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On some questions of topology for S!-valued fractional
Sobolev spaces

H. Brezis and P. Mironescu

Abstract. The purpose of this paper is to describe the homotopy classes (i.e., path-connected compo-
nents) of the space W*®(Q; S"). Here, 0 < s < 00,1 < p < o0,  is a smooth, bounded, connected
open set in RY and

WoP(Q; 8Y) = {u € WHP(Q;0); |u| = 1ae.}.
Our main results assert that WP (£2; S) is path-connected if sp < 2 while it has the same homotopy
classes as C°(Q; ") if sp > 2. We also present some results and open problems about density of smooth
maps in WP (; S1).

Sobre algunas cuestiones topoldgicas para espacios de Sobolev
fracionarios con valores en S!

Resumen. El propésito de este articulo es describir las clases de homotépia (i.e., componentes conexas
por arcos) del espacio W*P(Q; S'). Aqui, 0 < s < 00,1 < p < 00, 2 es un abierto, regular, acotado y
conexo de RY y

WeP(Q; 8" = {u € WHP(Q;0); |u| = 1ae.}.
Nuestros resultados principales establecen que W *?(€; S*) es conexo por arcos si sp < 2 aunque tenga
las mismas clases de homotopfa que C°(€; S*) si sp > 2. También presentamos algunos resultados y
problemas abiertos sobre la densidad de aplicaciones regulares de W*?(€); S*).

1. Introduction

The purpose of this paper is to describe the homotopy classes (i.e., path-connected components) of the space
WP (Q; S1). Here, 0 < s < 00, 1 < p < 00, Q is a smooth, bounded, connected open set in RV and

WP (Q;8Y) = {u e WP (Q;C); |u| = 1la.e.}.
Our main results are
Theorem 1 [f sp < 2, then WP (Q; S1) is path-connected.

Theorem 2 [f sp > 2, then WP (Q; S') and C° (Q; S*) have the same homotopy classes in the sense of
[7]. More precisely:

a) each u € WP (Q; S1) is W*P-homotopic to some v € C™ (Q2; S);

b) two maps u,v € C*® (Q; S) are C°-homotopic if and only if they are W P-homotopic.
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Here a simple consequence of the above results
Corollary 1 If0 < s < 00,1 < p < oo and Q is simply connected, then W*P (Q; S') is path-connected.

Indeed, when sp < 2 this is the content of Theorem 1. When sp > 2, we use a) of Theorem 2 to connect
ut, us € W*P (Q; S1) to w1, vo € C° (€ S1); since Q is simply connected, we may write v; = %3 for
¢; € C* ((;R) and then we connect vy to vy via e?[(1-D¢1tteal,

When M is a compact connected manifold, the study of the topology of WP (Q; M) was initiated
in Brezis - Li [7] (see also White [26] for some related questions). In particular, these authors proved
Theorems 1 and 2 in the special case s = 1. The analysis of homotopy classes for an arbitrary manifold M
and s = 1 was subsequently tackled by Hang - Lin [15]. The passage to W #? introduces two additional
difficulties:

a) when s is not an integer, the W %P norm is not “local”;
b) when s > 2 (or more generally s > 1 + %), gluing two maps in WP does not yield a map in W*P.

In our proofs, we exploit in an essential way the fact that the target manifold is S'. (The case of a
general target is widely open.) In particular, we use the existence of a lifting of W ®® unimodular maps
when s > 1 and sp > 2 (see Bourgain - Brezis - Mironescu [4]). Another important tool is the following

Composition Theorem (Brezis - Mironescu [10]) If f € C® (R;R) has bounded derivatives and
s > 1, then ¢ — f o is continuous from WP N WP into WP,

Remark 1 A very elegant and straightforward proof of this Composition Theorem has been given by V.
Maz’ya and T. Shaposhnikova [18].

A related question is the description, when sp > 2, of the homotopy classes of WP (€; S1) in terms of
lifting. Here is a partial result

Theorem 3 We have
a)ifs>1, N > 3,and2 < sp < N, then

[uls,p = {ue;0 € WP (4 R) NWH* (5 R)};

b)ifsp > N, then .
[u]s,p = {ue; 0o € WP (; R)}.

Theorem 3 is due to Rubinstein - Sternberg [21] in the special case where s = 1, p = 2 and (2 is the
solid torus in R3.

When0 < s <1, N > 3and 2 < sp < N, there is no such simple description of [u]s,. For instance,
using the “non-lifting” results in Bourgain - Brezis - Mironescu [4], it is easy to see that

[ep 2 {30 € W27 (R},

Here is an example: if N =3, 2 =B;,0<s< 1,1 < p <0, 2 < sp < 3, then
a) u(z) = /17" € [1],,;

b) there is no ¢ € WP (By;R) such that u = € for a satisfying % <a< 3;%.

However, we conjecture the following result

Conjecture 1 Assume that0 < s <1,1<p<oo, N >23and2 < sp < N. Then

[u]s,p = u{eP;p € WoP (R} .

We will prove below (see Corollary 2) that “half” of Conjecture 1 holds, namely

we?

[uls,p D u{ei?;p € WP (Q;R)}

In a different but related direction, we establish some partial results concerning the density of C'* (Q2; S*)
into W#P (Q; S1).
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Theorem 4 We have, for 0 < s < 00, 1 < p < 0o:

a) if sp < 1, then C* (Q; S1) is dense in W*P (Q; S1);

b)if1 < sp<2,N > 2, then C*® (Q; S1) is not dense in W*P (Q; S1);
c)ifsp = N, then C® (Q; S') is dense in W*P (Q; S1);

d)if s > 1and sp > 2, then C> (Q; SY) is dense in W*P (Q2; S1).

There is only one missing case for which we make the following

Conjecture2 If0 < s < 1,1 < p < oo, N > 3,2 < sp < N, then C® (Q;S') is dense in
WeP (Q; S1).

This problem is open even when (2 is a ball in R3. We will prove below the equivalence of Conjectures 1
and 2.

Parts of Theorem 4 were already known. Part a) is due to Escobedo [14]; so is part b), but in this case
the idea goes back to Schoen - Uhlenbeck [24] (see also Bourgain - Brezis - Mironescu [5]). For s = 1,
part c) is due to Schoen - Uhlenbeck [24]; their argument can be adapted to the general case (see, e.g.,
Brezis - Nirenberg [12] or Brezis - Li [7]). The only new result is part d). The proof relies heavily on the
Composition Theorem and Theorems 2 and 3. We do not know any direct proof of d). We also mention
that for s = 1 and Q = B;, Theorem 4 was established by Bethuel - Zheng [3]. For a general compact
connected manifold M and for s = 1, the question of density of C'* (€; M) into WP (Q; M) was settled
by Bethuel [1] and Hang - Lin [15].

Remark 2 In Theorems 2 and 4, one may replace 2 by a manifold with or without boundary. The state-
ments are unchanged. However, the argument in the proof of Theorem 1 does not quite go through to the
case of a manifold without boundary. Nevertheless, we make the following

Conjecture 3 Let Q be a manifold without boundary with dimQ > 2. Then W*P (Q; M) is path-
connected for every 0 < s < 00,1 < p < oo with sp < 2, and for every compact connected manifold
M.

Note that the condition dim 2 > 2 is necessary, since W * (S1; S1) is not path-connected when sp > 1.

Finally, we investigate the local path-connectedness of W7 (Q; S1). Our main result is

Theorem 5 Let 0 < s < 00,1 < p < 00. Then WP (Q; SY) is locally path-connected. Consequently,
the homotophy classes coincide with the connected components and they are open and closed.

The heart of the matter in the proof is the following

Claim. Let0 < s < 00,1 < p < 00. Then there is some 6§ > 0 such that, if ||u — 1||ws»r < 0, then u
may be connected to 1 in W?*P,
As a consequence of Theorem 5, we have

Corollary 2 Ler0 < s < 1,1 < p < 0. Then

[u]s,p D {uei®;p € Wsp (Q;]R)}WS’P =u{e¥;p € WsP (Q; ]R)}WS’P

Equality in Corollary 2 follows from the well-known fact that W*P? N L*° is an algebra. The inclusion
is a consequence of the fact that, clearly, we have

[ulsp D {ue*; o € WP (Q; R)}

and of the closedness of the homotopy classes.
Another consequence of Theorem 5 is

Corollary 3 Conjecture 1 < Conjecture 2.
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PROOF. By Corollary 2, we have

WeP

[u]s,p D u{e?;p € WP (Q;R)}

We prove that the reverse inclusion follows from Conjecture 1. By Proposition 1 a) below, we may take
u = 1. Letv € [1]; . By Theorem 5, there is some € > 0 such that |[|[v — w||ws» <& = w € [1]5,. Let
(wp,) C C* (Q;S*) be such that w, — v in W*P and ||w, — v||ws» < . By Theorem 2 b), we obtain
that w,, and 1 are homotopic in C? (Q; S*). Thus w,, = €%~ for some globally defined smooth ¢,,. Hence

S,P

ve v p e Wor (R

Conversely, assume that Conjecture 2 holds. Let u € WP (Q;S'). By Theorem 2 a), there is
some w € C* (Y Sl) such that w € [u]s,p. By Proposition 1 b), we have uw € [1]5,p. Thus uw €

op we
{et;p € WeP (Q; ]R)} , so that clearly uw € {ei?;p € C=(Q;R)}

we
Finally, u € {wei?; p € C~ ((;R)} , 1.e. u may be approximated by smooth maps.
In the same vein, we raise the following

Open Problem 1.  Let Q2 be a manifold with or without boundary. Is W P (Q; M) locally path-connected
for every s, p and every compact manifold M ?

The case s = 1 can be settled using the methods of Hang - Lin [15]. We will return to this question in a
subsequent work; see Brezis - Mironescu [11].

The reader who is looking for more open problems may also consider the following

Open Problem 2. Let Q C R? be a smooth bounded domain. Assume 0 < s < 00,
1< p<ooandl < sp < 2 (this is the range where C™ (Q; S1) is not dense in W*P (Q; S1)). Set

Ro = {u € WP (Q; S); u is smooth except at a finite number of points}.

(Here, the number and location of singular points is left free). Is Ro dense in WP (Q; S*)?

Comment. R, is known to be dense in WP (Q; S) in many cases, e.g.:
a)s=1and 1 < p < 2; see Bethuel-Zheng [3]

b)s=1—1/pand2 < p < 3; see Bethuel [2]

c) s =1/2 and p = 2; see Riviere [20].

The paper is organized as follows

1. Introduction

2. Proof of Theorem 1

3. Proof of Theorems 2 and 3

4. Proof of Theorem 4

5. Proof of Theorem 5

Appendix A. An extension lemma

Appendix B. Good restrictions

Appendix C. Global lifting

Appendix D. Filling a hole - the fractional case
Appendix E. Slicing with norm control
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2. Proof of Theorem 1

Casel: sp<1
When sp < 1, we have the following more general result

Theorem 6 Ifs > 0,1 < p < o0, sp < 1 and M is a compact manifold, then W*P (Q; M) is path-
connected.

PROOF. Fix some a € M. Foru € WP (Q; M), let

. u, inQ
YT e inRV\Q.

Since sp < 1, we have & € WP (RN; M). Let U (t,z) = a(z/(1—1)),0 <t <1,z € Qand

U (1,z) = a. Thenclearly U € C ([0,1]; W#P (Q; M)) and U connects u to the constant a (here we use
only sp < N).

Case2: 1 <sp<2,N2>2

In this case one could adapt the tools developed in Brezis - Li [7], but we prefer a more direct approach.

Let ¢ > 0 be such that the projection onto 92 be well-defined and smooth in the region {z €
RY: dist (x,09) < 2¢}. Letw = {z € RV\Q; dist (z,00) < e}. We have dw = 9Q U A, where
A = {z € RN\(; dist (2,090) = ¢}

Since 1 < sp < 2, we have 1/p < s < 1+ 1/p; thus, for u € W*P we have tr u € Ws=1/pp et
u € WP (9; S). Fix some a € S' and define v € W*=1/P? (9w; S*) by

a, on A.

_ { tr u, on Jw

We use the following extension result. (The first result of this kind is due to Hardt - Kinderlehrer - Lin
[16]; it corresponds to our lemma wheno =1 —1/p, p < 2.)

Lemmal Let0 < 0 < 1,1 < p < 00,0p < 1. Then any v € WP (Ow; S') has an extension
w € Wot/pp (; S1).

The proof is given in Appendix A; see Lemma A.1. It relies heavily on the lifting results in Bourgain -
Brezis - Mironescu [4].
Returning to the proof of Case 2, with w given by Lemma 1, set

u in
w  inw
a inR"\ (QUw)

IS
I

Clearly, & € W,)? (RY; S1) and i is constant outside some compact set. As in the proof of Theorem 6,

we may use 4 to connect u to a, since once more we have sp < N.

Case3: sp=1, N > 2
The idea is the same as in the previous case; however, there is an additional difficulty, since in the
limiting case s = 1/p the trace theory is delicate - in particular, tr Wl/pP £ [P (unless p = 1). Instead

of trace, we work with a notion of “good restriction” developed in Appendix B; when s = 1/2, p = 2, the

space of functions in H'/? having 0 as good restriction on the boundary coincides with the space H é({ % of
Lions - Magenes [17] (see Theorem 11.7, p. 72).

Our aim is to prove that any u € W'/P? (Q; S') can be connected to a constant a € S*.

Step 1:  we connect u € WP (Q; S) 10 some uy € W/PP (Q; S') having a good restriction

on 0N}
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Let ¢ > 0 be such that the projection IT onto Q be well-defined and smooth in the set {z € RV ;
dist (z,00) < 2¢)}. For0< § <e,set X5 = {z € Q; dist (x,00) = 6}. By Fubini, fora.e. 0 < d < e,
we have

u(z) —u(y)?
uly, € W/PP (55) and//% dyds, < oo. €))
Q

s

By Lemma B.5, this implies that v has a good restriction on ¥, and that Rest “|Zs = u|25 a.e. on 3.

Let any 0 < 0 < ¢ satisfying (1). For 0 < A < 4, let ¥ be the smooth inverse of I‘[|EA : ¥\ — 00
Letalso Qy = {z € Q; dist (z,0Q) > A}. Consider a continuous family of diffeomorphisms ®; : QO —
Q45,0 < t < 1, such that &y = id and ®ila0 = ¥45. Thent — uwo Py is a homotopy in W/P? Moreover,
ifu; = wo @y, thenug = wand us|gq = u|25 o ¥s|aq. By (1), u; has a good restriction on 9.

Step 2:  we extend uq to RN

Letw = {z € RN\(Q; dist (2;00) < e}. As in Case 2, we fix some a € S and set

_ { ui, onodN

a, onA.

Clearly, v € W1/P? (9w), so that v € WP (Jw) for 0 < o < 1/p. We fix any 0 < ¢ < 1/p. By Lemma
1, there is some w € WH1/PP (w: §1) such that w|a,, = v. We define

uy, in€)
Uy = w, inw

a, inRV\(QUw).

We claim that @; € Wli/cp P (RY; S1). Obviously, @i € Wlt/cp P (RN\Q). It remains to check that Gi; €
W/P» (Q U w). This is a consequence of

Lemma2 Ler0<s<1,1<p<oo,sp>=1landp>s. Letu; € WSP(Q) and w € WPP(w). Assume

that uq has a good restriction Rest u1|aq on OS2 and that tr w|aq = Rest uy|aq. Then the map
uy, inf
w, inw

belongs to WP (Q U w).

Clearly, in the proof of Lemma 2 it suffices to consider the case of a flat boundary. When Q =
(-=1,1)N=1 x (0,1)andw = (—1,1)N~=1 x (—1,0), the proof of Lemma 2 is presented in Appendix B;
see Lemma B.4.

Returning to Case 3 and applying Lemma 2 with s = 1/p, p = o + 1/p, we obtain that G €

Wllo/cp’p (RM). As in the two previous cases, this means that u is W '/?-P-homotopic to a constant.

Cased: 1 <sp<2, N=1

In this case, 2 is an interval. Recall the following result proved in Bourgain - Brezis - Mironescu [4]
(Theorem 1): if Q is an interval and sp > 1, then for each u € W*P(Q; S') there is some ¢ € WP ((; R)
such that u = €. Recall also that, when sp = N, then C* (R; R) functions f with bounded derivatives
operate on W *P; that is, the map ¢ — f o ¢ is continuous from W *P into itself (see, e.g., Peetre [19] for
sp > N, Runst - Sickel [23], Corollary 2 and Remark 5 in Section 5.3.7 or Brezis - Mironescu [9] when
sp = N; this is also a consequence of the Composition Theorem). By combining these two results, we find
that the homotopy ¢ — e?(!~9¢ connects u = €% to 1.

The proof of Theorem 1 is complete.
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3. Proof of Theorems 2 and 3
We start with some useful remarks. For u € W#? (Q; S1), let [u]5,,, denote its homotopy class in W#?.

Proposition 1 Let 0 < s < 00, 1 < p < oo. Foru,v € WP (Q; S1), we have
a)uv]sp = [uv]sp,

b)[ulsp = [v]sp & [uV]s,p = [1sps

) [uls,p [v]s,p = [uv]s,p.

The proof relies on two well-known facts: W?*P N L*° is an algebra; moreover, if u,, = u, v, — v in
WP and ||up||Le < C, ||vn||lze < C, thenu, v, — uv in W#P. Here is, for example, the proof of ¢)
(using a)). Let first u; € [u]s,p, v1 € [V]s,p. If U,V are homotopies connecting w1 to u and v; to v, then
UV connects u1 v1 to uv; thus [u]s p [v]s,p C [uv]s,p. Conversely, if w € [uv]s,p, then w € uv]s p (by 2)),
so that wa@ € [v],,p. Therefore, w = w(wa) € [u]s,p [V]s,p-

We next recall the degree theory for W %P maps; see Brezis - Li - Mironescu - Nirenberg [8] for the
general case, White [25] when s = 1 or Rubinstein - Sternberg [20] for the space H 1 (Q; S 1) and ) the
solid torus in R3. Let 0 < s < 00, 1 < p < 0o be such that sp > 2. Letu € WP (S x A;S!), where A
is some open connected set in R*. Clearly, fora.e. A € A,u (-, \) € W*P (S*; S1). For any such A, u (-, \)
is continuous, so that it has a winding number (degree) deg (u (s )\)) . The main result in [8] asserts that, if
sp > 2, then this degree is constant a.e. and stable under W P convergence.

In the particular case where s > 1, there is a formula

deg (u(-, \)) = %/u (@A) A g—z(az,/\)dsw,

S1

where u A v = uj vo — ug vy. It then follows that, if s > 1 and sp > 2, we have

deg (uls1xa) = fo(m,)\) A g—z (x, \) dsgd).
A gt

Clearly, the above result extends to domains which are diffeomorphic to S* x A. In the sequel, we are
interested in the following particular case: let I" be a simple closed smooth curve in 2 and, for small £ > 0,
let ' be the e-tubular neighborhood of I'. We fix an orientation on I'.

Let ® : S' x B, — I, be a diffeomorphism such that ®|s1 0} : S* x {0} — T be an orientation
preserving diffeomorphism; here B is the ball of radius € in R¥N~1. Then we may define deg (u|r,) =
deg (u o ®| g1, ); this integer is stable under W *¥ convergence.

We now prove b) of Theorem 2, which we restate as

Proposition 2 Let0 < s < 00,1 < p < 00, sp = 2. Let u,v € C® (Q; S). Then [u]s, = [V]sp if
and only if u and v are C°- homotopic.

PROOF. Using Proposition 1, we may assume v = 1. Suppose first that u € C* (Q; S!) and 1 are C°-
homotopic. Then u and 1 are W#*P-homotopic. Indeed, when s = 1, this is proved in Brezis - Li [7],
Proposition A.1; however, their proof works without modification for any s. We sketch an alternative proof:
since u and 1 are C'°-homotopic, there is some ¢ € C™ (Q;R) such that u = e®. Then t +» ¢!(1-1)¢
connects u to 1 in WP,

Conversely, assume that the smooth map u is W#*P-homotopic to 1. By continuity of the degree, we
then have deg (u|r,) = 0 for each I'. Since u is smooth, we obtain

1
0= deg (ulr,) = deg (ulr) = %/m O 4.
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Thus the closed form X = u A Du has the property that [ X - 7ds = 0 for any simple closed smooth curve
T

T'. By the general form of the Poincaré lemma, there is some ¢ € C* (Q2; R) such that X = D. One may
easily check that u = e##*C) for some constant C'. Then t +— e#(1=%) (¢+C) connects u to 1 in C° (€; S1).

We now turn to the proof of the remaining assertions in Theorems 2 and 3.

Casel: sp> N, N > 2

Step 1:  eachu € W*P (Q; S*) can be connected to a smooth map v € C> (Q; S*)

This is proved in Brezis - Li [7], Proposition A.2, for s = 1 and p > N their arguments apply to any
s and any p such that sp > N. The main idea originates in the paper Schoen - Uhlenbeck [23]; see also
Brezis - Nirenberg [12], [13].

Step 2:  we have [u]s,, = {ue;p € WP ((;R)}

Let o € W*? (Q; R). Thent — ue’’ D% connects ue™ to win W*». (Recall that, if f € C'®° (R; R)
has bounded derivatives and sp > N, then the map ¢ — f o ¢ is continuous from W ?®? into itself.) This
proves “D”. To prove the reverse inclusion, by Proposition 1, it suffices to show that [1], , C {ei*;p €
WP (Q;R) }.

Let v € [1],,p. Foreach x € Q, let B, C  be a ball containing . We recall the following lifting
result from Bourgain - Brezis - Mironescu [4] (Theorem 2): if U is simply connected in RY and sp > N,
then for each w € W*P (U;S!) there is some ¢ € WP (U;R) such that w = e'¥. Thus, for each
z € Q there is some ¢, € W*P?(B,;R) such that v|g, = e'=. Note that, in B, N By, we have
Yz — py € WP (B, N By; 2nZ). Therefore, ¢, — ¢, € VMO (B, N By; 27Z), since sp > N. It then
follows that ¢, — ¢, is constant a.e. on B, N By; see Brezis - Nirenberg [12], Section L.5.

By a standard continuation argument, we may thus define a (multi-valued) argument ¢ for v in the
following way: fix some zo € ). For any z € (Q, let v be a simple smooth path from zg to 2. Then,
for ¢ > 0 sufficiently small, there is a unique function ¢” € WP (7¢;R) such that v|,, = €¥" and
©"|B.(z0) = Pzo|B.(z0); here, ¢ is the e-tubular neighborhood of . We then set

®lB.(z) = ¢ |B.(a)-
We actually claim that ¢ is single-valued. This follows from

Lemma 3 Assume that0 < s < 00,1 <p < 00,sp> N, N > 2. Ifw € WP (S! x By;S?) is such
that deg (w|s1xp,) = O, then there is some ) € WP (S x By) such that w = e*¥.

Here, B is the unit ball in R¥ 1. The proof of Lemma 3 is presented in Appendix C; see Lemma C.1.

Returning to the claim that ¢ is single-valued, we have that deg (v|r,) = 0foreachT, since v € [1] .
By Lemma 3, a standard argument implies that ¢ is single-valued.

The proof of Theorems 2 and 3 when sp > N is complete.

Case2:s>1,1<p<oo, N2>23,2<sp<N
Step 1:  we have [u]; , = {ue¥; p € WP (Q; R) N W15 (Q; R)} For “2”, we use the Composition

Theorem mentioned in the Introduction, which implies that t — ue!=t)% connects ue'® to u in W*»,

For “C” it suffices to prove that [1]5, C {e¥;p € WP (Q;R) N WP (Q;R)}. We proceed as
in Case 1, Step 2. Let v € [1]5,,. The corresponding lifting result we use is the following (see Bourgain
- Brezis - Mironescu [4], Lemma 4): if s > 1, sp > 2 and U is simply connected in RV, then for
each w € W#P (U;S!) there is some ¢ € WP (U;R) N WH#P (U;R) such that w = e™. Asin
Case 1, for each z there is some ¢, € W*P (B,;R) N W1*P (B,;R) such that v|g, = e¥=. Since
Yo — Py € wbht (B, N By;27Z), we find that ¢, — ¢, is constant ae. on B, N By (see [4], Theorem
B.1.). These two ingredients allow the construction of a multi-valued phase ¢ € WP N WP for v. To
prove that ¢ is actually single-valued, we rely on

Lemma 4 Assume thats > 1,1 <p < oo, N >23,2<sp< N. Ifw € WP (S' x By;8') is such
that deg (w|s1 x B,) = O, then there is some v € WP (S* x By;R) N WP (S' x By;R) such that
v = e,
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The proof of Lemma 4 is given in Appendix C; see Lemma C.2.

The proof of Step 1 is complete.

Step 2: assume s > 1,1 < p < 00, sp = 2; then, for each u € WP (Q;SY), there is some
v € WP (Q;8Y) NC>® (Q;SY) such that v € [u]s p.

Consider the form X = uA Du. Then X € W* 17 (Q) N L*P () (see Bourgain - Brezis - Mironescu
[4], Lemmas D.1 and D.2). Let ¢ € W*P (Q; R) N WP (; R) be any solution of Ap = div X in Q.
By the Composition Theorem, we then have e % € W*? (Q; S'), and thus v = ue % € W*? (Q; S').
We claim that v € C* (2; S!). Indeed, let B be any ball in . Since s > 1 and sp > 2, there is some
Y € WP (B;R) NWP (B; R) such that u| g = €¥. It then follows that X |g = D1). Thus Ap = Ag)
in B, i.e., 9 — ¢ is harmonic in B. Since in B we havev = ue™% = e (¥=9) we obtain thatv € C® (B),
so that the claim follows.

Using Step 1 and the equality v = ue ™%, we obtain that v € [u]s.p.

Step 3:  for eachu € W¥P (Q; SY), there is some w € C™ (Q; S) such that w € [u]s,p.

In view of Step 2, it suffices to consider the case where u € WP (2; S1) N C> (©2;.51). We use the
same homotopy as in Step 1, Case 3, in the proof of Theorem 1: ¢ — w o ®;, where ®; is a continuous
family of diffeomorphisms ®; : 0 — Qs such that &y = id. Clearly,v = uo &; € C® (Q;S').

The conclusions of Theorems 2 and 3 whens > 1,1 < p < oo, N > 3, 2 < sp < N follow from
Proposition 2 and Steps 1 and 3.

We now complete the proof of Theorem 2 with

Case3:0<s<1,1<p<oo,N2>23,2<sp< N

In this case, all we have to prove is that, for each u € W*P (Q; S1), there is some v € C™ (2;S?)
such that v € [u]s . The ideas we use in the proof are essentially due to Brezis - Li [7] (see §1.3, “Filling”
a hole).

We may assume that u is defined in a neighborhood O of Q; this is done by extending u by reflections
across the boundary of (2- the extended map is still in W?%P since 0 < s < 1. We next define a good
covering of 2: let & > 0 be small enough; for z € RV, we set

CY = U{x+el+(0,s)N;lEZNandx+sl+(0,a)N C O0}.

Define also C7,j = 1,..., N — 1, by backward induction : C is the union of faces of cubes in C7, ;.

By Fubini, for a.e. € RY, we have u|Cch e WP 5 =1,..., N — 1, in the following sense: since
1/p < s < 1, we have tr u|.31a<,_1 € Ws—1/P? for all z. However, for a.e. 2, we have the better property tr
ules | = ulce € Wep, For any such 2,  we have

N-1
tr (U'szv_l)

= u|c3»v_2 € W*#P_ and so on. (See Appendix E for a detailed discussion).

We fix any z having the above property and we drop from now on the superscript z.

Step 1: we connect u to some smoother map uy Let k = [sp], so that 2 < k < N — 1. Since
ulc, € W*P and sp > k, there is a neighborhood w of Cy, in Cx1 and an extension & € Ws+1/PP (; ST)
of ul¢, . This extension is first obtained in each cube C C Cjy; starting from u|sc (see Brezis - Nirenberg
[12], Appendix 3, for the existence of such an extension). We next glue together all these extensions to
obtain @; @ belongs to W*+1/7:? since 1/p < s+ 1/p < 1+ 1/p. Moreover, the explicit construction in
[12] yields some @ € C* (w\Ck). We next extend @ to Cy1 in the following way: for each C' C Cgy1,
let ¢ be a convex smooth hypersurface in C' N w. Since X¢ is k-dimensional and k > 2, @|s, may be
extended smoothly in the interior of ¢ as an S!-valued map (here, we use the fact that 7y, (S 1) = 0). Let
U be such an extension. Then the map

€ W*=1/P:? but once more for a.e. such z we have the better property tr (“'Cfv_ 1)

z z
CN—Z CN—Z

v — i, outside the X¢’s
“ | dc¢, inside X¢

belongs to W**1/P (C;,1). To summarize, we have found some v € W*+1/PP (C; .1 S') such that
Ve, = ule,-
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Pick any s < s; <min{s+ 1/p,1} and let p; be such that syp; = sp+ 1 (note that 1 < p; < o).
By Gagliardo - Nirenberg (see, e.g., Runst [22], Lemma 1, p.329 or Brezis - Mironescu [10], Corollary 3),
we have Wst1/P» 0 [0 ¢ W*1:P1, Thus v € W5t (Cpyq).

We complete the construction of the smoother map wy in the following way: if K = N — 1, then v is
defined in Cpy and we set u; = v; if k < N — 1, we extend v to Cy with the help of

Lemma5 Ler 0 < 51 < 00,1 < p1 < 00,1 < s1p1 < N, [s1p1] € j < N. Then any v €
WetPt (C;; SY) has an extension uy € W#Pt (Cn; S*) such that ui|c, € W**Pt forl = j,..,N — 1.

When s; = 1, Lemma 5 is due to Brezis - Li [7], Section 1.3, “Filling” a hole; for the general case, see
Lemma D.3 in Appendix D.

We summarize what we have done so far: if k& = [sp], then there are some s1,p; such that s <
51 < 1,1 <p <o0,s1p1 =sp+1andamapu; € WPt (Cy; S?) such that uile; € WP, j =
k,...,N—1andui|c, = ulc,. By Gagliardo - Nirenberg and the Sobolev embeddings, we have in particular
uile; € WP, j =k, ..., N — 1. Finally, u and u; are W*"P- homotopic by

Lemmab Ler0<s<1l,1<p<oo,1<sp<N,[sp] <Jj<N.Ifu|e, € WP uyl|c, € WP, =
Jy - N, and ule; = uilc;, then w and uy are W *P-homotopic.

The case s = 1 is due to Brezis - Li [7]; the proof of Lemma 6 in the general case is presented in the
Appendix D- see Lemma D 4.

Step 2: induction on [sp].

If K = [sp] = N — 1, we have connected in the previous step u to u; € W?¥P1 (Cy; S1), where
s<s1<1l,1<p <ooandsip; =sp+ 12> N. Using Case 1 (i.e., sp > N) from this section, u; may
be connected in W ?1-P1 (and thus in W %P, by Gagliardo - Nirenberg and the Sobolev embeddings) to some
v € C* (€; S1). This case is complete.

If k = [sp] = N — 2, then [s;p1] = N — 1. By the previous case, u; can be connected in W*:P* (and
thus in W*P) to some v € C™ (Q; S'). Clearly, the general case follows by induction.

The proof of Theorems 2 and 3 is complete.

We end this section with two simple consequences of the above proofs; these results supplement the
description of the homotopy classes.

Corollary 4 Let 0 < s < 00,1 < p < 00,8p = 2, N > 2. Foru,v € W*P({;S'), we have
[u]s,p = [v]s,p & deg (ulr.) =deg (v[r,) for everyT.

Corollary 5 Let 0 < 51,82 < 00,1 < p1,p2 < 00,8101 = 2,892 = 2, N > 2. Foru,v €
WP (Q;Sl) N WPz (9351)’ we have [u]317P1 = [U]Shpl Aad [u]sz,Pz = [U]SQ,IJZ'

Clearly, Corollary 5 follows from Corollary 4. As for Corollary 4, let uy,v; € C* (2; S') be such that
[u1]s,p = [u]s,p and [v1]s,p = [V]s,p. Then, by Theorem 2 b),

[u]s,p = [U]s,p < [ul]s,p = [Ul]s,p & [u1]co = [vi]co & deg (ua|r) = deg (vi|r), VI. (2
Moreover, we have
deg (u1|r) = deg (vi|r) & deg (u1lr,) = deg (vi]r,) < deg (ulr,) = deg (vr,), VI,  (3)

by standard properties of the degree.
We obtain Corollary 4 by combining (2) and (3).
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4. Proof of Theorem 4

According to the discussion in the Introduction, we only have to prove part d). Let s > 1,1 < p <
00, N >3,2<sp<N.Letu € WP (Q; S'). By Theorem 2 a), there is some v € C*° (£; S*) such
that v € [u]s,,. By Theorem 3 b), there is some ¢ € W*P (Q; R) N WP (Q; R) such that v = ue®®. Let
(pn) C C* (4 R) be such that ,, — ¢ in WP N WP, By the Composition Theorem, the sequence of
smooth maps (ve ™) converges to u in WP (Q; S') . The proof of Theorem 4 is complete.

5. Proof of Theorem 5

We start this section with a discussion on the stability of the degree: recall that if sp > 2, then deg (u|r,) is
well-defined and stable under W %P convergence. However, while the condition sp > 2 is optimal for the
existence of the degree (see Brezis - Li - Mironescu - Nirenberg [8], Remark 1), the stability of the degree
of W#%P maps holds under (the weaker assumption of) W ?*P* convergence, where s1p; > 1. This property
and Corollary 4 suggest the following generalization of Theorem 5

Theorem 7 Let0 < s < 00,1 < p<00,0< 581 <8,1<p1 <00,1<K s1p1 < sp. Then for each
u € WP (Q; SY) there is some § > 0 such that

{v e WP (Q; 8Y);||v — ul|werm <} C [usp.

Note that W#P (2; S1) c W#1:P1 (Q; S'), by Gagliardo - Nirenberg and the Sobolev embeddings, so
that Theorem 5 follows from Theorem 7 when sp > 2 (when sp < 2, there is nothing to prove, by Theorem

1.

Proof of Theorem 7
Step 1:  reduction to special values of s, s1,p, p1-
We claim that it suffices to prove Theorem 7 when

0<s1<s<1—(N=-1)/p,1<p<oo,1<p <o0,sp=2,sp=1,N2>2. 4

Indeed, assume Theorem 7 proved for all the values of s, s1,p, p1 satisfying (4). Let 0 < sg < 00,1 <
po < 00, N > 2 be such that sgpp > 2 (when N = 1 or sopg < 2, there is nothing to prove). Let
u € W#0:Po and let s, s1,p, p1 satisfy (4) and the additional condition s < sg. By Gagliardo - Nirenberg
and the Sobolev embeddings, there is some Jy > 0 such that

M = {’U € Wso:po (Q,Sl) ; ||’U - u||W50:P0 < (50} C (5)
{v e WP (Q; 1) ||v — ul|wer.e < 8}

By the special case of Theorem 7, we have v € M = v € [u],,p. By Corollary 5, we obtain M C [u]sy,po»
i.e., [u]sq,po 1S OpeN.

In conclusion, it suffices to prove Theorem 7 under assumption (4). Moreover, by Proposition 1 we may
assume u = 1.

Step 2:  construction of a good covering.

We fix a small neighborhood O of Q. By reflections across the boundary of 2, we may associate to each
u € W*P (Q; S1) an extension & € W*P(0; S*) satisfying

13 = 3l lwr(0) < C llu = vllwero) ©

and
||’a—ﬁ||W51;P1(O) <Cl||u_v||W“1’P1(Q)' )
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In this section, C, Cs, ... denote constants independent of u, v, ...
We fix some small ¢ > 0. By Lemma E.2 in Appendix E, for each v € WP (Q;S!) there is some
x € RY (depending possibly on v) such that the covering C%; has the properties
v|c]¢ ews? j=1..,N-1 8)
and
[vles = Lwerer c5) < Collv = 1[weren (0) < C2C1l[v = 1lwerer (@) ©)
(the last inequality follows from (7)).
While 2 may depend on v, the covering C¥; has two features independent of v:

the number of squares in C3 has a uniform upper bound K; (10)

if C't, C? are two squares in C§, there is a path of squares in C§ each one
having an edge in common with its neighbours, connecting C'! to C?.

(1)

Step 3:  choice of 4.
We rely on

Lemma7 Let C = (0,6)? and 0 < sy < 1,1 < p; < 00, s1p1 = 1. Then for each §; > O there is some
82 > 0 such that every map v € W*+P1 (9C; St) satisfying

[lv— 1||W51:1f’1(ac) < 62 (12)
has a lifting p € W?*1P1 (3C; R) such that

llollws1.2100) < 1. (13)

Clearly, in Lemma 7, C' may be replaced by the unit disc. For the unit disc, the proof of Lemma 7 is
given in Appendix C; see Lemma C.3. In particular, if (12) holds, then we have

llol|z1 (ac) < C301 (14)

for some C3 independent of the §'s. We now take d; such that

(51 <7T€/C3. (]5)
With 5 provided by Lemma 7, we choose
0= min{52/00,62/0102}. (16)

Step 4:  construction of a global lifting for v|cs.

Letv € WP (Q; S1) satisfy ||[v — 1||ws1.p1 < 6. Since § < §2/C1Cx, (9) implies that the conclusion
of Lemma 7 holds for v|s¢ and every square C' in C3. Thus, for every C € C3, v|sc has a lifting p¢
satisfying (14) and oo € W*1:P* (9C).

We claim that o € W*P (9C'). The statement being local, it suffices to prove that oo € WP (L),
where L is the union of three edges in dC'. Since L is Lipschitz homeomorphic with an interval, by Theorem
1 in [4] there is some ¢ € W*P (L) such that v = e in L (hereweuse 0 < s < landsp=2>1).InL,
we have ¢ — pc € (WP + We1:Pt) (L; 277); thus ¢ — @¢ is constant a.e. in L (see [4], Remark B.3), so
that the claim follows.

Since sp > 1 and v|cz € W*P, oo € W*P, we may redefine v|ce and pc on null sets in order to have
continuous functions. We claim that the function ¢(y) = pc(y), if y € C is well-defined on C§ (and thus
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continuous and W#P). By (11), it suffices to prove that, if C!, O are squares in C3 having the edge & in
common, then po1 = Y2 on £. Clearly, on £ we have g2 = @1 + 2i7 for some [ € Z. Thus

llecr + 2im||L1 ey = |lecz|lrr (g) < C301,

by (14). It follows that
2lljme = |[27||L1 (e) < llperllor ) + Cadr < 2C361, A7)

which implies I = 0 by (15) and (16).

In conclusion, v|c= has a global lifting ¢ € W*P? (CT; R).

Step 5:  construction of a good extension w of v|cs.

Let ¢o € W*H/PP (C2:R) be an extension of o, p3 € W*t2/PP (C2:R) an extension of o, and
so on; let oy € Wet(N-1)/p.p (C%;R) be the final extension. Note that these extensions exist since
s < 1+ (N —1)/p, so that trace theory applies. We set w = ei¥*y € Ws+(N-U/pr (€% S'). Since
(s+(N—=1)/p)-p= N +1> N, we obtain by Theorem 3 that w € [1],4(n—1)/p,p- By Corollary 5, we
also have w € [1]; p.

‘We complete the proof of Theorem 7 by proving

Step 6: w € [v];,p.

We rely on the following variant of Lemma 6

Lemma8 Let0<s<1,1<p<oo,1<sp<N,]Jsp]<j<N.Letv,w € WP (Cn;S*) be such
that v|c, € WP, wl|c, € W*P, I = j,..., N — 1. Assume that v|c, and w|c; are W*"P-homotopic. Then v
and w are W*P-homotopic.

The proof of Lemma 8 is given Appendix D; see Lemma D.5.

When N > 3, we are going to apply Lemma 8 with j = 2. In order to prove that v|¢, and w|c, are
W#P-homotopic, it suffices to find, for each C € Ca, a homotopy U¢ from v|¢ to w|c preserving the
boundary condition on dC; we next glue together these homotopies (this works since 0 < s < 1). We
construct Uc using the lifting: since sp = 2 = dim C and C is simply connected, by Theorem 2 in [4] there
is some ¢ € W#? (C; R) such that v = e in C. By taking traces, we find that v|sc = €% = ¥ thus
trp — po € (WP 4 W9P)(OC; 2rZ). Therefore, tr ¢ — @ is constant a.e., by Remark B.3 in [4].
We may assume that tr ¢) = p¢ = tr @o. Then ¢ — e*((1=)¥+192) i5 the desired homotopy Ug.

When N = 2, the above argument proves directly (i.e., without the help of Lemma 8) that w € [v],,p.

The proof of Theorem 7 is complete.

Appendix A An extension lemma

In this appendix, we investigate, in a special case, the question whether a map in WP (9w; S') admits an
extension in Wot1/PP (; §1).

LemmaAdl Let0<o<1,1<p<oo,op<1l, N =2 Letwbeasmooth bounded domain in RN .
Then every v € WP (Ow; S*) has an extension w € W+H/PP (w; S1),

PROOF. We distinguish two cases: 0 < 1 —1/pando > 1—1/p.

Case 0 < 1 —1/p: since op < 1, v may be lifted in W (see Bourgain - Brezis - Mironescu [4]), i.e.
there is some 1) € WP (9w; R) such that v = e?¥. Let ¢ € W+1/PP (w; R) be an extension of 1. Then
w = e’ € Wot/pp (y; §1) (since o + 1/p < 1 and  + €® is Lipchitz). Clearly, w has all the required
properties.

Case 0 > 1 — 1/p: the argument is similar, but somewhat more involved. The proof in [4] actually yields
a lifting which is better than W ?°P; more specifically, this lifting ¢) belongs to Wi/t for 0 < ¢ < 1, see
Remark 2, p.41, in the above reference. On the other hand, since 0 > 1—1/p, we have t = p/(op+1) < 1.
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For this choice of ¢, we obtain that v has a lifting ¢» € W» N W'~1/(ep+1),02+1 Thjs ¢ has an extension
@ € Wotl/pp 0 whortl By the Composition Theorem stated in the Introduction, the map w = €%
belongs to WI+1/P:P (y: §1). Clearly, we have tr w = v.

Remark A.1. The special case p < 2 and 0 = 1 — 1/p was originally treated by Hardt - Kinderlehrer -
Lin [16] via a totally different method. Their argument extends to the case p < 2 and op < 1, but does not
seem to apply when p > 2.

Appendix B Good restrictions

In this appendix, we describe a natural substitute for the trace theory when s = 1/p; it is known that the
standard trace theory is not defined in this limiting case.

For simplicity, we consider mainly the case of a flat boundary. However, we state Lemma B.5 (used in
the proof of Theorem 1) for a general domain. We start by introducing some
Notations: letQ = (0,1)N-1, Q, =Q x (0,1),Q2- =Q x (-1,0), =0, UQ_ =Q x (=1,1).
If v is a function defined on Q, we set & (z',t) = v(x) for (z',t) € Q.

LemmaB.1 Let0<s<1,1<p< 0. Then foru € WP (Qy) and for any function v defined on @),

the following assertions are equivalent:
a)v € WP (Q) and

— ()P
I:/ de<oo; (B.1)
TN
Q4
b) the map wy = { g’ ;Z g+ , belongs to W*P (Q);

u— ﬁ, in Q+
0, in_
PROOF. Recall that, if U is a smooth or cube-like domain, then an equivalent (semi-) norm on W#? (U)
is given by

¢) the map we = belongs to W*P ().

1/p

N 0o N F()|P

tsp+1

{zeU;z+te; €U}

(see, e.g., Triebel [25]).

Clearly, both b) and c) imply that v € W*? (Q). Conversely, for v € W*P (Q) we have to prove the
equivalence of (B.1), b) and c). We consider the norm given by (B.2). Taking into account the fact that
w1, ws belong to W¥%P in Q2 and 2_, we see that

* Ju(z) = o(x)?
wp WP (Q) & J= / / dtdx < oo (B.3)
Q4

.’L'N —t Sp+1

and
wy € WP (Q) & J < 00. (B.4)

The lemma follows from the obvious inequality

1—27°p 1
—I < J < —1
Sp sp
We now assume in addition that sp > 1 and derive the following

Corollary B.1 Let0 < s < 1,1 < p < oo be suchthat sp > 1. Then, for every u € WP () we have
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a) for each 0 < tg < 1, there is at most one function v defined on @) such that the maps

wt" _ U, lI’lQ X (to,].)
1 5, inQ x (—1,to)

and

Wi — u—=0, inQ X (to,1)

2 = 0, in Q X (—1,t0)

belong to W*P (Q);

b) for a.e. 0 < tg < 1, the functionv = u (-, to) has the property that w1 ,w2 € W*P(Q).

(As usual, the uniqueness of v is understood a.e.)
The above corollary suggests the following

Definition: ler0<s<1,1<p<oo,sp>21,0<t <1 Letu e W5P (Q+) and let v be a function
defined on Q). Then v is the downward good restriction of u to {xn = to} if w°, wl® € WP (Q); we
then write v = Rest u|, . Similarly, for 0 < to < 1 we may define an upward good restriction Rest
ulf w—to = U as the unique function v defined on Q) satisfying the two equivalent conditions

a) Wlto :{ 0, inQ@Q x (tﬂa ) € Ws,p(Q+)

u, inQ x (0,to)
and
e ={ 0o ek o €W,

If v is both an upward and a downward good restriction, we call it a good restriction and we write v =
Rest gy =t

CorollaryB.2 Let0<s<1,1<p<oo,sp>=1 Letu € WP (Qy). Then, fora.e. 0 < tg < 1, we
have Rest u|zy—t, = u (-, to).

Remark B.1 If sp > 1, then functions u € WP () have traces for all 0 < to < 1. However,
these traces need not be good restrictions. Here is an example: For N = 2, one may prove that the map
x> (x —1/2e1)/|z — 1/2e1| belongs to WP (Q) if 0 < s < 1,

1 < p < oo,sp < 2. However, if sp > 1, its trace

1, itz > 1/2
tr ula,—o _{ ~1, ifay < 1/2

does not belong to W#? (0, 1), so that it is not a good restriction.

Remark B.2 In the limiting case s = 1/p, functions in W#? do not have traces. However, they do have
good restrictions a.e.
Here is yet another simple consequence of Lemma B.1

CorollaryB.3 Let0<s<1,1<p<o0,sp>1 Letur € W*P (Q) be suchthatRestu |, _o =
Ug, iny

Sip
ue.  inQ belongs to W %P,

Rest u_ |w —o- Then the map w = {

The following results explain the connections between good restrictions and traces.

LemmaB.2 [er0<s<1,1<p<oo,sp>1 Letu € WP (Q,). Assume that there exists v =

Rest ul, _q. Then v =tr u|yy—o.

u — ﬁ, in Q+
0, inQ_.
continuity of the trace, we have 0 = tr w|; o, S0 that tr u|,y—0 = v.

PROOF. Letw = { By Lemma B.1, we have w € W#P? (). By trace theory and
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LemmaB.3 Let0<s<1,1<p<oo,sp>=1l Letu€ WS'H/“’ (Q+) Then, considered as a WP

function, u has a good downward restriction to {x N = 0}

PROOF. Letv = tru|;y—o. Thenv € W*P (Q), by the trace theory. By Lemma B.1, it remains to prove

that

JRECHCLIN
Q. R .

N
Assume first that s + 1/p = 1. Then (B.5) follows from the well-known Hardy inequality

1 ! _ ’ P
/ / futa’s ) = u(@, 0P 4y, ClIDullt,, Yu € WP ().

tp

Consider now the case where s + 1/p # 1. Leto = s + 1/p. We are going to prove that

u(zx) — o(x)|P
/ M < Cllullfyes
Q4 T

N

for some convenient equivalent (semi-) norm on WP, It is useful to consider the norm

1/p
— [ |f (@ + 2te;) = 2/ (x + tej) + f@)”
j j
fe 1> / / pr dadt
{ze€U; z+te; €U, z+2te;€U}
(see, e.g., Triebel [24]).
For any ' € ) such that u, = u(z’,-) € WP (0,1), the map
 u(a,t), ift>0
f‘”'(t)_{ v(z'), ift<0
belongs to WP (—1, 1), by standard trace theory. Moreover, for any such 2’ we have
||f2’||€ya,p(_1,1) < C”ux’”I[);Va,p (0,1)°
e % h+2t) = 2f. (h h)|P
zl t —_— zl t zl
i ol 20) = 26 (Bt )+ S (B)P
0 tap-',—l

{he(—1,1); h+te(—1,1), h+2te(—1,1)}

C/°° N / |ug (b + 2t) — 2ug (B 4+ t) + ug (h)lpdhdt
o {he(0,1); h+te(0,1), h+2t€(0,1)} topt+l )

In particular,

V2T e (B4 26) = 2f0 (Bt 8) + for ()P
/ / top+1 dhdt < C“uw'”%’mp'
oinee V3 u(a, t) Y3 u(a', t) — v(z')|P
C/ dt C/ dt,
tsp+1
we find that

/1/3 |u(a', t) = v(z")[P
0

oo At < Clluar e

On the other hand, we clearly have

1 ! _ n|p
/ e )= vl < Cllua |7 + Clo(a)P.
1/3

tSp'H
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By combining (B.12), (B.13) and integrating with respect to ', we obtain (B.7). The proof of Lemma B.3
is complete.

A simple consequence of Lemma B.3 is the following

LemmaB.4 Let0<s<1,1<p<oo,sp>landp>s. Letu; € WP (Q2y) andus € WPP (Q_).
Assume that uy has a good downward restriction v = Rest uy |;N:0 and that v = tr Us|yy=0. Then the

map
uz, in Q+
w = ,
ug, inQ_

belongs to W*P(Q).

PROOF. Letusz € Wstl/pp (Q_) be an extension of v. Then w = w1y + w2, where

uy, in Q4
wp = .
ug, inQ_

and

0 in
Wy = ’ . +
U2 — Uz, inQ_.

By Lemma B.3 and the assumption v = Rest w1, _g, we have Rest u1|, _, = Rest u3|jN:0. By
Corollary B.3, we find that w; € W*P (Q). It remains to prove that wy € WP (). Let ¢ = min
{p,s+1/p, 1}. Then wa € WP (Q), by standard trace theory. Thus wy € WP (Q).

We conclude this section by stating the following precised form of Corollary B.1, b) in the case of a
general boundary. We use the same notations as in the proof of Theorem 1, Case 4.

LemmaB.5 em Letu € W/PP (Q). Then
a)fora.e. 0 < § < € we have

1/p, lu(@) — u(y)|? ,
uls, € WYPP () and /25 JR P dyds, < o0; (B.14)

b) for any such 6, u has a good restriction to X5 which coincides (a.e. on ¥5) with u|x;.

Appendix C Global lifting

In this appendix, we investigate the existence of a global lifting in some domains with non-trival topology.

LemmaC.l Let0<s<oo,1<p<oo,sp>=N,N>2 Letu € WP (St x By;S') be such that
deg (u|s1xB,) = 0. Then there is some ¢ € WP (S* x By; S') such that u = €*.

Here, B is the unit ball in RV 1.

PROOF. Letv:Rx By — S, v(t,z) = u(e®,z). Thenv € W ¥ (Rx By; S'), where “loc” refers only
to the variable ¢. By Theorem 2 in Bourgain - Brezis - Mironescu [4], there is some ¢ € Wlf)’f (R x By;R)
such that v = €®¥. We claim that 1) is 2m-periodic in the variable t. Indeed, for a.e. * € Bj, we have
u € WP (S x {};S") and deg (u|g1x{z}) = 0. In particular, for any such z the map u|g1 .} has a
continuous lifting 7,. On the other hand, for a.e. x € By we have ¢, = ¥(-,z) € W7 (R x {z}; R).
Thus, with A\, (t) = 1, (e®), we find that for a.e. z € B the function ¢, — ), is continuous and 277
-valued; therefore it is a constant. Since A, is 2m-periodic, so is ¢, for a.e. £ € B;. We obtain that ¢ is
27-periodic in the variable t. Thus the map ¢ : S' x By — R, (e, z) = ¢(t,x) is well-defined and

belongs to W*P (S! x B;;R). Moreover, we clearly have u = e%.

In the same vein, we have
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LemmaC.2 Lets>1,1<p<oo, N>3,2<sp<N. Letu € W>P(S! x By;S') be such that
deg (u|sixB,) = 0. Then there is some p € W*P (S* x B1; R)N W1 (S x By;R) such that u = e*.

The proof is similar to that of Lemma C.1; one has to use Lemma 4 in [4] instead of Theorem 2 in [4].

LemmaC.3 Letl < p < coanddy > 0. Then there is some 65 > 0 such that every v € W1/P» (§1: 81)
satisfying ||v — 1l|w1/».0(s1) < 02 has a global lifting ¢ € W/pP (S1:R) such that llellwre.p sty < 1.

PROOF. Recall that if I is an interval, then every w € W'/P-? (I; S') has a lifting ¢p € W/PP (I;R)
(see Bourgain - Brezis - Mironescu [4], Theorem 1). Moreover, this lifting may be chosen to be (locally)
continuous with respect to w, i.e. for every wog € W1/PP(I; S') there is some Jo > 0 such that in the set

{w; [Jw - wO”Wl/p,p(I;sl) < do}

there is a lifting w — 1) continuous for the W'/P norm. (This assertion can be established using the same
argument as in Step 7 of the proof of Theorem 4 in Brezis, Nirenberg [12]; it can also be derived from the
explicit construction of ¢ in the proof of Theorem 1 in [4]; see also Boutet de Monvel, Berthier, Georgescu,
Purice [6] when p = 2).
Let I = [—2m,27]. Toeachv € W1/PP (S1; S1) we associate the mapw € W/PP (I; S1), w(t) = v(e®).
By the above considerations, for every d3 > 0 there is some d4 > 0 such that, if ||v — 1|y 1/p.p(51) < 04,
then w has a lifting 9 such that [[9)||y1/p.p(;y < d3. We claim that ¢ is 27-periodic if d3 is small enough.
Indeed, the function £(t) = v (t — 27) — ¢ (t) belongs to W/P([0, 27]; 277Z), so that £ is constant a.e.
(see [4], Theorem B.1). Since ||€]|z1 < |[¢]|z1 < Cd3, we have £ = 0 (i.e. ¢ is 2m-periodic) if Cd3 < 27.
Thus, for 3 small enough, the map p(e®) = ¢(t) is well-defined, belongs to W'/P+? and satisfies
||(p||W1/p,p(S1) < 6 and u = e?®.

Appendix D Filling a hole - the fractional case

We adapt to fractional Sobolev spaces the technique of Brezis - Li [7], Section 1.3.
The first two results are preparations for the proofs of Lemmas 5,6 and 8 (see Lemmas D.3, D.4 and
D.5 below).

LemmaD.1 Ler0<s<1,1<p<oo,1<sp<N. Lt C = (=1,1)" and u € W*? (9C).
Then i € WP (C); here, ii(z) = u(z/|z|) and | | is the L™ norm in RN . Moreover, the map u v~  is
continuous from WP (9C') into WP (C).

PROOF. Clearly, we have ||i||»(cy < Collullze(ac)- Thus it suffices to prove, for the Gagliardo semi-
norms in W#P, the inequality

1l ey < CrlllulByen ooy + NullZaocy)- (D.1)
‘We have

lu(z) — N-1,N-1
/ |x_y|N+sp (0= I gy |m_0y|N+spr ds,dsydrdo. (D.2)
ccC

We claim that
sN=1,N-1
1_/ / | —— —drdo < Caf|z — y|N TP, (D.3)
T

T — o.le+sp
1/ . N-1 (Ar)N-1
—————d\d =
/ / |72 — Ary|N+tsp 4

1/7 N N /\N—l
P dMrT <L + I,
/0 /0 ! o — AN AT S LT

Indeed,

(D.4)
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where I; = fol f02 and [, = fol e
On the one hand, we have

1 2 N L )\N—l
— —S$p—
I —/ / T g T
)\N

B (D.5)
03// N=spl |N+spd)\d7' < Cyf|x —y|Nter.
On the other hand, we have
1 oo N L )\N—l
I2=/ / T TP 7Nd)\d7'
— +sp

1 o] )\N—l 1 o]
< Cs / / TN Sy AT = Cs / / TN=P=IA =2~ dAdr < Cg.
0 J2 0 J2

We obtain (D.3) by combining (D.4), (D.5) and (D.6). Finally, (D.1) follows from (D.2) and (D.3).
The proof of Lemma D.1 is complete.

Lemma D.2 [er0 < s < 1,1 <p<oo,1<sp< N. Let vyw € WP (C;8') be such that
vlgc = wlac € WP (8C). Then, there is a homotopy U € C°([0,1]; WP (C; SY)) such that U(0,-) =
v, U(1,") =wand U(t,-)|ac = v|ac, ¥t € [0,1].

PROOF. Letu = v|gc. It clearly suffices to prove the lemma in the special case w = @. In this case, let,
for0 <t <1,
_ [ o/ —t), iflal <1t
U(t’“’)_{ i(z), if1—t <z <1
set U(1,-) = 4. Clearly, U € C°([0,1); W#P (C'; S1)). It remains to prove that U(t,-) — i as t — 1. Let

| v(x), iflx| <1
f(@) _{ W(z), iflz|>1

and g = f — @. Then f, @ € W,2F (RV), so that g € W)’ (RV). Since g = 0 outside C, we actually have
g € WP (RN). Thus

10t ) = @l niey = 90/ = )y <

lg (/L= ) By iy = (L= NP lgly ) = O
ast — 1. The proof of Lemma D.2 is complete.

We introduce a useful notation: let u € WPt (Cr), where 0 < 51 < 1,1 < p; < 00, 1 < s1p1 < N.
We extend, for each C' € Cp41,u|ac to C as in Lemma D.1. Let @ be the map obtained by gluing these
extensions. We next extend @ to Cgy2 in the same manner, and so on, until we obtain a map defined in Cx;
call it Hy(u).

Lemma D3 Ler0 < s31 < 1,1 < p1 < 00,1 < s1p1 < N, [s1p1] < j < N. Then every v €
WerPL (C4; SY) has an extension uy € W¥Pt (Cn; S) such that uy|e, € WP forl = j,...,N — 1.

PROOF. We take u; = H;(v). We may use repeatedly Lemma D.1, since for / = j + 1, ..., N we have
1<sip1 < l.

LemmaD4 Let0< s<1,1<p<oo,1<sp<N,[sp] <j<N. Ifu|le, € WP uy|¢, €
WP [ = j,...,N =1, and u|c; = u1lc;, then u and uy are W*P-homotopic.

PROOF. We argue by backward induction on j. If j = N — 1, then for each C € Cny Lemma D.2
provides a W#P-homotopy of u|c and u;|¢ preserving the boundary condition. By gluing together these
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homotopies we find that « and u; are W#P-homotopic (here we use 1/p < s < 1). Suppose now that
the conclusion of the lemma holds for j + 1; we prove it for j, assuming that j > [sp]. By assumption,
wand Hj 1 (ule;,,) are W*P-homotopic, and so are u; and Hjy1(u1|c,,, ). It suffices therefore to prove
that v = Hjii(ule,,,) and v; = Hjy1(uilc,,,) are W*P-homotopic. For each C' € Cj;1, we have
v|ac = vilac = ulac = u1lec. By Lemma D.2, v|¢ and v;|¢ are connected by a homotopy preserving
the trace on 9C. Gluing together these homotopies, we find that v|c,,, and v1]¢,,, are W*P-homotopic.
If U connects v|c;,, to vi|c,,,, then Lemma D.1 used repeatedly implies that ¢ +— H;1(U(t)) connects
in WP (Cn; S') the map Hjyq (vle,,,) to Hjy1 (vile;4,), ie., v to vy,

The proof of Lemma D.4 is complete.
LemmaD5 Let0<s<1,1<p<oo,1<sp<N,][sp] <j<N.Letv,we WP (Cy;S5') be
such that vle, € WP, wle, € WP, [ = j,...,N — 1. Assume that v|¢c; and w|c; are W*P-homotopic.
Then v and w are W *P-homotopic.
PROOF. By Lemma D.4, v and H;(v|c,) (respectively w and H7 (w|c,)) are W*:P-homotopic. If U con-
nects vl¢; to wlc; in W*P, then as in the proof of Lemma D.4, we obtain that ¢ +— H;(U(t)) connects
Hj(v|c;) to Hj(wl|c,) in W*P. Thus v and w are W *P-homotopic.

Appendix E Slicing with norm control

In this section, we prove the existence of good coverings for W P maps. The arguments are rather standard.

Without loss of generality, we may consider maps defined in R™ . Throughout this section, we assume
€ = 1, i.e. we consider a covering with cubes of size 1. We start by introducing some useful notations: for
zeCN =(0,1)Yandforj=1,...N — 1, let

J N—j
C; = U {Z tr € + Z Nej ty € RN € Z,{e; } Ufej} = {61,..,61\7}}
k=1 =1

and C;(x) = x + C;. (With the notations introduced in Section 3, we have Cj(z) = C¥ when @ = RY).
For a fixed set A C {1,.., N} such that |A| = j, let also

CJA = {Ztiei +Z)\j€j; t; € R,)\j € Z},
ieA igA

so that
Cj =U{C}AC{L,...N} Al =},

and with obvious notations
Cj(x) = U{C}a);A C {1,..., N}, |A| = j}.

Instead of considering a fixed (semi-) norm on WP 0 < s < 1,1 < p < o0, it is convenient to
consider a family of equivalent norms

[f (@ + X sen tied) — f(@)P
115 = > | feA dtdz
" ac {1,..,N} /RN /R e

(see, e.g., Triebel [24]). An obvious computation yields, for the usual Gagliardo (semi-) norm on C JA (z),
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LemmaE.d Let0<s<1,1<p<ooandu € W*P. Then

}: / 1By ooyl < (B1)
Ac{y,.
Al =

for some C' independent of u.

We next define the norm [|ul|ys.» (¢;(x)) by the formula

”u”%/s,p (C;(z)) = Z ||U||€Vs,p (8C)"
CeCjt1(z)

LemmaE.2 Ler0<s<1,1<p< oo Then, foru e W?*P, we have
a)fora.e. x € CN uloj@) EWRE,j=1,.,N-1;
b) there is a fat set (i.e., with positive measure) A C C™ such that

||U||€Vs,p (C; (@) <C |U|§, Vx € A. (E.2)

Remark E.1. Here, u|cj (z) are restrictions, not traces. However, when sp > 1 we may replace restrictions
by traces, by a standard argument. We obtain

Corollary E1 Let0 < s < 1,1 < p < 00,sp > 1. Let u € W*P. Then, for ae. x € CN, tr
uloy_y(a) € W*P. Moreover, for a.e. x € CN, U|lcy_y () has a trace on Cn_o(x) which belongs to
WP and so on.

PROOF OF LEMMA E.2. In order to avoid long computations, we treat only the case j = 1, N = 2. The
general case does not bring any additional difficulty. Let C' € C1(z); denote its lower (resp. upper, left,
right) edge by C? (resp. C*, CF, C®). By (E.1), we have u|c: € W*P fora.e. x € C? and, for  in a fat
set, Y cec (z) “““gwm(cl) < const. |u|}. Similar statements hold for the other edges.

It remains to control the cross - integrals in the Gagliardo norm, e.g. to prove

u(z)|P
I= ~/C / /;L |y — z|2+sp dydz const. ||u||zl)/Vs,P (E3)

(here, we take the usual Gagliardo norm in W *? (R?)). We have

CeCi(z)

dodrdx

- / / / |u(z + mier + maes + Te1) — u(z + mieg + maes + oea)|P
mez? |Ter — oeq|**oP

/ / / lu(y + Te1) — u(y + oes)|P dodrdy
R2 |T€1 - 0'€2|2+8p
/ // —’LLZ—T€1+O'€2)|ddez
R2 |Ter — oeq|>tsp

lu(z+h) —u@P 0
/W /Rg R[> Fep dhdz = ||ullpy«.p-

The proof of Lemma E.2 is complete.
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