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On the geometric prequantization of brackets

M. de Leon, J. C. Marrero and E. Padron

Abstract. In this paper we consider a general setting for geometric prequantization of a manifold
endowed with a non-necessarily Jacobi bracket. The existence of a generalized foliation permits to define
a notion of prequantization bundle. A second approach is given assuming the existence of a Lie algebroid
on the manifold. Both approaches are related, and the results for Poisson and Jacobi manifolds are
recovered.

Precuantizacion geométrica de corchetes

Resumen. En este articulo se considera un marco general para la precuantizaciéon geométrica de una
variedad provista de un corchete que no es necesariamente de Jacobi. La existencia de una foliacién
generalizada permite definir una nocién de fibrado de precuantizacién. Se estudia una aproximacién
alternativa suponiendo la existencia de un algebroide de Lie sobre la variedad. Se relacionan ambos
enfoques y se recuperan los resultados conocidos para variedades de Poisson y Jacobi.

1. Introduction

Since the seminal results by Kostant and Souriau [14, 26] a lot of work has been done in order to develop a
geometric theory of quantization. The inspiration behind these ideas was to develop a method to quantize a
classical system and to obtain the quantum system reproducing the Dirac scheme for canonical quantization.

The procedure starts with a phase space which in the most favourable case is a symplectic manifold
(M,w). Then, we associate to M a Hilbert space, which at the first step is the space of sections I'( K)
of a complex line bundle K over M. Thus, to each function f € C'°(M,R) (an observable) we attach
an operator f : D(K) — T(K), f(s) = Vx,s + 2mifs, where X is the Hamiltonian vector field
d/eﬁ&ad by f, and V is a covariant derivative on K. K is said to be a prequantization bundle of M if
{f,9} = f og—go f , that is, the commutator of the operators corresponds to the Poisson bracket of
the observables. This condition can be translated as the existence of a covariant derivative V such that its
curvature is w. The condition is just fullfilled for integral symplectic manifolds.

In constrained Hamiltonian systems and other physical instances, there appear more general phase
spaces, endowed with a non-symplectic Poisson bracket, or even, a Jacobi bracket. An approach to this
problem is the use of symplectic and contact groupoids, and there is an extensive list of results due mainly
to Karasev, Maslov, Weinstein, Dazord, Hector and others (see [4], [5], [6], [11] and [31]; see also [29] and
the references therein).
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On the other hand, in [10] Huebschmann extended the Kostant-Souriau geometric quantization pro-
cedure of symplectic manifolds to Poisson algebras and, particularly, to the Lie algebra of functions of a
Poisson manifold. In [28] (see also [29]), Vaisman obtains essentially the same quantization of a Pois-
son manifold M straightforwardly, without resorting to any special algebraic machinery. He introduced
contravariant instead of covariant derivatives on M, in order to take account that the Poisson bracket is
given by a contravariant 2-vector. This permits to obtain similar results for Poisson manifolds. Here, the
traditional de Rham cohomology has to be substitutted by the so-called Lichnerowicz-Poisson cohomology
(LP-cohomology). The LP-cohomology has a clear lecture in the Chevalley-Eilenberg cohomology of the
Lie algebra of functions on M through the representation (f, g) — {f, g}

The above results were recently extended for a Jacobi manifold M (see [19]). In this case one has
to consider the Lie algebroid associated to M and the so-called Lichnerowicz-Jacobi cohomology (LIJ-
cohomology) of M. The Lie algebroid (respectively, the LJ-cohomology) has been introduced in [12]
(respectively, in [18, 19]). The LJ-cohomology is the cohomology of a subcomplex of the H-Chevalley-
Eilenberg complex. The cohomology of this last complex is just the cohomology of the Lie algebra of
functions on M relative to the representation defined by the Hamiltonian vector fields (for a detailed study of
the cohomologies of another subcomplexes of the H-Chevalley-Eilenberg complex, we refer to [15, 16, 17]).

The purpose of the present paper is to consider a more general setting which extends in some sense
the precedent ones. We consider a manifold M endowed with a skew-symmetric bracket { , } of functions
which satisfies the Jacobi identity, a rule 7 that assigns a vector field H(f) = X to each function f such
that [X X g] =X (.9} and, in addition, we assume that the generalized distribution F defined by the
vector fields X is in fact a generalized foliation. Note that {, } does not satisfy necessarily any local
property, so that it is not in principle a Jacobi bracket.

Even in this general setting it is still possible to define the corresponding H-Chevalley-Eilenberg coho-
mology, and the de Rham and the F-foliated cohomologies are related with it. By introducing a suitable
definition of F-foliated derivatives, we give a first definition of prequantization bundle, and obtain a char-
acterization of a quantizable manifold (M, {, }, H) (Theorem 3.9) in the setting of foliated forms.

If the existence of a Lie algebroid K — M is assumed, then we can define a new cohomology by
using the representation of T'(K) on C°° (M, R) and, under certain conditions, this cohomology is related
with the precedent ones in a natural way. A second definition of prequantization bundle is given in this
context making use of a convenient notion of F(R’)-derivative, and the corresponding characterization of
quantizable manifold is obtained (Theorem 4.8). It should be remarked that this second notion of prequan-
tization bundle is more general that the precedent one. Finally, we discuss the cases of Poisson and Jacobi
manifolds recovering the results previously obtained in [28] and [19], respectively.

2. Jacobi manifolds

All the manifolds considered in this paper are assumed to be connected.
A Jacobi structure on an m-dimensional manifold M is a pair (A, E') where A is a 2-vector and E a
vector field on M satisfying the following properties:

[A,A] =2EAA , [E,A]=0. (1)

Here [ , ] denotes the Schouten-Nijenhuis bracket ([3, 29]). The manifold M endowed with a Jacobi
structure is called a Jacobi manifold. A bracket of functions (the Jacobi bracket) is defined by

{f,9} = Aldf,dg) + fE(9) — gE(f) ,  forall  f g€ C=(M,R). )
The Jacobi bracket { , } is skew-symmetric, satisfies the Jacobi identity and

support{f, g} C (supportf) N (supportg).

Thus, the space C*°(M,R) of C* real-valued functions on M endowed with the Jacobi bracket is
a local Lie algebra in the sense of Kirillov (see [13]). Conversely, a structure of local Lie algebra on
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C>(M, R) defines a Jacobi structure on M (see [8, 13]). If the vector field E identically vanishes then
{, } is a derivation in each argument and, therefore, { , } defines a Poisson bracket on M and (M, A) is
a Poisson manifold. Jacobi and Poisson manifolds were introduced by Lichnerowicz ([20, 21]; see also [3],
[22] and [29]).

Examples of Poisson structures are symplectic and Lie-Poisson structures (see [20] and [30]).

Other interesting examples of Jacobi manifolds, which are not Poisson manifolds, are contact manifolds
and locally conformal symplectic manifolds which we will describe below.

A contact manifold is a pair (M, n), where M is a (2m + 1)-dimensional manifold and 7 is a 1-form
on M such that 5 A (dn)™ # 0 at every point (see, for example, [1], [2], [21] and [22]). Ifb : X(M) —
Q' (M) is the isomorphism of C'*° (M, R)-modules of the space of vector fields X(M) on M onto the space
of 1-forms Q! (M) defined by b(X) = ixdn + n(X)n, then the vector field £ = b~(n) is called the Reeb
vector field. A contact manifold (M, 7) is a Jacobi manifold. In fact, the vector field E is the Reeb vector
field £ and the 2-vector A on M is defined by

A, B) = dn(b~(a),b~ (B)), 3)

forall a, B € Q1 (M).

An almost symplectic manifold is a pair (M, ®), where M is an even dimensional manifold and ® is a
non-degenerate 2-form on M. An almost symplectic manifold is said to be locally conformal symplectic
(Lc.s.) if for each point x € M there is an open neighborhood U such that d(e “®) = 0, for some
function o : U — R (see, for example, [8] and [27]). So, (U, e~?®) is a symplectic manifold. An almost
symplectic manifold (M, ®) is L.c.s. if and only if there exists a closed 1-form w such that d® = w A ®. The
1-form w is called the Lee I-form of M. It is obvious that the 1.c.s. manifolds with Lee 1-form identically
zero are just the symplectic manifolds.

In a similar way that for contact manifolds, we define a 2-vector A and a vector field E on M which are
given by

Ala, B) = @~ (@),07(8)), E=5"(w),
for all a, 8 € QY (M), where b : X(M) — Q(M) is the isomorphism of C°° (M, R)-modules defined
by b(X) = ix®. Then (M, A, E) is a Jacobi manifold.

The contact and l.c.s. manifolds are called the transitive Jacobi manifolds (see [7]).

Now, let (M, A, E) be a Jacobi manifold. Define a homomorphism of C'°(M,R)-modules # :
QY (M) — X(M) by

(#(@))(B) = M, B), O]
fora, B € QY (M).

This homomorphism can be extended to a homomorphism, which we also denote by #, from the space
of k-forms Q% (M) on M onto the space of k-vectors V¥ (M) by putting:

#(f) :fv #(a)(al,._,,ak) = (_1)ka(#(a1)7"'7#(ak))a )

for f € C°(M,R), a € QF(M) and ay, .. ., o, € QH(M).
We also denote by # : U (A*T M) — U (AFT, M) the corresponding vector bundle morphism.

zeEM zeM
If f is a C'*° real-valued function on a Jacobi manifold M, the vector field X ; defined by
Xy =#(df)+ fE (6)

is called the Hamiltonian vector field associated with f. It should be noticed that the Hamiltonian vector
field associated with the constant function 1 is just E. A direct computation proves that (see [21] and [24])

(X5, Xg] = X1} )
Now, for every x € M, we consider the subspace F, of T, M generated by all the Hamiltonian vector

fields evaluated at the point 2. In other words, F, = #,(Ta M) + (E,). Since F is involutive, one easily
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follows that F defines a generalized foliation, which is called the characteristic foliation in [7]. Moreover,
the Jacobi structure of M induces a Jacobi structure on each leaf. In fact, if L, is the leaf over a point z of
M and E, ¢ Im# then L, is a contact manifold with the induced Jacobi structure. If E, € Im#, Ly isa
l.c.s. manifold (for a more detailed study of the characteristic foliation of a Jacobi manifold we refer to [7]
and [8]). If M is a Poisson manifold then the characteristic foliation of M is just the canonical symplectic
foliation of M (see [20] and [30]).

Next, we will recall the definition of the Lie algebroid associated to a Jacobi manifold (see [12]).

Let M be a differentiable manifold. A Lie algebroid structure on a differentiable vector bundle 7 :
K — M is a pair that consists of a Lie algebra structure {, } on the space I'(K) of the global cross

sections of 7 : K — M and a vector bundle morphism p : K — T'M ( the anchor map) such that:
1. The induced map ¢ : (T'(K),{, }") — (X(M),[, ]) is a Lie algebra homomorphism.
2. Forall f € C°°(M,R) and for all 5, 3, € T'(K) one has

{81, f32}" = f{51,52} + (0(51)(f))32. (3

A triple (f{, {, },0)iscalled a Lie algebroid over M (see [23], [25] and [29]).

Now, let (M, A, E) be a Jacobi manifold. In [12], the authors obtain a Lie algebroid structure on the
jet bundle J'(M,R) as follows. It is well-known that if T*M is the cotangent bundle of M, the space
J'(M,R) can be identified with the product manifold K = T*M x R in such a sense that the space

T'(K) of the global cross sections of the vector bundle K = T*M x R — M can be identified with
QY (M) x C=(M,R). Now, we consider on Q! (M) x C (M, R) the bracket { , }~ given by (see [12])

{(a7 f)v (Ba g)}~ = j(£(#(a)+fE)g - ‘C(#(ﬂ)-i-gE)f - A(O‘a /B))
H((L#(a)+7E) — i) (B — dg) — (Lgs)+9m) — iEL)(a — df),0)

9
= (Lyp@)B — Luppa—dA(a,B) + fLeS — gLlpa—ip(aAp), ©)
a(#(8)) + #(a)(9) — #(B)(f) + fE(9) — 9E(f)),
where j : O°(M,R) — Q(M) x C°(M,R) is the prolongation mapping defined by
J(f)=df. f). (10)

We have (see [12])

Theorem 1 Let (M, A, E) be a Jacobi manifold and { , }” the bracket on Q* (M) x C> (M, R) defined by
(9). Then, the triple (T*M x R, {, Y, (#, E)) is a Lie algebroid over M, where (#,E) : T*M x R —
T M is the vector bundle morphism

(#, E)(az, A) = #(ag) + AEq, (11)

for (g, A) € T*(M)xR. Moreover, if we consider on C*° (M, R) the Jacobi bracket then the prolongation

mapping
j:C=(M,R) — QY(M) x C*(M,R), fea(f) =, f) 12)

is a Lie algebra homomorphism.

Remark 1 If f’ = T*M x {0} then the canonical projection F' —3 M defines a vector subbundle of the
vector bundle K = T*M x R — M in such a sense that

forz € M, where K, (respectively, F},) is the fibre of K — M (respectively, F — M) over z. Note
that F' can be identified with Ehe cotangent bundle 7* M and that, under this identification, the restriction
of the anchor map (#, E) to F' is just the vector bundle morphism # : T*M — T M.
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3. H-Chevalley-Eilenberg cohomology, foliated covariant deriva-
tives and prequantization

In this section we will assume that M is a differentiable manifold which satisfies the following conditions:

1. There exists a bracket of functions
{, }:C°WM,R) x C*(M,R) — C=(M,R)
which is R-bilinear, skew-symmetric and satisfies the Jacobi identity.

2. There exists a R-linear map
H:C®(M,R) — X(M), Fe€C®(M,R) = H(f) = X; € X(M)
and
[X5, Xo] = X103 (13)
for f,g € C>*°(M,R).
H(f) = X is called the Hamiltonian vector field associated with f.
If x is a point of M, we will denote by JF, the subspace of T, M defined by

Fo ={Xs(x)/f € C=(M,R)}.

A vector field X on M is said to be tangent to F if X, € F, for all z € M. The space of the vector
fields tangent to F is denoted by X(F).

3. The involutive generalized distribution
zreM — F, CT,M

is completely integrable. Thus, F defines a generalized foliation on M, which is called the charac-
teristic foliation.

3.1. H-Chevalley-Eilenberg cohomology

We consider the cohomology of the Lie algebra (C°°(M,R),{ , }) relative to the representation defined
by the Hamiltonian vector fields, that is, to the representation given by

C*(M,R) x C*(M,R) — C=(M,R), (f,9) = X;(9)-

This cohomology is denoted by Hf; (M) and it is called the H-Chevalley- Eilenberg cohomology associ-
ated to M (see [16, 17, 18, 19] for the case of a Jacobi mamfold) In fact, if C'¥ HC E( ) is the real vector
space of the R-multilinear skew-symmetric mappings c¢* : C*°(M,R) x . - x C®°(M,R) —
C>°(M,R) then

ker{9n : Cop(M) — Chip(M)}

m{0p : Clyop(M) — Clop(M)}
where Oy : Chop(M) — Citip (M) is the linear differential operator defined by

Hfop(M) =

?

r

@Onc)(fo,, fr) = Z(— VX g (" (for o fire oo o f)
+Z D fis fids for s fire e v e o fr)

i<j

(14)
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forc” € Chop(M) and fo,. .., fr € C°(M,R). .
Let I : C°(M,R) — C>°(M,R) be the identity map. We will denote by A to the 2-coboundary

A =09yl

From (14), it follows that
A(f,9) = X5(9) — X4 (f) = {f, g}, (15)

for f,g € C°(M,R).
Using (13) and (14), we obtain the following relation between the de Rham cohomology and the H-
Chevalley-Eilenberg cohomology.

Theorem 2 Let H : QF(M) — Ck (M) be the homomorphism of O (M, R)-modules given by
ﬁ(a)(fla ceey fk) = Oé(H(f1), cee aH(fk)) = a(Xfw e 7ka) (16)

for a € QF(M) and fy,...,fr € C°(M,R). Then H induces a homomorphism of complexes H :
(Q*(M),d) — (Cler(M),0u). Thus, if Hjp(M) is the de Rham cohomology of M, we have the
corresponding homomorphism in cohomology H : Hip(M) — Hyjop(M).

Next, we will show the relation between the F-foliated cohomology of M and the H-Chevalley -
Eilenberg cohomology.

First, we will introduce the F-foliated cohomology of M (for the definition of the F-foliated cohomol-
ogy associated to a regular foliation F on a differentiable manifold, we refer to [9]).

Let QF (F) be the space of the F-foliated k-forms on M. An element o of Q¥ (F) is a mapping

T € M — afz) € AFF?
such that:
1. If x is a point of M, the restriction of « to the leaf L, of F over x is a k-form on L,,.

2. If Xy,..., Xy are C*-differentiable local vector fields defined on an open subset U of M and
X1, ..., Xy are tangent to F in U then the function a( X1, ..., X) : U — Ris C*°-differentiable,
where a(X1, ..., X}) is given by

a(Xy,..., Xp)(2) = alz) (X1 (2), ..., Xe(z)),
forx € U.
We can consider the linear differential operator d : Q¥ (F) — QF+1(F) given by
(d(@))z = (d(yr,))z (17

fora € QF(F) and x € M.
It is clear that d> = 0. This fact allows us to introduce the differential complex

c— L) 2L k() L QFHL(F) — -
The cohomology of this complex is denoted by H*(F) and it is called the F-foliated cohomology of M.

Now, using (13), (14) and (17), we prove the following result which relates the cohomologies H* (F)
and Hy;op(M).
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Theorem 3 Let H(F) : QF(F) — Ok o5 (M) be the homomorphism of C® (M, R)-modules defined by
H(F) @) (fry--os o) = X, oo, Xp,) (18)

fora € QF(F) and fy,. .., fr € C°(M,R). Then H(F) induces a homomorphism of complexes 75[(.7:) :
(Q(F),d) — (Cxop(M),0m) and we have the corresponding homomorphism in cohomology H(F) :
H*(F) — Hyyop(M). Moreover, the following diagram is commutative

H(F
() — ) Hiyop(M)

r(F) H

Hir(M)

where r(F) : Hjp(M) — H*(F) is the canonical homomorphism between the de Rham cohomology of
M and the cohomology H*(F).

3.2. F-foliated covariant derivatives

Let 7 : K — M be a complex line bundle over M. Denote by I'(K) the space of the cross sections of
7m: K — M andby K, = n~(z) the fibre overz € M.

If L, is the leaf of F over # € M then it is clear that the projection mj-1(z,) : ™ (Ly) — Lq
defines a complex line bundle over L,. If y is a point of L,, we will denote by Linc(I'(7~1(L,)), K,) the
space of the C-linear maps of I'(m (L)) onto K.

Definition 1 A F-foliated covariant derivative V on : K — M is a map
V:lJ F= T@e) — | Line(T(n™' (L)), Ka)
zeEM reEM reEM
which satisfies the following conditions:
1. If v € Fp = Ty(Ly) then Vy € Ling(T(n~'(Ly)), Ky) and the map Vipr,) : T(Ly) —

U Ling(T(m~*(Ly)), Ky) is a covariant derivative on m z—1(r,y : 7' (Lg) — L.
yEL,

2. If U is an open subset of M, s : U — K is a C'*°-differentiable local section of m : K — M
and X is a C*°-differentiable local vector field defined in U which is tangent to F, then the map
Vxs:U — K given by

(Vxs)(@) = Vx, (sjyne.)

for x € U, is a C*°-differentiable local section of m : K — M.

Let h be a Hermitian metric on 7 : K — M. A F-foliated covariant derivative V on 7 : K — M is
said to be Hermitian if

v(h(s1,82)) = ha(Vo(81) L., 82(2)) + ha(s1(2), Vo (s2)|L,)

forx € M,v € F, and 31, s2 € I'(K).
It is clear that a (Hermitian) covariant derivative on 7 : K — M induces a (Hermitian) F-foliated
covariant derivative.
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Definition 2 Let 7w : K — M be a complex line bundle over M and NV a F-foliated covariant derivative
onm: K — M. The curvature of V is the mapping Cvy : X(F) x X(F) x I'(K') — T'(K) given by

Cv(X,Y)(S)Z(VXOVy—VYOVX—V[Xy])S. (19)
If z is a point of M, we have that
(Cv(X,Y) )iz, = (CVjrw.y) (XL, YL ) (512,

where CV\T(Lm) is the curvature of the covariant derivative V() On -1z, : 7 YLy) — Ly.
Thus, there exists a globally defined complex F-foliated 2-form 2y such that

Cv(X,Y)(s) = Qv(X,Y)s. (20)

Since the F-foliated 2-form 2y completely determines to the map C'y, we will say also that 0y is the
curvature of V.
Proceeding as in the case of a usual covariant derivative (see, for instance, [14]), we prove

Theorem 4 Let 7w : K — M be a complex line bundle over M. Suppose that V is a F-foliated covariant
derivative on w : K — M with curvature Qv and that HE(F) is the complex F-foliated cohomology of
M. Then:

1. The complex F-foliated 2-form Qv defines a cohomology class in HZ(F).
2. The cohomology class [Qdv] does not depend of the F-foliated covariant derivative.
3. If h is a Hermitian metric on w : K — M and V is a Hermitian F-foliated covariant derivative
then Qv is purely imaginary.
3.3. Prequantization

For a complex line bundle 7 : K — M over M we will denote by End¢(T'(K)) the space of the C-linear
endomorphisms of I'(K’). Then, we introduce the following definition.

Definition 3 A complex line bundle m : K — M over M is said to be a prequantization bundle if
{f,.g}=Ffog—gof f,9€ C*(M,R) 2n

with f € Endc(T(K)) defined by

s €T(K)— f(s) = Vx,s+2mifs, (22)

where V is a F-foliated covariant derivative on w : K — M. The manifold M is said to be quantizable
if there exists a prequantization bundle 7 : K — M over M.

Let A be the 2-coboundary in the H-Chevalley-Eilenberg complex given by (15) and let H(F) :
Q*(F) — C% (M) be the homomorphism defined by (18).
From (13), (19), (20), (21), (22) and Definition 1, we deduce

Lemma 1 The manifold M is quantizable if and only if there exist a complex line bundle w : K — M
over M and a F-foliated covariant derivative V on m : K — M such that the curvature Qy of V is
purely imaginary and

ﬁ(}')(%ﬂv) =A.

Next, we will obtain another characterization. For this purpose, we recall the following result.

72



On the geometric prequantization of brackets

Theorem 5 [14] (i) If 7 : K — M is a complex line bundle over M, h is a Hermitian metric on
7 K — M and V is a Hermitian covariant derivative then the curvature Q¢ of V is purely imaginary

and Q) = LWQ@ is an integral closed 2-form.

(ii) If QY is an integral closed 2-form then there exist a complex line bundle w : K — M over M, a
Hermitian metric on w : K — M and a Hermitian covariant derivative V with curvature (d¢ such that

)
0=—0¢.
2 v

Now, if H : Q*(M) — C% (M) is the homomorphism given by (16) and 8y is the H-Chevalley-
Eilenberg cohomology operator (see (14)) then, using Lemma 1 and Theorems 3, 4 and 5, we prove

Theorem 6 The manifold M is quantizable if and only if there exist an integral closed 2-form Q on M
and a F-foliated 1-form o such that

H(Q) = A+ 0u(H(F)(a)) = 0u (I + H(F)(a)).

4. H-Chevalley-Eilenberg cohomology, Lie algebroids and pre-
quantization

Let M be a differentiable manifold as in Sec}ion 3. Moreover, we will assume that there is a Lie algebroid
7 : K — M over M with anchor map ¢ : K — T'M which satisfies the following conditions:

1. If F(IN{ ) is the space of the cross sections of 7 : K — M then there exists a Lie algebra homomor-
phism j : C°°(M,R) — T'(K) such that g o j = H.

2. Forallz € M

where K, = 7#~(z) is the fibre over € M.

3. Forall z € M we have that j(1)(z) # 0. Furthermore, there is a vector subbundle 7 : F — M of
7 : K — M such that

We will denote by { , }"the Lie bracket on I'( X') and by
#:F—TM
the restriction to F of the anchor map ¢ : K —s T'M. We also will denote by # : T(F) — X(M) the

induced homomorphism between the cross sections of 7 : F — M and the vector fields on M.

4.1. Lie algebroids and H-Chevalley-Eilenberg cohomology

In this section, we introduce a cohomology associated to the Lie algebroid and we study the relation between
this cohomology and the H-Chevalley-Eilenberg cohomology (for a detailed study of the cohomologies
associated to a Lie algebroid we refer to [23]).

We consider the cohomology of the Lie algebra (T'(K),{ , }") relative to the representation of T'(K)
on C*(M,R) defined by

D(K) x C*(M,R) — C*(M,R), (3, 1) = 0(3)(f)-
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This cohomology is denoted by H*(T'(K); C* (M, R)). Therefore, if Ck( ( ) (M, R)) is the real

vector space of the R-multilinear skew-symmetric mappings R* : T'(K) x. xT(K) — C=(M,R)
then

ker{d : C*(T'(K); C®(M,R)) — CHY(T(K); C°(M,R))}

k Y. (100 =
O e R) = o Grt(0(R); 0 (M, R)) — OHD(R), 0= (M, R))}

where 8 : C"(T'(K); C®(M,R)) — C™t(T(K); C*®(M,R)) is the linear differential operator defined
by

T

(OR")(30,-- ,3) = Z(—l)ig(gi)<RT(§o,--- J5i 5 8n)

+Z 1+JRT {8278]} 807"'7§i7"'7§j7"'757‘)

i<j

(23)

for 3y, ..., 8, € T(K).

Next, we will obtain some relations between the cohomology H*(T'(K); C°° (M, R)), the F-foliated
cohomology and the de Rham cohomology.

We will denote by r(F) : QF(M) — QF(F) the canonical homomorphism between ¥ (/) and the
space of the F-foliated k-forms on M.

Using (17), (23) and the fact that ¢ : T(K) — X(M) is a Lie algebra homomorphism, we deduce

Theorem 7 1. Let §(F) : QF(F) — C*(D(K); C°°(M,R)) be the homomorphism of C*°(M,R)-
modules defined by

(@(F)(@)

fora € QF(F) and 34, ... ,5, € T(K , 8(F) induces a homomorphism of complexes g(F) :
(Q(F),d) — (C*(T(K ) (M, R)), ) Thus, we have the corresponding homomorphism in
cohomology 9(F) : H*(F) — H*(T(K); C>=(M, R)).

($1,...,8k) = a(081, ..., 05k), 24)
)- T

2. Let § : Q¥(M) — CH(D(K); C°°(M,R)) be the homomorphism of C°°(M,R)-modules defined
by

0=0(F) or(F). (25)

Then § induces a homomorphism of complexes § : (0*(M),d) — (C*(T'(K); C*(M,R)),d) and
thus we have the corresponding homomorphism in cohomology

¢ Hjp(M) — H*(D(K); C*(M,R)).

Now, if H(F) : H*(F) — H}yop (M) (respectively, H : Hip(M) — Hiyop(M)) is the canonical
homomorphism between the F-foliated cohomology (respectively, the de Rham cohomology) and the H-
Chevalley-Eilenberg cohomology (see Theorems 2 and 3) then, using (14), (23), (24), (25) and the fact that
j : C°(M,R) — T'(K) is a Lie algebra homomorphism, we prove

Theorem 8 Letj : CH(T(K); C=(M,R)) = Ck (M) be the homomorphism of C® (M, R)-modules
given by

JERY (frs- oo fr) = REG(f1)s - 5(Fr)) (26)
for R¥ € g’k(F(K) C®(M,R)) and fi,..., fr € C®(M,R). Then, J induces a homomorphism of
complexes j : (C*(T'(K); C>= (M, R)),0) — (Cicp(M),0m) and thus we have the corresponding

homomorphism in cohomology j : H*(T(K); C=(M,R)) — H}o5(M). Moreover; the following dia-
gram is commutative
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— Hir(M)

4.2. Lie algebroids and derivatives on complex line bundles

Let 7 : K — M be a complex line bundle over M. Denote by I'(K) the space of cross sections of
m: K — M, by K, = 7—1(x) the fibre over z € M and by Lin¢(T'(K), K;) the space of the C-linear
maps of I'(K') onto K.

Definition 4 A T'(K)-derivative D onw : K — M isamap D : K — U Linc(T(K), K ) which
zeEM
satisfies the following conditions:

1. If3, € K, then D, € Linc(T(K), K,).
2. The map D - K, — Linc(T(K), K,) is R-linear.
3 Fori,eK,, fe C>®(M,R) and s € T(K), we have
Ds, (fs) = 0(32)(f)s(x) + f(2)Ds, 5.

4. If s € I(K), U is an open subset of M and 3 : U — K is a C*®-differentiable local section of

7 : K — M then the map Dzs : U — K given by

(D3zs)(x) = Dj()s,
for x € U, is a C™-differentiable local section of m : K — M.

Let A be a Hermitian metric on 7 : K — M. A T'(K)-derivative D on w : K —» M is said to be
Hermitian if
0(82)(h(s1,52)) = ha(Ds, 51, 52(x)) + ha(s1(2), Ds, 52) 27
forz € M, 3, € K, and s1, 82 € T(K).
If V is a (Hermitian) JF-foliated covariant derivative on 7 : K — M and we put

ngS = Vg(ém)(lem)

for 5, € K, and s € T(K), we obtain a (Hermitian) ' (K )-derivative.

Definition 5 Let 7w : K — M be a complex line bundle over M and D a T (K)-derivative on : K —

)
M. The curvature of D is the mapping Cp : T'(K) x I'(K) x I'(K) — ['(K) given by
Cp(31,82)(s) = (D3, © D5, — D5, © D5, — D3, ,5,)7)(8) (28)

for 31,82 € I'(K) and s € T'(K).
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Using (8), (28), Definition 4 and the fact that p : I'(K) — X(M) is a Lie algebra homomorphism, we
deduce that C'p is trilinear over C*° (M, R) and that

CD(§1, 52)(8) = —CD(§2, §1)(8)

Thus, we have that there exist two C° (M, R)-bilinear skew-symmetric mappings (Rp); : ['(K) x
I'(K) — C>®(M,R), j = 1,2, such that

Cp(31,52)(s) = (Rp)1(51,532) + i(Rp)2(51, $2))s. (29)

We remark that (Rp); and (Rp)s induce two cross sections of the vector bundle A2K* — M.

We will denote by Rp : T'(K) x T'(K) — C°°(M, C) the map defined by
Rp(31,32) = (Rp)1(31,32) + i(Rp)2(581, 32).

Since Rp completely determines to C'p, we will say also that Rp is the curvature of D.
Now, we can extend by linearity the operator O to the space C*(T'(K); C*° (M, C)) given by

CHI(K);0>®(M,C)) = {R*":T(K)x..*...xT(K)— C>(M,C)/ R*is

R-multilinear and skew-symmetric }.
In fact, if R* = R¥ + iRk € C*(D(K); C* (M, C)) we define
OR* = ORY + idRS.

It is clear that 82 = 0 and, therefore, we obtain the corresponding cohomology which will be denoted by
H*(T(K); C>(M, 0)).

Moreover, using (23), (27), (28), Definition 4 and proceeding as in the proof of Theorem IV.3 in [19],
we conclude

Theorem 9 Let 7w : K — M be a complex line bundle over M. Suppose that D is a T'(K)-derivative on
7 : K — M with curvature Rp. Then:

1. Rp defines a cohomology class in H*(T'(K); C*°(M, C)).

2. If D is another [(K)-derivative on @ : K —s M, there exists a C°°(M,R)-linear mapping
Pp_py: I'(K) — C*(M,C) such that

RD - RD = 6(P(1_37D))
In particular, [Rj] = [Rp].

3. If h is a Hermitian metric on ™ : K — M and D is a Hermitian T'(K)-derivativeonm : K — M
then Rp is purely imaginary.
4.3. Prequantization

Let 7 : K — M be an arbitrary complex line bundle over M.

In this section, we will assume that a I'( K')-derivative D on 7 : K — M always satisfies the following
conditions:

(C1) If Xy (z) = O then Dj(1y(z)s = 0, forall s € T'(K).
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(C2) If Xy () # 0 and there exists 5, € F}, such that #(3,) = X (z) then
Ds.s = Djq)@)s

forall s € T'(K).

Note that if V is a F-foliated covariant derivative on 7w : K — M and D is the ['( K)-derivative defined by
Ds,s = V() (5L.)

for3, € Ky and s € ['(K), then D satisfies the above conditions.
Next, we will introduce a new definition of prequantization bundle for the manifold M.

Definition 6 A complex line bundle m : K — M over M is said to be prequantization bundle if
{f,g}=Ffog—gof f,9€ C*(M,R) (30)

with f € Endc (T'(K)) given by

~

s € I(K) > f(s) = Djps +2mifs, 31)

where D is a T'(K)-derivative on m : K — M. The manifold M is said to be quantizable if there exits a
prequantization bundle m : K — M over M.

Itis clear that if M is quantizable in the sense of Section 3.3 (see Definition 3) then M is also quantizable
in the ab_ove sense. However, in general, the converse is not true.
Let A be the 2-coboundary in the H-Chevalley-Eilenberg complex given by (15) and let

J: C*(T(K); C*(M,R)) — Chcp(M)

be the homomorphism defined by (26).
Using (28), (29), (30), (31), Definition 4 and the fact that j is a Lie algebra homomorphism, we deduce

Lemma 2 The manifold M is quantizable if and only if there exist a complex line bundle m : K — M
over M and a T'(K)-derivative D on 7 : K — M with curvature Rp = (Rp)1 + i(Rp)2 such that

H(RpN =0, j(5-(Rp)) = —A.

Now, if H : Q*(M) — C% o (M) is the homomorphism given by (16) then, proceeding as in the proof
of Theorem V.2 of [19] and using (23), Lemma 2, Theorems 5, 8 and 9 and the fact that g is a Lie algebra
homomorphism, we conclude

Theorem 10 The manifold M is quantizable if and only if there exist an integral closed 2-form 2 on M
and a cross section 5* of the dual bundle 7* : K* — M such that:

1. If P:T(K) — C®(M,R) is the C*®° (M, R)-linear map induced by 3* then
H(Q) = A+0n(j(P)) = 0n(I +j(P)).
2. Ifz is a point of M and (X1)(x) = 0 then §*(z)(j(1)(z)) = 0.
3. Ifx is a point of M such that (X,)(x) # 0 and #(3,) = X1(x), with 5, € F,, then 5 (2)(3,) =
§%(x)(j (1) (@))-
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5. The particular cases: Jacobi and Poisson manifolds

Let (M, A, E) be a Jacobi manifold and { , } the Jacobi bracket.
Suposse that (C;o (M), Or) is the H-Chevalley-Eilenberg complex associated to M. Using (2), (4),
(6) and (15), we deduce that

A(f,9) = (OuI)(f,9) = A(df,dyg), f,9€C®(M,R). (32)

Next, we will recall the definition of the Lichnerowicz-Jacobi cohomology (see [18] and [19]).

A k-cochain c® € C¥, (M) is said to be 1-differentiable if it is defined by a linear differential operator
of order 1. If V"(M) is the space of r-vectors on M then we can identify the space V¥(M) @ V¥~1(M)
with the space of all 1-differentiable k-cochains C?ICEkdiff(M) as follows: define j, : V¥(M) @

VE=1(M) — C¥ (M) the monomorphism given by

k
iR(PQ)(f1y- s i) = P(fr, . dfi) + > (=1 f,Q(dfr, - dfy, - df)- (33)

q=1

Then j, (V¥ (M) @ V¥="(M)) = Clopyaiy; (M) which implies that the spaces V(M) @ VA~ (M)
and CI’“JCEl_diff (M) are isomorphic. Note that (see (32) and (33))

A =0nI = jy(A,0). (34)

On the other hand, using that { , } is a linear differential operator of order 1, we deduce that ouP €
O?{+C’1E1—diff (M), for P € C’ﬁlcmid”f (M). Thus, we have the corresponding subcomplex

(Chepi—aips (M), aHIC}}cm—diff (m))

of the H-Chevalley-Eilenberg complex whose cohomology H ;¢ g1 _ g5 ¢ (M) will be called the 1-differentiable
H-Chevalley-Eilenberg cohomology of M. Moreover, we obtain that (see [18, 19])

Ou(jx(P,Q)) = jrt1(ors(P,Q)) (35)

where
ULJ(PaQ) = (—[A,P]+kE/\P+A/\Q,[A,Q]—(k—].)E/\Q-}-[E,P]). (36)

This last equation defines a mapping or.y : V¥(M) & VE~1(M) — VEFL(M) & VE(M) which is in
fact a differential operator that verifies 02 ; = 0. Therefore, we have a complex (V*(M) @ V* Y (M),o1s)
whose cohomology will be called the Lichnerowicz-Jacobi cohomology (LJ-cohomology) of M and denoted
by Hj ;(M) (see [18, 19]).

Note that the mappings jj, : VE(M) & VE"1(M) — Ckp(M) given by (33) induce an isomor-
phism between the complexes (V*(M) & V* (M), or.7) and (Crop1 _aig s (M), OH|Ch ey aiyg (M) and
consequently the corresponding cohomologies are isomorphic. Furthermore, from (36), we obtain that

ULJ(Oal) = (A,O) 37
Now, if M is a Poisson manifold (E = 0), it follows that (see (36))
O'LJ(Pv(]) = (—[A,P],O) (38)

for P € V¥(M). Thus, we deduce that the linear differential operator ozp : V¥(M) — V¥HL(M)
defined by
orp(P) = —[A, P] (39)
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satisfies the condition 02 , = 0. This fact allows us to consider the differential complex (V*(M),opp).
The cohomology of this complex is the Lichnerowicz-Poisson cohomology (LP-cohomology) associated to
M and it is denoted by H (M) (see [20] and [29]).

Next, we will obtain the relation between the F-foliated cohomology of a Jacobi manifold (M, A, E)
and the LJ-cohomology.

Denote by # : QF(M) —s V¥(M) the map given by (4) and (5) and let # : Q% (M) — VF(M) @
VE+1(M) be the homomorphism of C*° (M, R)-modules defined by

#(a) = (#(a), —#(ipa)) (40)
for a € Q¥(M). In [19] (see also [18]), we prove that
#od=—opso#. 41)

This implies that the mappings # : QF(M) — V¥(M) & VE~1(M) induce a homomorphism of com-
plexes # : (Q*(M),d) — (V*(M) & V*"'(M),—or) and, thus, a homomorphism in cohomology
#: Hjp(M) — Hy ;(M) (see [18, 19]). In fact, using (4), (5), (6), (33) and (40), we have that

ko # = (=1)*#H, (42)

H : Q¥ (M) — C% 5 (M) being the map given by (16).

On the other hand, if QF(F) is the space of the F-foliated k-forms on M and r(F) : QF(M) —
QF (F) is the canonical homomorphism, it is clear that there exists a homomorphism of complexes #(F) :
(Q*(F),d) — (V*(M) & V*~Y(M), —ors) such that the following diagram is commutative

h(F
Q*(F),d) ) (VM) @ V*=1(M),~0orr)
T(f\ /#
(Q*(M),d)

In fact, if #(F) : Q¥ (F) — V¥(M) is the homomorphism of C*° (M, R)-modules defined by

#F)H =1 FFE) ) (a,...,a0) = (D) aF(@), ..., #(ax) 43)

for f € C°(M,R), a € QF(F) and ay, ..., ar € Q' (M), then

#(F)(@) = #(F)(a), —#(F)(ipa)). (44)

Thus, from (6), (33), (43) and (44), we deduce that

k0 #(F) = (-1)*H(F), (45)

where H(F) : Q¥(F) — CF o5 (M) is defined by (18).
Therefore, using (35) and Theorem 3, we conclude that

#(F)od=—or50#(F).

Consequently, for the corresponding homomorphisms in cohomology, we obtain the following commu-
tative diagram
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Hp(M)

In the particular case when M is a Poisson manifold, using the above results, we prove that the mappings
#(F) : QF(F) — V¥(M) induce two homomorphisms of complexes

#: (Q°(M),d) — (V*(M),—orp), #(F) : (O (F),d) — (V*(M),—orp)
which satisfy the conditions
#(F)or(F)=#, jro#=(-D"H, jxo#(F)=(-1"H(F).

Next, we will give necessary and sufficient conditions for a Jacobi manifold M to be quantizable in the
sense of Section 3.3 and in the sense of Section 4.3.

5.1. Prequantization bundles in the sense of Section 3.3
From (34), (35), (37), (42), (43), (44), (45) and Theorem 6, it follows

Theorem 11 Let (M, A, E) be a Jacobi manifold. Then, M is quantizable if and only if there exist an
integral closed 2-form 2 on M and a F-foliated 1-form a such that

#(Q) = oLy (#(F)(a),1 - a(E)).
Using Theorem 11, we deduce

Corollary 1 Let (M, A) be a Poisson manifold. Then, M is quantizable if and only if there exist an integral
closed 2-form Q on M and a F-foliated 1-form o such that

#(Q) = A+ orp(#(F) ().

Now, we will study the case of a transitive Jacobi manifold M (F, = T, M, for all x € M).
We distinguish the following cases:

1. Symplectic manifolds: Let (M, Q) be a symplectic manifold and A the Poisson bivector. Then the
mapping # : Q¥ (M) — V*(M) is an isomorphism of C* (M, R)-modules and #(£2) = A. Using
these facts and Corollary 1 we recover the result of Kostant and Souriau (see [14, 26]), that is, M is
quantizable if and only if {2 is integral.

2. Locally conformal symplectic manifolds: 1f a Jacobi manifold is quantizable in the sense of Section
3.3 then it is also quantizable in the sense of Section 4.3. Using this fact and the results of [19], we
conclude that a l.c.s. manifold is quantizable if and only if it is a quantizable symplectic manifold.

3. Contact manifolds: Let (M, n) be a contact manifold. Then, from Theorem 11, we obtain that M is
quantizable (it is sufficient to take 2 = 0 and a = 7).
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5.2. Prequantization bundles in the sense of Section 4.3

Let (K,{ , }",0) be the Lie algebroid associated to a Jacobi manifold M. Then, K = T*M x R (see
Section 2) and thus a cross section §* of the dual bundle 7* : K* — M can be identified with a pair
(X, f) € £(M) x C*®(M,R) in such a way that the corresponding C'*° (M, R)-linear map P : T(K) —
C>°(M,R) is given by } o
P(a,g) = a(X) + 13, (46)
for (&,§) € T(K) = Q' (M) x C*(M,R).
Therefore, if j : C1(T(K); C*(M,R)) — Ckcp(M) is the homomorphism defined by (26) then,

from (10), (33) and (46), we obtain that j(P) is the linear differential operator of order 1, j; (X, f). Using
these facts, (34), (35), (37), (42) and Theorem 10, we deduce a result which has been proved in [19].

Theorem 12 [19] Let (M, A, E) be a Jacobi manifold. Then, M is quantizable if and only if there exist
an integral closed 2-form Q, a vector field A and a real differentiable function f such that:

1 #(Q) =ors(4 f).
2. If x is a point of M and E, = 0 then f(x) = 1.

3. If x is a point of M and oy is a 1-form at x such that E, # 0 and #(ay) = E, then f(x) =
oz (Ag) + 1.

From Theorem 12, it follows a result of Vaisman [28].

Corollary 2 [28] Let (M, A) be a Poisson manifold. Then, M is quantizable if and only if there exist an
integral closed 2-form Q2 and a vector field A such that

#(Q)=A+o0orp(A) = A - LaA.
Finally, for the transitive Jacobi manifolds we obtain the same results that in Section 5.1 (see [19] for
more details).
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