂j ∧ ∂k, (98)

in terms of which
{f, g} = Λ(df, dg); (99)

the JI imposes a condition onΛ, which is equivalent to the vanishing of the SNB [43]

[Λ,Λ] = 0. (100)

If the manifoldM is the dual of a Lie algebra, there always exists a PS, the Lie-Poisson structure, which is
obtained by defining the fundamental Poisson bracket{xi, xj} (where{xi} are coordinates onG∗). Since
G ∼ (G∗)∗, we may think ofG as a subspace of the ring of smooth functionsF(G∗). Then, the Lie algebra
commutation relations

{xi, xj} = Ck
ijxk (101)

define, by assuming b) above, a mappingF(G∗) × F(G∗) → F(G∗) associated with the bivectorΛ =
1
2Ck

ijxk
∂

∂xi
∧ ∂

∂xi
. This is a PB since condition (97) (or (100)) is equivalent to the JI for the structure

constants ofG.

6.2. Nambu-Poisson structures

Already in 1973, Nambu [45] considered the possibility of extending Poisson brackets to brackets of three
functions. His attempt has been generalized since then, and all generalizations considered share the follow-
ing two properties

a){f1, . . . , fi, . . . , fj , . . . , fn} = −{f1, . . . , fj , . . . , fi, . . . , fn} (skew-symmetry),
b) {f1, . . . , fn−1, gh} = g{f1, . . . , fn−1, h}+ {f1, . . . , fn−1, g}h (Leibniz’s rule)

(102)

which will be guaranteed if the bracket is generated in local coordinates{xi} onM by

Λ =
1
n!

ηi1...in
∂i1 ∧ · · · ∧ ∂in (103)

as in (99),i.e.by
{f1, . . . , fn} = Λ(df1, . . . , dfn). (104)
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The key difference among the higher order PS is the identity that generalizes c) in Definition 16. That
corresponding to Nambu’s mechanics was given by Sahoo and Valsakumar [52] and in the general case by
Takhtajan [55], who studied it in detail and named it thefundamental identity(FI)

{f1, . . . , fn−1, {g1, . . . , gn}} = {{f1, . . . , fn−1, g1}, g2, . . . , gn}
+{g1, {f1, . . . , fn−1, g2}, g3, . . . , gn}+ · · ·+ {g1 . . . , gn−1, {f1, . . . , fn−1, gn}} (105)

(see also [20, 44]). The FI (105), together with (102), define the Nambu-Poisson structures [55]. To see the
signification of (105), let us considern − 1 ‘Hamiltonians’(H1, . . . ,Hn−1) and define the time evolution
of an observable by

ġ = {H1, . . . ,Hn−1, g}. (106)

Then, the FI guarantees that

d

dt
{g1, . . . , gn} = {ġ1, . . . , gn}+ · · ·+ {g1, . . . , ġn}, (107)

i.e., that the time derivative is a derivation of the N-Pn-bracket. In this way, the bracket of anyn constants
of the motion is itself a constant of the motion.

Inserting (103) into (105), one gets two conditions [55] for the coordinatesηi1...in
of Λ. The first is the

differential condition, which in local coordinates may be written as

ηi1...in−1ρ∂
ρηj1...jn

− 1
(n− 1)!

εl1...ln
j1...jn

(∂ρηi1...in−1l1)ηρl2...ln = 0. (108)

The second is thealgebraic condition. It follows from requiring the vanishing of the second derivatives in
(105). In local coordinates it reads

Σ + P (Σ) = 0 , (109)

whereΣ is the2n-tensor

Σi1...inj1...jn = ηi1...inηj1...jn − ηi1...in−1j1ηinj2...jn − ηi1...in−1j2ηj1inj3...jn

− ηi1...in−1j3ηj1j2inj4...jn
− · · · − ηi1...in−1jn

ηj1j2...jn−1in
.

(110)

It turns out [1, 21, 29] (see also [19]) that this last condition implies thatΛ in (103) is decomposable,i.e.,
thatΛ can be written as the exterior product of vector fields.

6.3. Generalized Poisson structures

Instead of generalizing Jacobi’s identity through the FI (105), one may take a different path by following
a geometrical rather than a dynamical approach. Since for the ordinary PS the JI is given by (100), it is
natural [9, 8] to introduce in the even case new GPS by means of

Definition 17 A 2p-multivectorΛ(2p) defines a GPS if it satisfies

[Λ(2p),Λ(2p)] = 0, (111)

where[ , ] denotes again the SNB. Notice that forn odd, [Λ(n),Λ(n)] vanishes identically and hence the
condition is empty. Written in terms of the coordinates ofΛ(2p) (now denotedωi1...i2p

), the GJI condition
(111) reads

ε
j1...j4p−1
i1...i4p−1

ωj1...j2p−1σ∂σωj2p...j4p−1 = 0 (112)

[cf. (65)]. Thus a GPS is defined by (102) and eq. (111) (or (112)), which in terms of the GPB is expressed
by
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Proposition 16 The GJI for the GPB

Alt{f1, . . . , f2p−1, {f2p, . . . , f4p−1}}

:=
∑

σ∈S4p−1

(−1)π(σ){fσ(1), . . . , fσ(2p−1), {fσ(2p), . . . , fσ(4p−1)}} = 0, (113)

is equivalent [9, 8] to condition (112).

PROOF. Let us write (113) as

ε
j1...j4p−1
i1...i4p−1

{fj1 , . . . , fj2p−1 , ωl2p...l4p−1∂
l2pfj2p . . . ∂l4p−1fj4p−1}

= ε
j1...j4p−1
i1...i4p−1

ωl1...l2p−1σ∂l1fj1 . . . ∂l2p−1fj2p−1(∂
σωl2p...l4p−1∂

l2pfj2p . . . ∂l4p−1fj4p−1

+2pωl2p...l4p−1∂
σ∂2pfj2p

∂l2p+1fj2p+1 . . . ∂l4p−1fj4p−1) = 0 . (114)

The second term vanishes because the factor multiplying∂σ∂2pfj2p
is antisymmetric with respect to the

interchangeσ ↔ l2p. Hence, we are left with (112) becausefj1 , . . . , fj4p−1 are arbitrary.�

Remark 3 1. It is also possible to define the GPS in theodd case [4]. For GPB with an odd number
of arguments, the second term in (114) does not vanish, giving now rise (as for the N-P structures) to an
‘algebraic condition’ which is absent in the even case [4].
2. These constructions may also be extended to theZ2-graded (‘supersymmetric’) case [3].
3. The GJI does not imply the FI. Thus, the GPB of constants of the motion is not a constant of the motion
in general (see [8], however, for a weaker result). On the other hand, the FI does imply the GJI whenn is
even (and also whenn is odd). So the GPS’s may be viewed as a generalization of the Nambu-Takhtajan
one. As a result, aΛ defining a GPS is not decomposable in general.

6.4. Higher order linear Poisson structures

It is now easy to construct examples of GPS (infinitely many, in fact) in the linear case. They are obtained
by extending the argument at the end of Sec. 6.1. to the GPS. LetG be a simple Lie algebra of rankl.
We know from Sec. 5. that corresponding to it there are(l − 1) higher order Lie algebras. Their structure

constants define a GPB{·, 2ml−2· · · , ·} : G∗ × 2ml−2· · · ×G∗ → G∗ by

{xi1 , . . . , xi2ml−2} = Ωi1...i2ml−2
σ

· xσ, (115)

whereΩ is the(2ml − 1)-cocycle. If one now computes the GJI (112) forωi1...i2ml−2 = Ωi1...i2ml−2
σ

· xσ,
or, alternatively,[Λ,Λ] for

Λ =
1

(2m− 2)!
Ωi1...i2m−2

σ
· xσ∂i1 ∧ · · · ∧ ∂i2m−2 , (116)

one sees that[Λ,Λ] = 0 is satisfied since it expresses the GJI for the higher order structure constantsΩ
given in (65). This means thatall higher-order simple Lie algebras define linear GPS. These structures are
not of the Nambu-Poisson type.

Conversely, given a linear GPS with fundamental GPB (115), the associated higher-order Lie algebra
provides a realization of it. This is what one might expect to achieve when quantizing the classical theory
if, that is, quantization implies the replacement of observables byassociativeoperators and the GPB by
multicommutators (the standard quantizationà la Dirac implies the well known substitution{ , } 7→ 1

i~ [ , ]).
The physical difficulty for the GPS is the fact that time derivative is not a derivation of the bracket (Sec. 6.3.).
The N-P structures are free from this problem, but the FI is not an identity for the algebra of associative
operators. Thus, one is led to the conclusion that a standard quantization of higher order mechanics is not
possible (see, however, [19]) and that ordinary Hamiltonian mechanics is, in this sense, rather unique.
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7. Relative cohomology, coset spaces and effective WZW
actions

This is a topic of recent physical interest [32, 31, 7] since, for an action invariant under the compact symme-
try groupG which has a vacuum that is symmetric under the subgroupH, the Goldstone fields parametrize
the coset space. Thus, the possible invariant effective actions of WZW type [58, 57] are related to the co-
homology onG/H. In particular, for the cohomology of degree 4 and 5 we may construct WZW actions
on 3- and 4- dimensional space-times respectively.

Let G be a compact Lie group andH a subgroup. The ‘left coset’K = G/H is defined through the
projection mapπ : G → K by

π : gh → {gH} ≡ g , ∀h ∈ H. (117)

G(H,K) is a principal bundle where the structure groupH acts on the rightRh : g 7→ gh and the base
space is the cosetG/H.

Theorem 3 Projectable formsLet G(H,K) be a principal bundle. Aq-form Ω on G is projectable to a
form Ω̄ onK, i.e., there exists a uniquēΩ such thatΩ = π∗(Ω̄) iff

Ω(g)(X1(g), . . . , Xq(g)) = 0 if oneX ∈ X(H) (Ω is horizontal)

R∗
hΩ = Ω (Ω is invariant under the right action ofH).

PROOF. See [39].�

Definition 18 Relative Lie algebra cohomologyLet G be a Lie algebra andH a subalgebra ofG. The
space of relative (to the subalgebraH) q-cochainsCq(G,H) is that of theq-skew-symmetric mapsΩ :
G ∧

q
· · · ∧G → R such that (cf. Theorem 3)

Ω(X, X2, . . . , Xq) = 0 if X ∈ H (Ω is horizontal)

Ω([X, X1], X2, . . . , Xq) + · · ·+ Ω(X1, X2, . . . , [X, Xq]) = 0 ∀X ∈ H.
(118)

The cocycles and coboundaries are then defined by

Zq(G,H) = Zq(G) ∩ Cq(G,H), Bq(G,H) = sCq−1(G,H) (119)

wheres is the standard Lie algebra cohomology operator. Therelative Lie algebra cohomology groupsare
now defined as usual,

Hq(G,H) = Zq(G,H)/Bq(G,H). (120)

Let us consider a horizontal LI formΩ onG and which is invariant under the right action ofH, namely

iX(g)Ω(g) = 0 , LX(g)Ω(g) = 0 ∀X ∈ H (121)

Since there is a one-to-one correspondence between LI forms onΩ and multilinear mappings onG, it is clear
that (121) is the translation of (118) (Theorem 3) in terms of differential forms on the group manifoldG.

Theorem 4 The ring of invariant forms onG/H is given by the exterior algebra of multilinear antisym-
metric maps onG vanishing onH and which areadH-invariant.

Remark 4 Definition 18 requires to prove thatsCq ⊂ Cq+1. But this may be seen using that (118) may
be written asiXΩ(X2, . . . , Xq) = 0 andLXΩ(X1, . . . , Xq) = 0, X ∈ H. Now,

iX(sΩ)(X1, . . . , Xq) = (LX − siX)Ω(X1, . . . , Xq) = 0 (122)

and
LX(sΩ)(X1, . . . , Xq) = (sLX)Ω(X1, . . . , Xq) = 0 (123)

sinces ∼ d, siX + iXs = LX and[LX , s] = 0.
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Theorem 5 The Lie algebra cohomology groupsHq(G,H) relative toH are given by the formsΩ on G
which are a) LI b) closed and c) projectable.

PROOF. LI means that they can be put in one-to-one correspondence with skew-linear forms onG; closed
implies thatdΩ = 0 or, in terms of the cohomology operator, thatsΩ = 0. Finally, projectable means that
the relative cohomology conditions (118) are satisfied.�

Note that, again, the relative and the de Rham cohomology on the coset may be different. However, if
G is compact the following theorem [18, Theorem 22.1] holds

Theorem 6 Let G be a compact and connected Lie group,H a closed connected subgroup andK the
homogeneous spaceK = G/H. ThenHq(G,H) and Hq

DR(K) are isomorphic, and so are their corre-
sponding ringsH∗(G,H) andH∗

DR(K).

The relative cohomology may be used to construct effective actions of WZW type on coset spaces
[32, 31, 7]; the obstruction may be expressed in terms of an anomaly. For instance, when it is absent, the
five cocycle onG/H has the form

Tr(U5)− 5Tr(WU3) + 10Tr(W2U), (124)

whereU is the(G\H)-component of the canonical formθ on G andW = dV + V ∧ V is the curvature of
theH-valued connectionV given by theH-componentωα of θ. In fact, a similar procedure is also valid to
recover the obstructions to the process of gauging WZW actions found in [34]. It may be seen that this is
due to the relation between the relative Lie algebra cohomology and the equivariant (see [12]) cohomology,
but we shall not develop this point here (see [11] and references therein).
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[44] Michor, P. W. and Vinogradov, A. M. (1996).n-ary Lie and associative algebras,Rend. Sem. Mat. Univ. Pol.
Torino53, 373-392, math.QA/9801087.

[45] Nambu, Y. (1973). Generalized Hamiltonian dynamics,Phys. Rev.D7, 2405–2412.

[46] Nijenhuis, A. (1955). Jacobi-type identities for bilinear differential concomitants of certain tensor fields,Indag.
Math.17, 390–403.

[47] Okubo, S. (1982). Modified fourth-order Casimir invariants and indices for simple Lie algebras,J. Math. Phys.
23, 8–20.

[48] Okubo, S. and Patera, J. (1983). General indices of representations and Casimir invariants,J. Math. Phys.25,
219–227.

[49] Perelomov, A. M. and Popov, V. S. (1968). Casimir operators for semisimple groups,Math. USSR-Izvestija2,
1313–1335.

[50] Pontrjagin, L. (1935). Sur les nombres de Betti des groupes de Lie,C. R. Acad. Sci. Paris, 200, 1277–1280.

[51] Racah, G. (1950).Sulla caratterizzazione delle rappresentazioni irreducibili dei gruppi semisimplici di Lie,
Lincei-Rend. Sc. fis. mat. e nat.VIII , 108–112, Princeton lectures, CERN-61-8 (reprinted in Ergeb. Exact Natur-
wiss.37, 28-84 (1965), Springer-Verlag).

[52] Sahoo, D. and Valsakumar, M. C. (1992). Nambu mechanics and its quantization,Phys. Rev.A46, 4410–4412.

[53] Samelson, H. (1952). Topology of Lie groups,Bull. Am. Math. Soc.57, 2–37.

[54] Sudbery, A. (1990). Computer-friendlyd-tensor identities forSU(n), J. Phys.A23(15), L705–L710.

[55] Takhtajan, L. (1994). On foundations of the generalized Nambu mechanics,Commun. Math. Phys.160, 295–315.

[56] Weyl, H. (1946).The classical groups. Their invariants and representations, Princeton Univ. Press, Princeton.

[57] Witten, E. (1983). Global aspects of current algebra,Nucl. Phys.B223, 422–432, Current algebra, baryons and
quark confinement,ibid. 433–444.

[58] Witten, E. (1984). Non-abelian bosonization in two dimensions,Commun. Math. Phys.92, 455–472.
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