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On the extension of measures

B. Rodrı́guez-Salinas

Abstract. We give neccesary and sufficient conditions for a totally ordered by extension family
(Ω, Σx, µx)x∈X of spaces of probability to have a measureµ which is an extension of all the mea-
suresµx. As an application we study when a probability measure onΩ has an extension defined on all
the subsets ofΩ.

Sobre la extensi ón de medidas

Resumen. Se estudian y se dan varias condiciones necesarias y suficientes para que dada una familia
totalmente ordenada(Ω, Σx, µx)x∈X por extensíon de espacios de probabilidades exista una medidaµ
que sea una extensión de todas las medidasµx. Como aplicacíon de ello se estudia cuando una medida
de probabilidad sobreΩ tiene una extensión definida sobre todos los subconjuntos deΩ.

A Banach measureon a setΩ is a finite measureµ 6= 0 onP(Ω), the power set ofΩ, such thatµ(ω) = 0
for everyω ∈ Ω.

An Ulam measureonΩ is a Banach measure onΩ which takes values in the set{0, 1}.
A cardinalα is real-measurableif there exists a setΩ whose cardinal isα and such that there is a

Banach measure onΩ.
A cardinalα is 2-measurableif there exists a setΩ whose cardinal isα and there exists an Ulam measure

onΩ.
Cardinals which are not 2-measurable are callednon measurableand cardinals notreal-measurableare

called cardinals of zero measure.
Given a probability measure space(Ω,Σ, µ), we call as usualµ∗ andµ∗ the outer and inner measures

associated toµ, i.e.,
µ∗(A) = inf{µ(X) : A ⊂ X ∈ Σ} and

µ∗(A) = sup{µ(X) : A ⊃ X ∈ Σ}.

We call(Ω,Σ0, µ0) to a fixed probability space.
Given two probability spaces(Ω,Σx, µx) and(Ω,Σy, µy), when we writeµx ⊂ µy we mean thatµy is

an extension ofµx and, therefore,Σx ⊂ Σy andµ∗x ≥ µ∗y ≥ µy∗ ≥ µx∗.

Proposition 1 Let (Ω,Σx, µx)x∈X be a totally ordered by extension or inclusion family of spaces of
probability such thatµ0 ⊂ µx for everyx ∈ X. Let us consider

µ∗(A) = sup{µx∗(A) : x ∈ X}
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and
µ∗(A) = inf{Σnτ(An) : ∪nAn ⊃ A},

where

τ(A) = inf{µ∗x(A) : x ∈ X}

andA and all of theAn are subset ofΩ. Then, the following properties are all equivalent:
(i) There exists an extensionλ of the measuresµx, x ∈ X.
(ii) µ∗ ≤ µ∗.
(iii) µ∗(A) ≤ µ∗(A) for everyA ∈ Sσ, whereS = ∪x∈XΣx.
(iv) µ∗(A) = µ∗(A) for everyA ∈ Sσ.

PROOF. First of all, let us note thatµ∗ andµ∗ are, respectively, an inner measure and an outer measure
(see [3]).

(i) ⇒ (ii). Let us suppose (i). Then, sinceµx∗ ≤ λ∗ ≤ λ∗ ≤ µ∗x for everyx ∈ X, we get that
µ∗ ≤ λ∗ ≤ λ∗ ≤ τ and, hence,Σnτ(An) ≥ Σnλ∗(An) ≥ λ∗(A) if ∪nAn ⊃ A. It follows now that
µ∗ ≥ λ∗ andµ∗ ≥ µ∗.

(ii) ⇒ (iii). Obvious.
(iii) ⇒ (iv). Indeed, ifA ∈ Sσ, there exists a disjoint sequence(Sn) in S such that∪nSn = A and,

hence,Σnµ∗(Sn) ≤ µ∗(A) ≤ µ∗(A) ≤ Σnµ∗(Sn). Sinceµ∗(Sn) = τ(Sn) = µ∗(Sn) for everyn ∈ N,
we get that (iv) holds.

(iv) ⇒ (i). Let us suppose (iv). Letλ∗(A) = inf{µ∗(H) : A ⊂ H ∈ Sσ}. Then,λ∗ is an outer measure
and, for everyε > 0 and for everyE ⊂ Ω, there existsH ∈ Sσ such thatµ∗(H) < λ∗(E) + ε andE ⊂ H.
Therefore, ifA ∈ S, we get

λ∗(E ∩A) + λ∗(E \A) ≤ λ∗(H ∩A) + λ∗(H \A) = µ∗(H ∩A) + µ∗(H \A) =

µ∗(H ∩A) + µ∗(H \A) ≤ µ∗(H) = µ∗(H) < λ∗(E) + ε.

It follows from here that everyA ∈ S is λ∗-measurable. Moreover,λ∗(A) = µ∗(A) for everyA ∈ S
andµ∗ is an extension of the measuresµx, so we get that the restrictionλ of λ∗ on theσ-algebra of the
λ∗-measurable sets is an extension of the measuresµx. Now we can easily prove thatλ∗ = µ∗ and that
µ∗ is a regular outer measure. (For everyA ⊂ Ω, µ∗(A) + τ(Ω \ A) = 1 andλ∗(A) + λ∗(Ω \ A) = 1,
henceλ∗ = µ∗ if and only if µ∗ = τ ). �

It is clear thatS is an algebra. In what follows,Ω, Σx, µx, τ , µ∗, µ∗ andS will mean the same as in
Proposition 1.

Proposition 2 If the restriction ofτ to S is a (countably additive) measure, thenµ∗ ≤ µ∗.

PROOF. Let λ∗(A) = inf{
∑

n τ(An) : ∪nAn ⊃ A, An ∈ S}. Then it can be easily proved thatλ∗ is an
outer measure such that everyA ∈ S is λ∗-measurable. On the other hand, if(An) is a sequence inS such
that∪nAn ⊃ A ∈ S andSn = An \ ∪k<nAk, we get∑

n

τ(An) ≥
∑

n

τ(Sn ∩A) = τ(A),

because the restriction ofτ to S is a measure and, therefore,λ∗(A) = τ(A) for everyA ∈ S andλ∗ is an
extension of the measuresµx. It follows that the restriction ofλ∗ to theσ-algebra of theλ∗-measurable sets
is an extension of the measuresµx and it follows from Proposition 1 thatµ∗ ≤ µ∗. �

Now it can be easily proved, using Proposition 1, that

λ∗(A) = inf{µ∗(H) : A ⊂ H ∈ Sσ},

and, hence,λ∗ = µ∗.
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Proposition 3 Every setA ∈ S is µ∗-measurable.

PROOF. If A ∈ Σx andE ⊂ Ω we have thatµ∗x(E ∩A) + µ∗x(E \A) = µ∗x(E), so taking limits inx we
get thatτ(E∩A)+ τ(E \A) = τ(E) for everyA ∈ S andE ⊂ Ω. For everyε > 0 there exists a sequence
(An) of subsets ofΩ such that

∑
n τ(An) < µ∗(E) + ε and∪nAn ⊃ E, so we get

µ∗(E ∩A) + µ∗(E \A) ≤
∑

n

τ(An ∩A) +
∑

n

τ(An \A) =
∑

n

τ(An) < µ∗(E) + ε,

so,
µ∗(E ∩A) + µ∗(E \A) = µ∗(E),

and, therefore, everyA ∈ S is µ∗-measurable.�

Proposition 4 If µ∗(Ω) = 1, thenµ∗ ≤ µ∗.

PROOF. If A ∈ Σx, we getµ∗(A) ≤ µx(A), µ∗(Ω \A) ≤ µx(Ω \A) and

1 ≤ µ∗(A) + µ∗(Ω \A) ≤ µx(A) + µx(Ω \A) = 1,

so, µ∗(A) = µx(A) andµ∗ is an extension of the measuresµx. Now, Proposition 3 tells us that every
A ∈ S is µ∗-measurable, so we get that the restrictionλ of µ∗ to theσ-algebra of theµ∗-measurable sets is
an extension of the measuresµx, so Proposition 1 implies thatµ∗ ≤ µ∗. �

Proposition 5 If µ∗ is µ∗-continuous, that is, if for everyε > 0 there existsδ > 0 such thatµ∗(A) < δ
impliesµ∗(A) < ε, thenµ∗ ≤ µ∗.

PROOF. Let (An) be a sequence inS such that(An) ↘ ∅. Then, since everyAn is µ∗-measurable
according to Proposition 3, we get thatµ∗(An) → 0 and, hence,τ(An) = µ∗(An) → 0, becauseµ∗ is
µ∗-continuous. It follows that the restriction ofτ to S is a measure and it follows from Proposition 2 that
µ∗ ≤ µ∗. �

Proposition 6 If τ(∪nAn) ≤
∑

n τ(An) for any setsAn ∈ S, thenµ∗ = τ .

PROOF. Let
λ∗(A) = inf{

∑
n

τ(An) : ∪nAn ⊃ A,An ∈ S}.

Then, we get from our hypothesis that

λ∗(A) = inf{τ(H) : A ⊂ H ∈ Sσ} ≥ τ(A)

for every setA ⊂ Ω and we also get that restriction ofτ to S is a measure. By Proposition 2λ∗ = µ∗, so
we finally get thatµ∗ = τ. �

Proposition 7 The following properties are equivalent:
(i) For any increasing sequence(An) ⊂ S andA = ∪nAn we haveτ(A) = limn τ(An).
(ii) For every sequenceAn ↘ ∅ in Sσ we getτ(An) → 0.
(iii) τ is µ∗-continuous, that is, for everyε > 0 there existsδ > 0 such thatµ∗(A) < δ implies

τ(A) < ε.
(iv) µ∗ = τ .

PROOF. (i) ⇒ (iv). Let us suppose (i). Let(An) be a sequence inS. Then we have

τ(∪nAn) = lim
n

τ(∪k<nAk) ≤
∑

n

τ(An),
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so, Proposition 6 implies thatµ∗ = τ
(ii) ⇒ (i). Let us suppose (ii). Let(An) be an increasing sequence inS andA = ∪nAn. Since

τ(An) ≤ τ(A) ≤ τ(An) + τ(A \An),

it follows thatlimn τ(An) = τ(A), becauseA \An ↘ ∅ andA \An ∈ Sσ.
(iii) ⇒ (ii). Let us suppose (iii). Let(An) be a decreasing sequence inSσ such that∩nAn = ∅. Then

µ∗(An) → 0 because, according to Proposition 3, everyAn is µ∗-measurable and, hence,τ(An) → 0.
(iv) ⇒ (iii). It is obvious.�

Remark 1
(1). Property (iii) can not be replaced by “µ∗ ≤ µ∗ andµ∗(A) = 0 implies τ(A) = 0”. To see this, let
Ω = [0, 1], X = N, λ the Lebesgue measure ofΩ, Z = {Z : λ∗(Z) = 0}, Σn theσ-algebra generated
by the interval[k−1

2n , k
2n ) ⊂ Ω andZ andµn the restriction ofλ to Σn. Then,λ is an extension of the

measuresµn, µ∗ = λ∗ holds andτ(Z) = 0 for everyZ ∈ Z. Therefore,µ∗(A) = 0 implies τ(A) = 0
and, yet,µ∗ 6= τ , because, ifA is an open dense set inΩ with Lebesgue measureµ∗(A) < 1 we have
τ(A) = µ∗n(A) = 1.
(2). µ∗ ≤ µ∗ does not follow from “µ∗(A) = 0 impliesτ(A) = 0”. To see this, letΩ = N, X = N, let
Σn be theσ-algebra generated by the subsets ofMn = {1, 2, . . . , n} and(ck) a positive sequence such that∑

k ck < 1. Let µn(A) =
∑

k∈A ck whenA ⊂ Mn andµn(A) = 1−
∑

k 6∈A ck when the complementary
setAc ⊂ Mn. Then,τ(A) =

∑
k∈A ck whenA ⊂ N is a finite set andτ(A) = 1−

∑
k 6∈A ck whenA ⊂ N

is an infinite set andµ∗(A) =
∑

k∈A ck for everyA ⊂ N. Then,µ∗(A) = 0 impliesA = ∅ andτ(A) = 0,
butµ∗(N) < 1 = µ∗(N). In this caseµ∗ is regular, since it is even a measure.
(3). If, for every sequence(xn) in X there exists anx ∈ X such thatxn ≤ x for everyn ∈ N, then it
follows from Proposition 7 thatµ∗ = τ . Moreoverσ(S) = Sσ = S, whenσ(S) is theσ-algebra generated
by S.

Proposition 8 µ∗ is a regular outer measure.

PROOF. For every setA ⊂ Ω and for everyε > 0 there existsx ∈ X such thatµ∗x(A) < τ(A) + ε.
Moreover, there existsB ∈ Σx such thatµ∗x(B) = µ∗x(A) andA ⊂ B, soτ(B) < τ(A) + ε. Then, for
every sequence(An) of subsets ofΩ there exists a sequence(Bn) in S such thatτ(Bn) < τ(An)+ ε

2n and
An ⊂ Bn. Therefore

µ∗(A) = inf{
∑

n

τ(An) : ∪nAn ⊃ A} ≥

≥ inf{
∑

n

τ(Bn) : ∪nBn ⊃ A,Bn ∈ S} − ε ≥

≥ inf{
∑

n

µ∗(Bn) : ∪nBn ⊃ A,Bn ∈ S} − ε ≥

≥ inf{µ∗(∪nBn) : ∪nBn ⊃ A,Bn ∈ S} − ε =

≥ inf{µ∗(H) : A ⊂ H ∈ Sσ} − ε ≥ µ∗(A)− ε.

It follows immediately that

µ∗(A) = inf{
∑

n

τ(Bn) : ∪nBn ⊃ A,Bn ∈ S} = inf{µ∗(H) : A ⊂ H ∈ Sσ}

and now Proposition 3 implies thatµ∗ is regular. In this way we complete the result obtained in the proof
of Proposition 1.�

Remark 2 It follows from this last proposition that, ifλ is the restriction ofµ∗ to theσ-algebra of the
µ∗-measurable sets, thenµ∗ = λ∗, but it can happen thatµ∗ 6= λ∗.
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Proposition 9 Let us consider the following conditions:
(i) For every decreasing sequence(An) ↘ ∅ of subsets ofΩ we have

lim
n

µ∗0(An) = 0.

(ii) For every disjoint sequence(An) ↘ ∅ of subsets ofΩ we have

lim
n

µ∗0(An) = 0.

(iii) For every disjoint sequence(An) ↘ ∅ of subsets ofΩ we have∑
n

µ∗0(An) < ∞.

Then, (iii)⇒ (ii) ⇒ (i).

PROOF. (iii) ⇒ (ii). It is obvious.
(ii) ⇒ (i). Let (An) be a decreasing sequence such thatlimn An = ∅ andµ∗0(An) > ε > 0 for every

n ∈ N. The outer regularity ofµ∗0 implies thatlimk µ∗0(An \ Ak) = µ∗0(An) > ε and, therefore, for every
n ∈ N there existsk > n such thatµ∗0(An \Ak) > ε and it is obvious that using this result we can construct
a disjoint sequence(Bn) such thatµ∗0(Bn) > ε andinfn µ∗0(Bn) ≥ ε > 0.

Proposition 10 In the conditions of Proposition 9, we can state in Proposition 1 thatµ∗ = τ and, hence,
there exists a measureµ which is an extension of all the measuresµx, x ∈ X

PROOF. From condition (i) in Proposition 9, it follows that(An) ↘ ∅ in Sσ implies thatτ(An) → ∅ and,
hence,µ∗ = τ , according to Proposition 7.�

Proposition 11 If (Ω,Σ, µ) is a maximal probability space, in the sense that every extensionλ of µ
coincides withµ, thenΣ is theσ-algebraP(Ω) of all the subsets ofΩ.

PROOF. If µ∗(A) = 1, thenν∗(E) = µ∗(A ∩ E) (E ⊂ Ω) is an outer measure such that its associated
measureν is an extension ofµ andA is a ν-measurable set. From the maximality ofµ, it follows that
A ∈ Σ. If µ∗(A) < 1 andB is aµ-measurable covering ofA, thenµ∗(A ∪ (Ω \ B)) = 1 and, therefore,
A ∪ (Ω \B) ∈ Σ andA ∈ Σ. It follows thatΣ = P(Ω) and the proposition is proved.�

Corollary 1 If (Ω,Σ0, µ0) verifies one of the conditions of Proposition 9, then there exists a probability
space(Ω,Σ, µ) which extends(Ω,Σ0, µ0) and such thatΣ is theσ-algebraP(Ω).

PROOF. It follows from Zorn’s Lemma and Propositions 10 and 11: Note that if(Ω,Σx, µx)x∈X is a
totally ordered family of extensions of(Ω,Σ0, µ0), Proposition 10 states the existence of a measure which
is an extension of all the measuresµx. The corollary follows now from Proposition 11.�

Remark 3
(1) Corollary 1 can also be proved using the Theorem of Hahn-Banach: By this theorem, there exists a
finitely additive extensionµ of µ0 to Σ = P(Ω). But limn µ∗0(An) = 0 for every sequenceAn ↘ ∅, so
limn µ(An) = 0 and, hence,µ is countably additive.
(2) If Card(Ω) has zero measure and(Ω,Σ, µ0) is a fuzzy probability space, then there exists a disjoint
sequence(An) such thatinf µ∗0(An) > 0.

Remark 4 Remark. The techniques used allow us to construct, using the good order ofP(Ω), a well
ordered family(Ω,Σα, µα)α∈A (indexed by ordinal numbers) of finite and different measure spaces and
another family(µ∗α)α∈A of outer measures such that:
(i) µα is the restriction ofµ∗α to theσ-algebraΣα of theµ∗α-measurable sets, and everyµ∗α is regular.
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(ii) If α < β, thenΣα ⊂ Σβ andµ∗α ≥ µ∗β .
(iii) The first measureµ0 is an arbitrary complete finite measure andµα+1 is an extension ofµα.
(iv) If µ∗α(Ω) = µ∗β(Ω) andα < β, thenµβ is an extension ofµα.
(v) If µ∗α(Ω) > µ∗β(Ω) for everyα < β, thenµ∗β is built based on the measures(µα)α<β as in Proposition 1.
This technique can also be used in general whenβ is a limit ordinal. For the other ordinalsβ > 0 with
a predecessorβ − 1, we can use the method of Proposition 11 so that thatµ∗β(A) = µ∗β−1(A ∩ E) with
µ∗β−1(E) = µ∗β−1(Ω) andE 6∈ Σβ−1, whereE is the first set in the given well ordering ofP(Ω) with such
properties, in case it exists.
(vi) The family (µα)α∈A has a last measureµ defined onP(Ω).

If (Ω,Σ0, µ0) is a fuzzy probability space and Card(Ω) has zero measure, thenµ = 0.
A measureµ is calledultracompleteif it is defined onP(Ω).

It there is no extension of the Lebesgue measureλ to all the subsets of[0, 1], then there is no non atomic
ultracomplete probability measureµ. To see this, let us suppose that there is one such measureµ. Then,
there exists an increasing family(Ex)x∈X , X = [0, 1], such thatµ(Ex) = x. Let Zx = Ex \ ∪y<xEy.
Then, it can be easily proved that

ν(A) = µ(∪x∈AZx)

is a measure onP([0, 1]) which is an extension of the Lebesgue measureλ, because

ν((a, b)) = µ(∪x∈(a,b)Zx) = µ(Eb \ Ea) = b− a.

It can be easily proved that there exists an ultracomplete extension of the Lebesgue measureλ if and only
if c = 2ℵ0 is real-measurable. Let us recall that, according to a result of Ulam ([5]), it follows from the
Continuum Hypothesis thatc has zero measure.

It follows that, if c has zero measure, then the last measureµ of the previous process is a purely atomic
measure and, therefore,µ0 is purely atomic ifµ is an extension ofµ0, as follows from:

Proposition 12 If µ is purely atomic extension ofµ0, thenµ0 is also purely atomic.

PROOF. It is enough to prove that, ifµ0 is not atomic, thenµ is not atomic. To see this, let us suppose that
µ0 is not atomic and letA be an atom ofµ. Then, there exists an increasing family(Ax)x∈I , I = [0, 1], of
µ0-measurable sets such thatµ0(Ax) = x. Then, the functionf(x) = µ(A ∩ Ax) is a continuous function
taking only the values0 andµ(A) 6= 0. The last part of the proof remains true whenµ is the measure
associated toµ∗ with the notation of Proposition 1 or whenµ is the last measure of the previous process.�

Proposition 13 If there exists an purely atomic ultracomplete extensionµ of the probability measureµ0,
then there exists a process which finishes in a purely atomic measureν which is an ultracomplete extension
of µ0 and which has a disjoint and complete system of atoms formed by atoms ofµ.

PROOF. Let (An) be a disjoint sequence of atoms ofµ such that∪nAn = Ω. We proceed by transfinite
induction. Let us suppose that we have defined(µα)α<β so thatµ is an extension ofµα for everyα < β.
If β is a limit ordinal, it is clear thatµ is an extension ofµβ . Let us suppose thatβ has a predecessor
β − 1. Then, if there existsE 6∈ Σβ−1 such thatµ(E) = 1, thenµ∗β−1(E) = 1 and we takeµ∗β(A) =
µ∗β−1(A ∩ E) ≥ µ(A ∩ E) = µ(A) and, therefore,µ is an extension ofµβ . This first part of the process,
where we use the given good order ofP(Ω), finishes in an ordinalβ such thatµβ(A) = 0 for everyA such
thatµ(A) = 0.

Sinceµ is an extension ofµβ , it follows from Proposition 12 thatµβ is purely atomic, but it can
happen that all the setsAn are not atoms ofµβ . Let (Bn) be a disjoint and complete system of atoms of
µβ . By the previous property, we can suppose all of theBn to be union of some of theAk. To see this, let
Mk = {h : µ(Ah∩Bk) 6= 0} and letZk = ∪h6=Mk

Ah∩Bk. Thenµ(Zk) = 0. Therefore, ifB′
k = Bk \Zk,

thenB′
k is an atom ofµβ and we have

µ(∪h∈Mk
Ah \B′

k) =
∑

h∈Mk

µ(Ah \Ah ∪B′
k) = 0.
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Hence,Bk = ∪h∈Mk
Ah is also an atom ofµβ . It can be easily proved that the sequence(Bk) is disjoint

and its union isΩ.
If An1 ⊂ B1, thenB1 is µβ-measurable covering ofAn1 . Therefore, if we callE1 = An1 ∪ (Ω \ B1),

we haveµ∗β(E1) = 1, and we can defineµ∗β+1(A) = µ∗β(A ∩ E1), so thatµβ+1 is an extension ofµβ and
µβ+1(Ank

) = µβ(B1) andµ∗β+1(Ak) = µ∗β(Ak) = µβ(Bn) whenAk ⊂ Bn andn > 1. Now we can
repeat the process takingAn2 ⊂ B2, E2 = An2 ∪ (Ω \ B2) andµ∗β+2(A) = µ∗β+1(A ∩ E2). Then we get
thatµβ+2 is an extension ofµβ+1 andµβ+2(Ank

) = µβ(Bk) for everyk ≤ 2 andµ∗β+2(Ak) = µ∗β(Ak) =
µβ(Bn) whenAk ⊂ Bn andn > 2. With the same reasonings we can constructµβ+h with the property
that it is an extension ofµβ+h−1 and it verifiesµβ+h(Ank

) = µβ(Bk) for everyk ≤ h and
µ∗β+h(Ak) = µ∗β(Ak) = µβ(Bn) whenAk ⊂ Bn andn > h. EveryAnk

is an atom ofµβ+k and every
subsetE of Ank

is µβ+k-measurable. To see this, let us note that eitherµ(E) = 0 or µ(Ank
\E) = 0 and,

therefore, eitherµβ+k(E) = 0 or µβ+k(Ank
\ E) = 0, which proves the previous statement, sinceAnk

is
aµβ+k-measurable set.

This process can finish in a measureµβ+n; also, the measuresµβ+k can be equal, but both difficulties
can be overcome, and, in the worst case, we can suppose that the process does not finish like that. Then,
using the same notation as in Proposition 1, ifEk ⊂ Ank

andτ(Ek) = τ(Ank
) = τ(Bk), we have

τ(∪k∈MEk) ≤ τ(∪k∈MBk) = µβ(∪k∈MBk) =

=
∑
k∈M

µβ(Bk) =
∑
k∈M

τ(Ek).

It follows immediately that
τ(∪k∈MEk) =

∑
k∈M

τ(Ek)

and

τ(∪k∈NAnk
) =

∑
k∈N

τ(Ank
) =

∑
k∈N

µβ(Bk) = 1.

Moreover, ifEk ⊂ Ank
andτ(Ek) = 0, thenµ(Ek) = 0 and, therefore,

τ(∪k∈MEk) = µ(∪k∈MEk) = 0.

Moreover,τ(Ω \ ∪kAnk
) = 0, because, for everyh,

µ∗β+h(Ω \ ∪kAnk
) ≤ µβ+h(Ω \ ∪k≤hAnk

) = µβ(Ω \ ∪k≤hBk).

Hence,τ is an ultracomplete measure andµβ+ω = τ , and we can takeν = τ. �

Remark 5 It can be proved that the last measureµβ is independent of the well order ofP(Ω) that we
choose. Indeed, ifµ′γ is the analogous measure corresponding to another well order ofP(Ω), and we
suppose thatµ′γ is an extension ofµα for everyα < α0 (α0 ≤ β) we get thatµ′γ is an extension ofµα0 .
This is clear ifα0 is a limit ordinal, and ifα0 has a predecessorα0− 1, we haveµ∗α0

(A) = µ∗α0−1(A∩E),
whereµ(E) = 1. Then,µ∗α0

(A) ≥ µ
′∗
γ (A ∩ E) = µ

′∗
γ (A) becauseµ′γ(E) = 1 and, therefore,µ′γ is an

extension ofµα0 . It follows thatµ′γ is an extension ofµβ . Similarly µβ is an extension ofµ′γ and, hence,
µβ = µ′γ . The same proof shows thatΣβ is theσ-algebraΣ generated byΣ0 and the sets of nullµ-measure.
Therefore,µβ is the restriction ofµ to Σ. Now it is easy to prove that ifµβ is different toµ, then no process
starting inµ0 will finish in µ. So, if a process starting inµ0 finishes inµ, thenµβ = µ. All of this remains
true even ifµ is not purely atomic.

Proposition 14 If µ0 is a probability measure and there exists a process starting inµ0 that finishes in an
extensionµ of µ0, then every atom ofµ0 is an atom ofµ.

197



B. Rodrı́guez-Salinas

PROOF. Let us suppose thatΩ is an atom ofµ0. Let (Ω,Σα, µα)α≤β be the family of probability spaces
of the process and letΣ′

α be theσ-algebra of the setsA ∈ Σα with measureµα(A) ∈ {0, 1}. Then,
Σ′

α = Σα for everyα ≤ β. Clearly Σ′
0 = Σ0 and, if Σ′

α = Σα for everyα < α0 (α0 ≤ β) then
Σ′

α0
= Σα0 . Indeed, ifα0 has a predecessorα0 − 1 thenµ∗α0

(A) = µ∗α0−1(A ∩ E), with µ∗α0−1(E) = 1
and, therefore,Σ′

α0
= Σα0 becauseµ∗α0

takes values in{0, 1}. If α0 is a limit ordinal then we also have
Σ′

α0
= Σα0 becauseS = ∪α<α0Σα ⊂ Σ′

α0
⊂ Σα0 andΣα0 is theσ-algebra generated byS (this follows

from Proposition 1). Hence,µ = µ∗β takes values in{0, 1} and it follows thatΩ is an atom ofµ. It is clear
that the proposition follows now, because, ifA is aµ0-measurable set and there exists a process starting in
µ0 which finishes inµ, then there exists a process starting on the induced measureµ0A which finishes in
µA. �

Corollary 2 If µ0 is a purely atomic probability measure, then there exists a process starting inµ0 and
finishing in an extensionµ of µ0 if and only if there exists an purely atomic ultracomplete extension ofµ0.

Proposition 15 Let µ0 be a probability measure,µ an ultracomplete extension ofµ, Σ the σ-algebra
generated byΣ0 and the sets with nullν-measure and letν be the restriction ofµ to Σ. Then there exists a
process starting inµ0 and finishing inµ if and only ifν = µ.

PROOF. It is enough to use the Remark following Proposition 13.�

Proposition 16 If µ0 is a non atomic probability measure and there exists a process finishing in a mea-
sureµ 6= 0, then the cardinalc = 2ℵ0 is real measurable and, therefore, if follows from the Continuum
Hypothesis thatµ = 0, according to [5].

PROOF. As we have seen in Proposition 12,µ is a non atomic measure and, therefore, there is an ultra-
complete extension of the Lebesgue measure on the interval[0, µ(Ω)] andc is a real-measurable cardinal.
�

Proposition 17 If µ0 is a non atomic probability measure, built using only (ZF) and the axiom of choice,
like the Lebesgue measures, and there exists a process starting inµ0 and finishing inµ, thenµ = 0.

PROOF. First of all, the Continuum Hypothesis is independent of (ZF) and the axiom of choice, according
to the well known result of P. J. Cohen. On the other hand, in the construction ofµ and in Proposition 18
we have only used (ZF) and the axiom of choice. Then, ifµ 6= 0, the negation of (CH) would follow from
(ZF) and the axiom of choice, in contradiction to the result Cohen. Thereforeµ = 0. �

Remark 6 If c is a real-measurable cardinal we can not avoid in the previous proposition the condition
µ0 is built using only (ZF) and the axiom of choice. Indeed, then there exists an ultracomplete non atomic
probability measureµ0 and, obviously, every process starting inµ0 finishes inµ = µ0 6= 0.

Proposition 18 If µ0 is a purely atomic probability measure and there exists a process finishing inµ then,
for every atomA of µ0 we haveµ(A) = µ0(A) or µ(A) = 0. In the first case, the induced measureµA is
an extension ofµ0A and, therefore,A is also an atom ofµ.

PROOF. We notice that there exists a process starting in the induced measureµ0A and finishing inµA, as
in Proposition 14. So, it is enough to consider the case whenΩ is an atom ofµ0. Let Ω be an atom ofµ0

and(µα)α≤γ the family of the measures of the process, and let us suppose thatµ is not an extension of
µ0. Then there exists a first ordinalα0 such thatµα0 is not an extension ofµ0. It is clear thatα0 is a limit
ordinal. It follows from the proof of Proposition 14 thatµ∗α(E) ∈ {0, 1} for everyE ⊂ Ω andα < α0. It
follows also thatτ(E) = infα<α0 µ∗α(E) ∈ {0, 1} and, therefore,µ∗α0

(E) ∈ {0, 1}. Sinceµα0 is not an
extension ofµ0 it follows thatµα0(Ω) = 0 andµ(Ω) = 0. �
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Corollary 3 If µ0 is a purely atomic probability measure and(An) is a complete and disjoint system of
atoms ofµ0 and {An : n ∈ M} is the set of theAn which have the property that the induced measure
µ0An

has an ultracomplete extensionµn, then there exists a process starting inµ0 and that finishes in the
measureµ(A) =

∑
n∈M µn(A ∩An).

PROOF. It follows from Propositions 13, 14 and 18, taking into account that ifB1 andB2 are two disjoint
µ0-measurable sets and there exists a process starting inµ0Bi

and finishing inνi, then there exists a process
starting inµ0(B1∪B2) and finishing in the measureν(A) = ν1(A ∩ B1) + ν2(A ∩ B2), whereA ⊂ B1 ∪
B2. �
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