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On the uniform limit of quasi-continuous functions

B. Rodriguez—Salinas

Abstract. We study when the uniform limit of a net of quasi-continuous functions with values in a
locally convex space X is a quasi-continuous function, emphasizing that this fact depends on the least
cardinal of a fundamental system of neighbourhoods of 0 in X, and giving necessary and sufficient
conditions. The main result of the paper is Theorem 15, where the results of [7] and [10] are improved,
in relation with a Theorem of L. Schwartz.

Sobre el limite uniforme de funciones cuasi-continuas

Resumen. Estudiamos cuando el limite uniforme de una red de funciones cuasi-continuas con va-
lores en un espacio localmente convexo X es también una funcién cuasi-continua, resaltando que esta
propiedad depende del menor cardinal de un sistema fundamental de entornos de 0 en X, y estableciendo
condiciones necesarias y suficientes. El principal resultado de este trabajo es el Teorema 15, en el que los
resultados de [7] y [10] son mejorados, en relacién al Teorema de L. Schwartz.

In general, we shall work with a measure space (Q, X, i) where 2 is a topological space, the o-algebra
Y. contains the Borel sets of 2 and u(2) = 1. Suppose that X is a locally convex Hausdorff space.

We say that a function f :  — X is quasi-continuous if the set of points D where f is not continuous
has outer measure p*(D) = 0.

A function f : Q — X is said to be Lusin measurable if for any € > 0, there is a closed set F' C 2 such
that (2 \ F') < ¢ and the restriction f| is continuous.

We shall use the following axiom:
Axiom L The interval [0, 1] cannot be covered by a family (F;);c1 of closed subsets of Lebesgue measure
zero where the cardinal of I is less than the continuous c.

Then, according to [11,1-6-4], we have:

Proposition 1 Let 2 be a compact metrizable space, and let | be a Radon measure on ). Then Axiom L
implies that the union of a family (F;);cr consisting of closed sets of measure zero such that card(I) < ¢
does not cover any set of positive measure.

Theorem 1 Assume Axiom L in the conditions of Proposition 1. Let X be a locally convex space with a
base of neighbourhoods (Va)aca of zero such that card(A) < c. Let (f;)ic1 be a net of quasi-continuous
Sunctions f; : Q@ — X, converging uniformly to f. Then, if C is the set of points where f is continuous, we
have p*(C) = 1.
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PROOF. It is obvious that if X is a metrizable space, then f is quasi-continuous. In the general case, we
can suppose, using [8,5.4], that X is the product II,c 4 X, of a family of Banach spaces. Let 7, be the
projection X — X, and w,, the oscillation function of 7, o f; then 74 o f is quasi-continuous. Let

Gan={r€Q:ws(z) <1/n}.

Then, since w, is upper semicontinuous, G, is an open set of measure ;4(G,n) = 1. By Proposition 1,
the union (J,, A,nEN(X \ Gq,n) does not cover any set of positive measure. Hence, its inner measure is

zero and
() Gam) =1
a€EA,nEN

To finish, it suffices to note that C' = naEA nenGan- B

It is also useful to consider the following axiom:
Axiom M [f(A;)icr is a family of subsets of[0, 1] with Lebesgue measure zero and such that card(I) < ¢,
then the union of the A;’s has measure zero.

According to [11,1.6.2], we have:

Proposition 2 Assume Axiom M and suppose that (2, 3, p) is a probability space, where % is countably
generated. Then, if (A;)icy is a family of subsets with measure zero and such that card(I) < ¢, we have
that the union also has measure zero.

Theorem 2 Assume Axiom M in the conditions of Proposition 2. Let X be a locally convex space with a
base of neighbourhoods (Vo) aea of zero such that card(A) < c. Let (f;)ic1 be a net of quasi-continuous
Sfunctions f; : @ — X, converging uniformly to f. Then f is quasi-continuous.

PROOF. We just have to proceed as in Theorem 1 , using Proposition 2 instead of Proposition 1. ll

Remark 1 InTheorems 1 and 2, if 2 is a (T} )-space and the measure y is diffuse, we have that card(Q2) > ¢

> card(A). As we shall soon see, these theorems do not hold if Q = [0, 1], p is the Lebesgue measure and
card(A) =c.

Theorem 3 Let Q = [0,1], u the Lebesgue measure on Q@ and X = RA with card(A) = c. Then, there
exists a function f : Q — X which is the uniform limit of a net of quasi-continuous functions, which is not
continuous at any point and having the property that any restriction f|g (H C Q) is continuous only on
the countable set consisting of the isolated points of H. Hence, f is not Lusin measurable. Moreover, for
any set H C ), there exists an open set G C X such that f ~1(G) = H and f is not Borel measurable,
but it is weakly measurable and its Pettis integral [ fdy is zero.

PROOF. We can assume that A = Q. Let f = (Xy)aeca, where Xy (z) = 1 for ¢ = a and X, (z) = O for

x # a. The function f : @ — X is nowhere continuous but it is the uniform limit of a net ( f;);c1, where

every ¢ € [ is a finite subset of €2, I is ordered by inclusion and 7 o f; = X, forany @ € i and g0 f; =0

for any « ¢ i, which implies that every function f; is quasi-continuous. Moreover, let H be a subset of 2,

then the restriction f| is continuous only on the countable set that contains the isolated points of H.
Finally, if U = (0,2) and U,, = 7, }(U), we have

F7HU0a) = 271 (U) = e,

and hence G = |J U, is an open subset of X such that

1@ =0, W) =1

In addition, for any * € X*, since by [3,Proposition 3.14.1] 2* o f vanishes outside a finite set, it follows
that z*of is zero almost everywhere in 2 and hence, the Pettis integral [ fdu is zero. W
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Remark 2 We can choose I to be the lattice consisting of the countable subsets of 2. In this case, for any
sequence (i) in I, there exists i = | Jj o ik > in foralln € N.

We can prove in a similar fashion the following theorem:

Theorem 4 Let Q = A be a (Ty)-topological space, i a diffuse probability measure on Q and X = RA.
Then there exists a function f : 8 — X which is the uniform limit of a net of quasi-continuous functions,
and having the property that any restriction f|g is continuous only on the set of isolated points of H, and
that for every subset H C O, there exists an open subset G C X such that f~*(G) = H. Therefore,
if the set of isolated points of Q) has measure less that 1, f is not quasi-continuous and if there exists a
non-measurable set H, f is neither Borel measurable nor Lusin measurable.

Remark 3 If card(?) is of measure zero, the measure of the set consisting of the isolated points of €2 has
u-measure zero and there is a non-measurable set in Q. According to [5,2.5], the same happens if card(Q)
is not measurable and p is a perfect measure. We also have that if p is a 7-additive measure, the set of
isolated points of {2 has measure zero. Since the same holds for every subset H of (2 and the induced
measure g, f is not Lusin measurable.

A set is said to be a (D)-set if it is the set D(f) of the discontinuity points of a function f : @ — R. It
is clear that any (D)-set is an F,-set.

It is obvious that the set which contains all the discontinuity points of a function f = (fa)aca : Q@ —
X =R*is U,c4D(fa)- Then we have:

Theorem 5 [f X = R4, then for any quasi-continuous function fo : Q = R, the function f = (fo)acA :
Q — X is quasi-continuous if and only if the union of any family (Do )aca of (D)-sets of measure zero,
has outer measure zero.

Theorem 6 Suppose that the support of u is Q and that X is an arbitrary locally convex space having a
base (Vo) aca of neighbourhoods of zero. Let f : Q@ — X be the uniform limit of a net of quasi-continuous
functions. Then f is quasi-continuous if and only if any union | ) ,¢ 4 Fo of closed sets of Q) having measure
zero, has outer measure zero.

PrROOF. Sufficiency follows as in Theorem 1. Necessity follows from Theorem 5 taking into consideration
that if F is a closed set with measure zero, then int(F) = @, and hence, D(XF) = F. In this last step we
have used the fact that supp(p) = Q. H

Remark 4 Theorem 6 can be extended to any 7-additive measure f.

If (Fy)aca is a family of closed sets having u-measure zero, such that

(| Fa) >0,

aEA

and card(A) is of measure zero, then if we suppose that A is well ordered and we set Ay = Fo \Ug, F5.
we can easily see that f = (X4_)aca : @ = X = R4 is a non-measurable Borel function which is the
uniform limit of quasi-continuous functions. This result holds as well, according to [5,2.5], if p is a perfect
measure and card(A) is not measurable. On the other hand, if 2 is endowed with the discrete topology,
every function f : Q@ — X is continuous. But if y is a diffuse measure, the latter is equivalent to the fact
that card(f2) does not have measure zero.

It is easily checked that if kK = k(u) is the least cardinal of the sets A having the property that
1 (Uaeca Fa) > 0 for a family (F,)aeca of closed sets of measure zero, then & is not the supremum
of a sequence of cardinals less than «, which is obviously less than or equal to card(Q2) if Q is a (T})- space
and p is a diffuse measure. Axiom M implies that () = ¢ for the Lebesgue measure g on 2 = [0, 1], and
this in turn implies Axiom L.

We say that a cardinal is primary if it is not the supremun of a sequence of cardinals less than itself.
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Corollary 1 There exists a Radon measure ji and a function f : Q@ — X = R™ that is not quasi-
continuous nor Borel measurable and yet it is the uniform limit of a net of quasi-continuous functions.

PROOF. It turns out from Theorem 6 by taking into consideration that, according to Haydon [2,15.1], there
exists a Radon measure p for which the union of X; closed sets of measure zero may be not measurable. l

In the same way as in Theorem 6 but in the same direction as Theorem 1, we can give a necessary
and sufficient condition in order that u*(C) = 1 for the set C' consisting of the continuity points of every
function f : Q@ — X which is the uniform limit of a net of quasi-continuous functions.

Theorem 7 If (0, %, u) verifies pa(Uqe 4 Fo) = 0for every family (Fy)ac a of closed subsets of measure
zero with card(A) < k, then there exists a probability space (2, X!, v) such that v is an extension of i and
k(v) > k.

PROOF. We can assume that k > Ng. Let H be the set consisting of the unions UaeA F, and

v'(E) = jnf w*(E\H) (ECQ).

First of all, we are going to prove that #* is an outer measure. Indeed, for every € > 0 and E,, C 2 there
exists an Hy, € H (n € N) such that

v (En) + 627" > p* (En \ Hp),

and therefore

from which it follows that

Let (E,) be a disjoint sequence in ¥ and take M C 2. Then, for every ¢ > 0, there exists an H € H
such that

v (M| JEn) +e>p (M| JEn\ H)
=> w(MNE,\H)

>> v (MNE,),

and therefore
v (M N JEy) = Spv* (M N Ey).
n

From the latter, it turns out that the restriction of v* to the o-algebra &' O ¥ consisting of the v*-measurable
sets, is a measure v, which is an extension of y since ¥(B) = u(B) for every set B € X. Then, since
v*(H) = 0 for every H € H, it follows that k(v) > . B

A slight change in the previous proof allows us to prove the following theorem:

Theorem 8 If (2, X, i1) has the property that pi.(Uyc 4 Fa) = 0 for every family (Fy)aca of closed sets
having measure zero with card(A) < k and k being a primary cardinal, then there exists a probability
space (2, X' v) such that v is an extension of p and k(v) > k.
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Corollary 2 From axiom L it follows that for every cardinal k < c there exists a probability measure i
on Q = [0, 1] which is the extension of the Lebesgue measure and such that k(p) > k. If ¢ is not primary,
k(p) < ¢ holds for such measures, and if ¢ is primary, we can say that k(u) = c for one of them.

Theorem 9 If i is a regular measure and there exists a measurable function f : Q — R such that po f 1
is a diffuse measure, we have that k(u) < c.

PROOF. Since p is a regular measure, by Lusin’s theorem there exists a closed set ' C  of positive
measure such that the restriction f|r is continuous. Then, if F,, = f~!(a) ) F for a € R, we have that
every I, is a closed set of measure zero and p(|J,cp Fo) = u(F) > 0. 1

Remark 5 According to a theorem of Zink [5,2.2], if u is a separable measure, there is a measurable
function f : © — [0,1] such that o f~1 is the Lebesgue measure. Similarly, by [5,2.1], if x4 is a non-
atomic measure, there exists a measurable function f : © — [0,1] such that o f~! is the Lebesgue
measure.

Corollary 3 If u is a regular non-atomic measure, then k(u) < c.

Remark 6 If 4 is an atomic measure then it can trivially happen that u(UyecaFy) = 0 for every family
(Fu)aca consisting of null-measure sets.

If p is a diffuse probability measure on a metric space {2 whose density character is non-measurable
then, according to [6], p is a non-atomic measure, and hence, x(u) < c.

Theorem 10 [fQ is a completely regular Hausdorff space and p is a weakly T-additive measure such that
Jorevery x € Q and every € > 0 there exists an open neighbourhoodV of x with u(V') < ¢, then r(u) < c.

PROOF. Let A be the restriction of u to the o-algebra Ba(f2) of the Baire subsets of €. If there were an
atom B of X then there would also exist a closed atom F' C B of A. Hence, by the assumption above, for
each z € F there exists an open neighbourhood V,, € Ba(Q2) such that \(V, N F) = 0. Let F,, = F\ 'V,
(e Ba(f)), then NyecrF, = 0, from which it follows (taking into account the fact that u is a weakly
T-additive) that there is a sequence (Fy,) such that A(N,F;,) = 0, and this contradicts the fact that
A(Fy,) = A(F) > 0. Therefore A is a non-atomic measure and, according to [5, 2.1], there exists a \-
measurable function f : @ — [0, 1] such that A o f~! is the Lebesgue measure. From this it immediately
follows, as in Theorem 9, that k(i) < k(A) < c. B

Remark 7 The property that for every € Q and € > 0 there exists an open neighbourhood V' of z such
that (V') < ¢ is equivalent to saying A*({z}) = 0 for every = € Q. In general, being 2 a Hausdorff space,
Yoo N ({z}) < () and, if Y0 o A*({x}) < p(9), then it follows from the remaining conditions of
Theorem 10 that k(1) < c. From this it turns out that x(u) < ¢ whenever Q is a compact infinite Hausdorff
group and  is invariant under left translations.

If u is a diffuse measure then the function X, (w € ) is Lusin measurable if and only if A*({w}) = 0.

Theorem 11 If Q is a completely regular Hausdorff space and y is a weakly T-additive measure such that
its support S is not separable then k(u) < c.

PROOF. Let \ be the restriction of i to Ba(2) and H the closure of the countable set {z € Q : \*({z}) >
0}. Since S is non-separable, we have S\ H # () and u(2\ H) > 0 and there exists a closed set F' € Ba ()
with positive measure A(F') > 0 which is disjoint from H. Then, by applying Theorem 10 to the induced
measure pp it turns out that x(u) < k(ur) < c. i
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Remark 8 If 2 is a compact Hausdorff space and p is a diffuse measure with separable support, the
question comes down to the case when the support is a singleton. Indeed, if (x,,) are the points of {z € Q2 :
A*(xz) > 0} and Y, A*(xn) = u(9), there exists a sequence (F},) of pairwise disjoint closed Baire sets
such that z,, € F},, and hence the probability measures ., defined by

i) =205 (e

have the sets {x,,} as supports, and k() = min, &(uy).
Theorem 12 [fQ is a separable Hausdorf{f space and i is a diffuse measure, then k(u) < 2°.

PROOE. Let D be a dense sequence in 2. Then for all z € 2 there exists an ultrafilter I/, in D which
converges to z, and the mapping  +— U, is one-to-one. Since, according to [1], the cardinal of such
ultrafilters is less than or equal to 2¢, and p is a diffuse measure, it follows that k(u) < card(?) < 2¢. 1

Remark 9 If y is a diffuse measure and the o-algebra of the measurable sets is countably generated, then,
asin [11, 1.6.2], one can deduce that k(u) < c.

Theorem 13 [fQ is a completely regular Hausdorff space and the cardinal of the support S of the measure
w is greater than 2°, then r(u) < c.

PROOF.

By using the usual extension v of u on the Stone-Cech compactification €2 of €2, which has the property
that the induced measure vo coincides with u, we can assume that ) is a compact space. Now, since
card(S) > 2¢, from the proof of Theorem 12 it follows that S is not separable, and from Theorem 11 it
turns out that k() < c. B

Corollary 4 if Q2 is a completely regular Hausdorff space and  is a diffuse measure such that its support
has positive measure, then k() < 2°.

Theorem 14 For every cardinal k there exists a diffuse measure j on a (T )-space  such that k(u) > K
and suppp = (.

PROOF. We may assume that x is infinite. Let (2 be a set whose cardinal is greater than &, and let us
endow () with the topology whose closed sets are €2 and all the sets with cardinal less than or equal to &.
Let ¥ be the corresponding Borel o-algebra on (2, and let us define the measure p by putting, for A € X,
either 1(A) = 0 or u(A) = 1 depending on whether card(A) < & or card(A) > k. Then, as k* = &, it
follows that k < k() < card(€2). R

Theorem 15 For every cardinal k there exists a completely regular space Q@ = (C(K),weak) and a
probability measure p with empty support on  such that k(u) > K.

PROOE. We shall proceed as in [10] and [7]. We may assume that K > g is not a limit cardinal. Let
w be the first ordinal with cardinal x and let Ty = {a : @ < w}. Let us endow T with the topology
consisting of all the subsets of T' = Tg \ {w} and such that the neighbourhoods of w are the complements
of the subsets of T whose cardinal are less than k. With this topology T is a space (T3,). Let K be the
Stone-Cech compactification of Ty and put Q = (C(K), weak). The set Vy of all the neighbourhoods of
w is stable with respect intersections of families with cardinal less than k, because k is not a limit cardinal,
and it admits a fundamental system ) consisting of open-closed neighbourhoods. Let F' denote the set of
all continuous functions from K to {0, 1} which vanish at w. It is clear that F' is a weakly closed set.
We shall construct two classes C and D of Borel sets in (F, weak) such that

(1) The smallest o-algebra containing C is the class Br of the Borel sets of (F, weak).
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(i) If C € C then either C € Dor FF\ C € D.
(iii) The intersection of any family of elements in D with cardinal less than & is not empty.
(iv) Forallt € K \ {w}, the set {f € F : f(t) = 1} belongs to D.

Then we can define a Borel measure A on (F,weak) by putting A(B) = 1 whenever B € Bp and
B contains the intersection of a family of elements of D with cardinal less than «, and A(B) = 0 other-
wise. Hence for every family (Fy)aca of null-A-measure subsets F, € Bp with cardA < k we have
A(UaeaFy) = 0. And A is a non-weakly-7-additive measure with empty support, because F' is the union
of the open sets Gy = {f : f(t) = 0} whent € K \ {w}, \M(F)) = 1, and \(G¢) = 0. From this it follows
that there exists a measure with similar properties on 2, which we shall keep denoting A.

Let k be an integer, J a set, (15)p<,jes Radon measures on K with 11 (K) = 1, and (a?)p<, (b7)p<r
rational numbers such that a? < bP. Now we define C to be the class of all sets C' = U;e sU;, where

Uj={f € F:9p<kui(f) € (a”,0")},

and k, .J, the measures M? , aP, and bP vary.

The class D consists of all the sets C' € C such that forall V' € V there exist j € J and f € U; with
f=1on K\V,andalso of all the complements F'\ C of the sets which do not satisfy this condition. Only
(4i7) needs to be proved. To this end, it is enough to show that for every family (Cy)aca € C N D, where
A={a:a<ap}and oy < w, and for every Vi € V, there exists f € N, Cy suchthat f = 1on K \ V;.
It is easy to prove (with the obvious notation) that for all & € A there exists £, > 0 such thatif W € V
then there exist j € J, and f € U} with f =1 on K \ W, where

U]I' ={feF:¥p< kavlfl’;a(f) € (af +¢ea, b5 —ca)}-
Let U, be an ultrafilter on J, containing all the sets
{jEJa:EIfEU]'-,le on K\V}

whenever V € V. Let p < k, be given, and let us put v2 = limy,, ,uj’f,a. Then, there exists V € V, V C 14,
such that v2(V \ W) =0 forall W € V, p < k, and @ € A. In the same way as in [7], but performing a
transfinite induction in a € A, it can be proved that there exist fo, jo € Ja» Va, Vs € V, and open-closed
sets Hy 0, Ho,1 in K such that

(i) The sets V,, satisfy V, C ﬂg<aV/3’ and Vo N (Hgo U Hpy) =P forall f < a € A, withV; = V.
(i) pf, ,(V\Va) <éeq/2foralla € Aandp < k.
(iii) fo €U, and fo =1on K \ V.
(iv) fa =000V, CVyandpl (Vo \{w}) =O0foralla€ Aandp < kq.
(V) Ago =0. Aoy = K\ V., Ago ={t € Va \ Vg : fa(t) =0}, and Aoy = {t € Va \ Vy : fa(t) =1}

(vi) {w}, Hao and Hy,, are disjoint sets such that Hy; O Ay U Hy—1; if @ has a predecessor @ — 1, and
Hyi O Aqi UUg<q Hg; whenever o is a limit ordinal (Hg; = Ag;) for¢ =0, 1.

It is obvious that for @ = oy (or @ < ay), the open sets Go = Ug<qHgo and G1 = Ug<qHp1 are
disjoint, and moreover

GoNG1=(GoNT)N(G1NT) =0,

because the sets G; N T are disjoint and open-closed in Ty. Then H = G is an open-closed set in K such
that GoNH =0 andw ¢ H.
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The function f = Xp satisfies f = f, on A, = Ayo U Ay1. Moreover, foralla € A and all p < kg
we have /,Lfa (f # fa) < €q. Hence it follows that f € Uj;, forall o € A. Therefore f € NgpeaCfq and
f=1lonK\VW.

Since for every family (Fy, )aca of null \-measure sets F, € Bq with cardA < k we have Ay (UpecaFy) =
0 then, according to Theorem 8, it turns out that there exists an extension g of A such that x(u) > &.

Given a cardinal k, a o-algebra ¥ is said to be a x-algebra provided ¥ is stable under unions and
intersections of cardinal less than k. A measure x on a k-algebra X is said to be x-additive provided that for
every disjoint family (Hy)aea of sets H, € ¥ with cardA < k one has p(UaeaHa) = 3 cq (Hy). B

Remark 10 Given a cardinal &, a slight modification of the above proof allows to show, without using
Theorem 11, the existence of a k-additive measure p # 0 taking values in {0, 1}, with empty support on a
k-algebra ¥ of subsets of a space 2 = (C(K),weak). Then (p) > & holds too.

For such measures y taking values in {0,1}, in a similar way and with the same notations as in the
remark following Theorem 6, it turns out that if cardA is non-measurable, then f = (X4_)qca : @ —
X = R4 is a non-Borel-measurable function which is the uniform limit of a net of quasi-continuous
functions.

Going more deeply into this matter, we shall prove the following Theorem without the above hypothesis.

Theorem 16 Ler Q, D and k = N¢qq be as in Theorem 15, let ¥ be the k-algebra generated by the
Borel sets of Q, and let | be the k-additive measure defined on X by setting u(A) = 1if A € Y and A
contains an intersection of R¢ subsets of D, and i(A) = 0 otherwise. Then there exists a non-measurable
union of a disjoint family of k closed null measure sets F,, and therefore f = (Xp )o : @ — X = R®
is a non-Borel-measurable function which is the uniform limit of a net of quasi-continuous functions, and

r(n) = K.

PROOF. Using the same notations as in Theorem 15, let Gy = {f € F': f(t) =0} fort € T = {¢t :
t < w}. Then, in the usual way, we can obtain a disjoint family (F})cr of closed sets such that F; C Gy
for every t and | J, o Fy = U Gt = F'. Assume that every union of sets F} is u-measurable. Then we
an define a measure v on all the subsets of T" by setting v(H) = pu(U,cy Ft) for every subset H C T
Now, proceeding as in [12], we can construct a matrix (A7) of R¢ rows and Neyq columns whose entries
are subsets of 7" with the following properties:

(i) Foreachrow s, (Af) N (A5) =0fort #¢'.
(ii) Foreach columnt, T\ |J, Af is a set of cardinal less than &.

Being v(T' \ U, 4f) = 0, it follows that (|, Af) = 1, and therefore for each ¢ there exists s = s; such
that v(A§) > 0, since the union of ¢ v-null measure sets has measure zero. But then there exists a row s
with K > Ny pairwise disjoint sets of positive ¥ measure, which contradicts the fact that the measure v is
finite. W
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