

On the uniform limit of quasi-continuous functions

B. Rodríguez–Salinas

Abstract. We study when the uniform limit of a net of quasi-continuous functions with values in a locally convex space X is a quasi-continuous function, emphasizing that this fact depends on the least cardinal of a fundamental system of neighbourhoods of 0 in X, and giving necessary and sufficient conditions. The main result of the paper is Theorem 15, where the results of [7] and [10] are improved, in relation with a Theorem of L. Schwartz.

Sobre el límite uniforme de funciones cuasi-continuas

Resumen. Estudiamos cuando el límite uniforme de una red de funciones cuasi-continuas con valores en un espacio localmente convexo X es también una función cuasi-continua, resaltando que esta propiedad depende del menor cardinal de un sistema fundamental de entornos de 0 en X, y estableciendo condiciones necesarias y suficientes. El principal resultado de este trabajo es el Teorema 15, en el que los resultados de [7] y [10] son mejorados, en relación al Teorema de L. Schwartz.

In general, we shall work with a measure space (Ω, Σ, μ) where Ω is a topological space, the σ -algebra Σ contains the Borel sets of Ω and $\mu(\Omega) = 1$. Suppose that X is a locally convex Hausdorff space.

We say that a function $f : \Omega \to X$ is *quasi-continuous* if the set of points D where f is not continuous has outer measure $\mu^*(D) = 0$.

A function $f : \Omega \to X$ is said to be *Lusin measurable* if for any $\varepsilon > 0$, there is a closed set $F \subseteq \Omega$ such that $\mu(\Omega \setminus F) < \varepsilon$ and the restriction $f|_F$ is continuous.

We shall use the following axiom:

Axiom L The interval [0, 1] cannot be covered by a family $(F_i)_{i \in I}$ of closed subsets of Lebesgue measure zero where the cardinal of I is less than the continuous c.

Then, according to [11,1-6-4], we have:

Proposition 1 Let Ω be a compact metrizable space, and let μ be a Radon measure on Ω . Then Axiom L implies that the union of a family $(F_i)_{i \in I}$ consisting of closed sets of measure zero such that card(I) < c does not cover any set of positive measure.

Theorem 1 Assume Axiom L in the conditions of Proposition 1. Let X be a locally convex space with a base of neighbourhoods $(V_{\alpha})_{\alpha \in A}$ of zero such that card(A) < c. Let $(f_i)_{i \in I}$ be a net of quasi-continuous functions $f_i : \Omega \to X$, converging uniformly to f. Then, if C is the set of points where f is continuous, we have $\mu^*(C) = 1$.

Presentado por Manuel Valdivia

Recibido: 13 de Diciembre 2001. *Aceptado*: 10 de Enero 2001. *Palabras clave / Keywords*: funciones cuasi-continuas *Mathematics Subject Classifications*: 26X99

^{© 2001} Real Academia de Ciencias, España.

PROOF. It is obvious that if X is a metrizable space, then f is quasi-continuous. In the general case, we can suppose, using [8,5.4], that X is the product $\prod_{\alpha \in A} X_{\alpha}$ of a family of Banach spaces. Let π_{α} be the projection $X \to X_{\alpha}$ and ω_{α} the oscillation function of $\pi_{\alpha} \circ f$; then $\pi_{\alpha} \circ f$ is quasi-continuous. Let

$$G_{\alpha,n} = \{ x \in \Omega : \omega_{\alpha}(x) < 1/n \}.$$

Then, since ω_{α} is upper semicontinuous, $G_{\alpha,n}$ is an open set of measure $\mu(G_{\alpha,n}) = 1$. By Proposition 1, the union $\bigcup_{\alpha \in A, n \in \mathbb{N}} (X \setminus G_{\alpha,n})$ does not cover any set of positive measure. Hence, its inner measure is zero and

$$\mu^*(\bigcap_{\alpha\in A,n\in\mathbb{N}}G_{\alpha,n})=1.$$

To finish, it suffices to note that $C = \bigcap_{\alpha \in A, n \in \mathbb{N}} G_{\alpha, n}$.

It is also useful to consider the following axiom:

Axiom M If $(A_i)_{i \in I}$ is a family of subsets of [0, 1] with Lebesgue measure zero and such that card(I) < c, then the union of the A_i 's has measure zero.

According to [11,1.6.2], we have:

Proposition 2 Assume Axiom M and suppose that (Ω, Σ, μ) is a probability space, where Σ is countably generated. Then, if $(A_i)_{i \in I}$ is a family of subsets with measure zero and such that card(I) < c, we have that the union also has measure zero.

Theorem 2 Assume Axiom M in the conditions of Proposition 2. Let X be a locally convex space with a base of neighbourhoods $(V_{\alpha})_{\alpha \in A}$ of zero such that card(A) < c. Let $(f_i)_{i \in I}$ be a net of quasi-continuous functions $f_i : \Omega \to X$, converging uniformly to f. Then f is quasi-continuous.

PROOF. We just have to proceed as in Theorem 1, using Proposition 2 instead of Proposition 1. ■

Remark 1 In Theorems 1 and 2, if Ω is a (T_1) -space and the measure μ is diffuse, we have that $card(\Omega) \ge c > card(A)$. As we shall soon see, these theorems do not hold if $\Omega = [0, 1]$, μ is the Lebesgue measure and card(A) = c.

Theorem 3 Let $\Omega = [0, 1]$, μ the Lebesgue measure on Ω and $X = \mathbb{R}^A$ with card(A) = c. Then, there exists a function $f : \Omega \to X$ which is the uniform limit of a net of quasi-continuous functions, which is not continuous at any point and having the property that any restriction $f|_H$ ($H \subseteq \Omega$) is continuous only on the countable set consisting of the isolated points of H. Hence, f is not Lusin measurable. Moreover, for any set $H \subseteq \Omega$, there exists an open set $G \subseteq X$ such that $f^{-1}(G) = H$ and f is not Borel measurable, but it is weakly measurable and its Pettis integral $\int fd\mu$ is zero.

PROOF. We can assume that $A = \Omega$. Let $f = (\mathcal{X}_{\alpha})_{\alpha \in A}$, where $\mathcal{X}_{\alpha}(x) = 1$ for $x = \alpha$ and $\mathcal{X}_{\alpha}(x) = 0$ for $x \neq \alpha$. The function $f : \Omega \longrightarrow X$ is nowhere continuous but it is the uniform limit of a net $(f_i)_{i \in I}$, where every $i \in I$ is a finite subset of Ω , I is ordered by inclusion and $\pi_{\alpha} \circ f_i = \mathcal{X}_{\alpha}$ for any $\alpha \in i$ and $\pi_{\alpha} \circ f_i = 0$ for any $\alpha \notin i$, which implies that every function f_i is quasi-continuous. Moreover, let H be a subset of Ω , then the restriction $f|_H$ is continuous only on the countable set that contains the isolated points of H.

Finally, if U = (0, 2) and $U_{\alpha} = \pi_{\alpha}^{-1}(U)$, we have

$$f^{-1}(U_{\alpha}) = \mathcal{X}_{\alpha}^{-1}(U) = \alpha,$$

and hence $G = \bigcup_{\alpha \in H} U_{\alpha}$ is an open subset of X such that

$$f^{-1}(G) = \bigcup_{\alpha \in H} f^{-1}(U_{\alpha}) = H.$$

In addition, for any $x^* \in X^*$, since by [3,Proposition 3.14.1] $x^* \circ f$ vanishes outside a finite set, it follows that $x^* \circ f$ is zero almost everywhere in Ω and hence, the Pettis integral $\int f d\mu$ is zero.

Remark 2 We can choose *I* to be the lattice consisting of the countable subsets of Ω . In this case, for any sequence (i_n) in *I*, there exists $i = \bigcup_{k \in \mathbb{N}} i_k \ge i_n$ for all $n \in \mathbb{N}$.

We can prove in a similar fashion the following theorem:

Theorem 4 Let $\Omega = A$ be a (T_1) -topological space, μ a diffuse probability measure on Ω and $X = \mathbb{R}^A$. Then there exists a function $f : \Omega \to X$ which is the uniform limit of a net of quasi-continuous functions, and having the property that any restriction $f|_H$ is continuous only on the set of isolated points of H, and that for every subset $H \subseteq \Omega$, there exists an open subset $G \subseteq X$ such that $f^{-1}(G) = H$. Therefore, if the set of isolated points of Ω has measure less that 1, f is not quasi-continuous and if there exists a non-measurable set H, f is neither Borel measurable nor Lusin measurable.

Remark 3 If $card(\Omega)$ is of measure zero, the measure of the set consisting of the isolated points of Ω has μ -measure zero and there is a non-measurable set in Ω . According to [5,2.5], the same happens if $card(\Omega)$ is not measurable and μ is a perfect measure. We also have that if μ is a τ -additive measure, the set of isolated points of Ω has measure zero. Since the same holds for every subset H of Ω and the induced measure μ_H , f is not Lusin measurable.

A set is said to be a (D)-set if it is the set D(f) of the discontinuity points of a function $f : \Omega \to \mathbb{R}$. It is clear that any (D)-set is an F_{σ} -set.

It is obvious that the set which contains all the discontinuity points of a function $f = (f_{\alpha})_{\alpha \in A} : \Omega \to X = \mathbb{R}^A$ is $\bigcup_{\alpha \in A} D(f_{\alpha})$. Then we have:

Theorem 5 If $X = \mathbb{R}^A$, then for any quasi-continuous function $f_{\alpha} : \Omega \to \mathbb{R}$, the function $f = (f_{\alpha})_{\alpha \in A} : \Omega \to X$ is quasi-continuous if and only if the union of any family $(D_{\alpha})_{\alpha \in A}$ of (D)-sets of measure zero, has outer measure zero.

Theorem 6 Suppose that the support of μ is Ω and that X is an arbitrary locally convex space having a base $(V_{\alpha})_{\alpha \in A}$ of neighbourhoods of zero. Let $f : \Omega \to X$ be the uniform limit of a net of quasi-continuous functions. Then f is quasi-continuous if and only if any union $\bigcup_{\alpha \in A} F_{\alpha}$ of closed sets of Ω having measure zero, has outer measure zero.

PROOF. Sufficiency follows as in Theorem 1. Necessity follows from Theorem 5 taking into consideration that if F is a closed set with measure zero, then $int(F) = \emptyset$, and hence, $D(\mathcal{X}_F) = F$. In this last step we have used the fact that $supp(\mu) = \Omega$.

Remark 4 Theorem 6 can be extended to any τ -additive measure μ .

If $(F_{\alpha})_{\alpha \in A}$ is a family of closed sets having μ -measure zero, such that

$$\mu^*(\bigcup_{\alpha\in A}F_\alpha)>0,$$

and card(A) is of measure zero, then if we suppose that A is well ordered and we set $A_{\alpha} = F_{\alpha} \setminus \bigcup_{\beta < \alpha} F_{\beta}$, we can easily see that $f = (\mathcal{X}_{A_{\alpha}})_{\alpha \in A} : \Omega \to X = \mathbb{R}^{A}$ is a non-measurable Borel function which is the uniform limit of quasi-continuous functions. This result holds as well, according to [5,2.5], if μ is a perfect measure and card(A) is not measurable. On the other hand, if Ω is endowed with the discrete topology, every function $f : \Omega \to X$ is continuous. But if μ is a diffuse measure, the latter is equivalent to the fact that $card(\Omega)$ does not have measure zero.

It is easily checked that if $\kappa = \kappa(\mu)$ is the least cardinal of the sets A having the property that $\mu^*(\bigcup_{\alpha \in A} F_\alpha) > 0$ for a family $(F_\alpha)_{\alpha \in A}$ of closed sets of measure zero, then κ is not the supremum of a sequence of cardinals less than κ , which is obviously less than or equal to $card(\Omega)$ if Ω is a (T_1) - space and μ is a diffuse measure. Axiom M implies that $\kappa(\mu) = c$ for the Lebesgue measure μ on $\Omega = [0, 1]$, and this in turn implies Axiom L.

We say that a cardinal is *primary* if it is not the supremun of a sequence of cardinals less than itself.

Corollary 1 There exists a Radon measure μ and a function $f : \Omega \to X = \mathbb{R}^{\aleph_1}$ that is not quasicontinuous nor Borel measurable and yet it is the uniform limit of a net of quasi-continuous functions.

PROOF. It turns out from Theorem 6 by taking into consideration that, according to Haydon [2,15.1], there exists a Radon measure μ for which the union of \aleph_1 closed sets of measure zero may be not measurable.

In the same way as in Theorem 6 but in the same direction as Theorem 1, we can give a necessary and sufficient condition in order that $\mu^*(C) = 1$ for the set C consisting of the continuity points of every function $f: \Omega \longrightarrow X$ which is the uniform limit of a net of quasi-continuous functions.

Theorem 7 If (Ω, Σ, μ) verifies $\mu_*(\bigcup_{\alpha \in A} F_\alpha) = 0$ for every family $(F_\alpha)_{\alpha \in A}$ of closed subsets of measure zero with $card(A) \leq \kappa$, then there exists a probability space (Ω, Σ', ν) such that ν is an extension of μ and $\kappa(\nu) > \kappa$.

PROOF. We can assume that $\kappa \geq \aleph_0$. Let \mathcal{H} be the set consisting of the unions $\bigcup_{\alpha \in A} F_\alpha$ and

$$\nu^*(E) = \inf_{H \in \mathcal{H}} \mu^*(E \setminus H) \ (E \subseteq \Omega).$$

First of all, we are going to prove that ν^* is an outer measure. Indeed, for every $\varepsilon > 0$ and $E_n \subseteq \Omega$ there exists an $H_n \in \mathcal{H}$ $(n \in \mathbb{N})$ such that

$$\nu^*(E_n) + \varepsilon 2^{-n} > \mu^*(E_n \setminus H_n),$$

and therefore

$$\sum_{n} \nu^{*}(E_{n}) + \varepsilon > \sum_{n} \mu^{*}(E_{n} \setminus H_{n}) \ge \mu^{*}(\bigcup_{n} E_{n} \setminus \bigcup_{n} H_{n}) \ge \nu^{*}(\bigcup_{n} E_{n}),$$

from which it follows that

$$\nu^*(\bigcup_n E_n) \le \sum_n \nu^*(E_n).$$

Let (E_n) be a disjoint sequence in Σ and take $M \subseteq \Omega$. Then, for every $\varepsilon > 0$, there exists an $H \in \mathcal{H}$ such that

$$\nu^*(M \cap \bigcup_n E_n) + \varepsilon > \mu^*(M \cap \bigcup_n E_n \setminus H)$$
$$= \sum_n \mu^*(M \cap E_n \setminus H)$$
$$\ge \sum_n \nu^*(M \cap E_n),$$

and therefore

$$\nu^*(M \cap \bigcup_n E_n) = \Sigma_n \nu^*(M \cap E_n).$$

From the latter, it turns out that the restriction of ν^* to the σ -algebra $\Sigma' \supseteq \Sigma$ consisting of the ν^* -measurable sets, is a measure ν , which is an extension of μ since $\nu(B) = \mu(B)$ for every set $B \in \Sigma$. Then, since $\nu^*(H) = 0$ for every $H \in \mathcal{H}$, it follows that $\kappa(\nu) > \kappa$.

A slight change in the previous proof allows us to prove the following theorem:

Theorem 8 If (Ω, Σ, μ) has the property that $\mu_*(\bigcup_{\alpha \in A} F_\alpha) = 0$ for every family $(F_\alpha)_{\alpha \in A}$ of closed sets having measure zero with $card(A) < \kappa$ and κ being a primary cardinal, then there exists a probability space (Ω, Σ', ν) such that ν is an extension of μ and $\kappa(\nu) \geq \kappa$.

32

Corollary 2 From axiom L it follows that for every cardinal $\kappa < c$ there exists a probability measure μ on $\Omega = [0, 1]$ which is the extension of the Lebesgue measure and such that $\kappa(\mu) > \kappa$. If c is not primary, $\kappa(\mu) < c$ holds for such measures, and if c is primary, we can say that $\kappa(\mu) = c$ for one of them.

Theorem 9 If μ is a regular measure and there exists a measurable function $f : \Omega \to \mathbb{R}$ such that $\mu \circ f^{-1}$ is a diffuse measure, we have that $\kappa(\mu) \leq c$.

PROOF. Since μ is a regular measure, by Lusin's theorem there exists a closed set $F \subseteq \Omega$ of positive measure such that the restriction $f|_F$ is continuous. Then, if $F_{\alpha} = f^{-1}(\alpha) \bigcap F$ for $\alpha \in \mathbb{R}$, we have that every F_{α} is a closed set of measure zero and $\mu(\bigcup_{\alpha \in \mathbb{R}} F_{\alpha}) = \mu(F) > 0$.

Remark 5 According to a theorem of Zink [5,2.2], if μ is a separable measure, there is a measurable function $f: \Omega \to [0, 1]$ such that $\mu \circ f^{-1}$ is the Lebesgue measure. Similarly, by [5,2.1], if μ is a non-atomic measure, there exists a measurable function $f: \Omega \to [0, 1]$ such that $\mu \circ f^{-1}$ is the Lebesgue measure.

Corollary 3 If μ is a regular non-atomic measure, then $\kappa(\mu) \leq c$.

Remark 6 If μ is an atomic measure then it can trivially happen that $\mu(\bigcup_{\alpha \in A} F_{\alpha}) = 0$ for every family $(F_{\alpha})_{\alpha \in A}$ consisting of null-measure sets.

If μ is a diffuse probability measure on a metric space Ω whose density character is non-measurable then, according to [6], μ is a non-atomic measure, and hence, $\kappa(\mu) \leq c$.

Theorem 10 If Ω is a completely regular Hausdorff space and μ is a weakly τ -additive measure such that for every $x \in \Omega$ and every $\varepsilon > 0$ there exists an open neighbourhood V of x with $\mu(V) < \varepsilon$, then $\kappa(\mu) \le c$.

PROOF. Let λ be the restriction of μ to the σ -algebra $Ba(\Omega)$ of the Baire subsets of Ω . If there were an atom B of λ then there would also exist a closed atom $F \subseteq B$ of λ . Hence, by the assumption above, for each $x \in F$ there exists an open neighbourhood $V_x \in Ba(\Omega)$ such that $\lambda(V_x \cap F) = 0$. Let $F_x = F \setminus V_x$ $(\in Ba(\Omega))$, then $\bigcap_{x \in F} F_x = \emptyset$, from which it follows (taking into account the fact that μ is a weakly τ -additive) that there is a sequence (F_{x_n}) such that $\lambda(\bigcap_n F_{x_n}) = 0$, and this contradicts the fact that $\lambda(F_{x_n}) = \lambda(F) > 0$. Therefore λ is a non-atomic measure and, according to [5, 2.1], there exists a λ -measurable function $f : \Omega \longrightarrow [0, 1]$ such that $\lambda \circ f^{-1}$ is the Lebesgue measure. From this it immediately follows, as in Theorem 9, that $\kappa(\mu) \leq \kappa(\lambda) \leq c$.

Remark 7 The property that for every $x \in \Omega$ and $\varepsilon > 0$ there exists an open neighbourhood V of x such that $\mu(V) < \varepsilon$ is equivalent to saying $\lambda^*(\{x\}) = 0$ for every $x \in \Omega$. In general, being Ω a Hausdorff space, $\sum_{x \in \Omega} \lambda^*(\{x\}) \le \mu(\Omega)$ and, if $\sum_{x \in \Omega} \lambda^*(\{x\}) < \mu(\Omega)$, then it follows from the remaining conditions of Theorem 10 that $\kappa(\mu) \le c$. From this it turns out that $\kappa(\mu) \le c$ whenever Ω is a compact infinite Hausdorff group and μ is invariant under left translations.

If μ is a diffuse measure then the function \mathcal{X}_{ω} ($\omega \in \Omega$) is Lusin measurable if and only if $\lambda^*(\{\omega\}) = 0$.

Theorem 11 If Ω is a completely regular Hausdorff space and μ is a weakly τ -additive measure such that its support S is not separable then $\kappa(\mu) \leq c$.

PROOF. Let λ be the restriction of μ to $Ba(\Omega)$ and H the closure of the countable set $\{x \in \Omega : \lambda^*(\{x\}) > 0\}$. Since S is non-separable, we have $S \setminus H \neq \emptyset$ and $\mu(\Omega \setminus H) > 0$ and there exists a closed set $F \in Ba(\Omega)$ with positive measure $\lambda(F) > 0$ which is disjoint from H. Then, by applying Theorem 10 to the induced measure μ_F it turns out that $\kappa(\mu) \leq \kappa(\mu_F) \leq c$.

Remark 8 If Ω is a compact Hausdorff space and μ is a diffuse measure with separable support, the question comes down to the case when the support is a singleton. Indeed, if (x_n) are the points of $\{x \in \Omega : \lambda^*(x) > 0\}$ and $\sum_n \lambda^*(x_n) = \mu(\Omega)$, there exists a sequence (F_n) of pairwise disjoint closed Baire sets such that $x_n \in F_n$, and hence the probability measures μ_n defined by

$$\mu_n(A) = \frac{\mu(A \cap F_n)}{\lambda^*(x_n)} \quad (A \in \Sigma)$$

have the sets $\{x_n\}$ as supports, and $\kappa(\mu) = \min_n \kappa(\mu_n)$.

Theorem 12 If Ω is a separable Hausdorff space and μ is a diffuse measure, then $\kappa(\mu) \leq 2^c$.

PROOF. Let D be a dense sequence in Ω . Then for all $x \in \Omega$ there exists an ultrafilter \mathcal{U}_x in D which converges to x, and the mapping $x \mapsto \mathcal{U}_x$ is one-to-one. Since, according to [1], the cardinal of such ultrafilters is less than or equal to 2^c , and μ is a diffuse measure, it follows that $\kappa(\mu) \leq card(\Omega) \leq 2^c$.

Remark 9 If μ is a diffuse measure and the σ -algebra of the measurable sets is countably generated, then, as in [11, 1.6.2], one can deduce that $\kappa(\mu) \leq c$.

Theorem 13 If Ω is a completely regular Hausdorff space and the cardinal of the support S of the measure μ is greater than 2^c , then $\kappa(\mu) \leq c$.

PROOF.

By using the usual extension ν of μ on the Stone-Cech compactification $\beta\Omega$ of Ω , which has the property that the induced measure ν_{Ω} coincides with μ , we can assume that Ω is a compact space. Now, since $card(S) > 2^c$, from the proof of Theorem 12 it follows that S is not separable, and from Theorem 11 it turns out that $\kappa(\mu) \leq c$.

Corollary 4 if Ω is a completely regular Hausdorff space and μ is a diffuse measure such that its support has positive measure, then $\kappa(\mu) \leq 2^c$.

Theorem 14 For every cardinal κ there exists a diffuse measure μ on a (T_1) -space Ω such that $\kappa(\mu) > \kappa$ and $supp\mu = \Omega$.

PROOF. We may assume that κ is infinite. Let Ω be a set whose cardinal is greater than κ , and let us endow Ω with the topology whose closed sets are Ω and all the sets with cardinal less than or equal to κ . Let Σ be the corresponding Borel σ -algebra on Ω , and let us define the measure μ by putting, for $A \in \Sigma$, either $\mu(A) = 0$ or $\mu(A) = 1$ depending on whether $card(A) \leq \kappa$ or $card(A) > \kappa$. Then, as $\kappa^2 = \kappa$, it follows that $\kappa < \kappa(\mu) \leq card(\Omega)$.

Theorem 15 For every cardinal κ there exists a completely regular space $\Omega = (C(K), weak)$ and a probability measure μ with empty support on Ω such that $\kappa(\mu) > \kappa$.

PROOF. We shall proceed as in [10] and [7]. We may assume that $\kappa > \aleph_0$ is not a limit cardinal. Let ω be the first ordinal with cardinal κ and let $T_0 = \{\alpha : \alpha \leq \omega\}$. Let us endow T_0 with the topology consisting of all the subsets of $T = T_0 \setminus \{\omega\}$ and such that the neighbourhoods of ω are the complements of the subsets of T whose cardinal are less than κ . With this topology T_0 is a space (T_{3a}) . Let K be the Stone-Cech compactification of T_0 and put $\Omega = (C(K), weak)$. The set \mathcal{V}_0 of all the neighbourhoods of ω is stable with respect intersections of families with cardinal less than κ , because κ is not a limit cardinal, and it admits a fundamental system \mathcal{V} consisting of open-closed neighbourhoods. Let F denote the set of all continuous functions from K to $\{0, 1\}$ which vanish at ω . It is clear that F is a weakly closed set.

We shall construct two classes C and D of Borel sets in (F, weak) such that

(i) The smallest σ -algebra containing C is the class \mathcal{B}_F of the Borel sets of (F, weak).

- (ii) If $C \in \mathcal{C}$ then either $C \in \mathcal{D}$ or $F \setminus C \in \mathcal{D}$.
- (iii) The intersection of any family of elements in \mathcal{D} with cardinal less than κ is not empty.
- (iv) For all $t \in K \setminus \{\omega\}$, the set $\{f \in F : f(t) = 1\}$ belongs to \mathcal{D} .

Then we can define a Borel measure λ on (F, weak) by putting $\lambda(B) = 1$ whenever $B \in \mathcal{B}_F$ and B contains the intersection of a family of elements of \mathcal{D} with cardinal less than κ , and $\lambda(B) = 0$ otherwise. Hence for every family $(F_{\alpha})_{\alpha \in A}$ of null- λ -measure subsets $F_{\alpha} \in \mathcal{B}_F$ with $cardA < \kappa$ we have $\lambda_*(\bigcup_{\alpha \in A} F_{\alpha}) = 0$. And λ is a non-weakly- τ -additive measure with empty support, because F is the union of the open sets $G_t = \{f : f(t) = 0\}$ when $t \in K \setminus \{\omega\}, \lambda(F) = 1$, and $\lambda(G_t) = 0$. From this it follows that there exists a measure with similar properties on Ω , which we shall keep denoting λ .

Let k be an integer, J a set, $(\mu_j^p)_{p \le k, j \in J}$ Radon measures on K with $\mu_j^p(K) = 1$, and $(a^p)_{p \le k}$, $(b^p)_{p \le k}$ rational numbers such that $a^p < b^p$. Now we define C to be the class of all sets $C = \bigcup_{j \in J} U_j$, where

$$U_j = \{ f \in F : \forall p \le k, \mu_j^p(f) \in (a^p, b^p) \},\$$

and k, J, the measures μ_j^p , a^p , and b^p vary.

The class \mathcal{D} consists of all the sets $C \in \mathcal{C}$ such that for all $V \in \mathcal{V}$ there exist $j \in J$ and $f \in U_j$ with f = 1 on $K \setminus V$, and also of all the complements $F \setminus C$ of the sets which do not satisfy this condition. Only *(iii)* needs to be proved. To this end, it is enough to show that for every family $(C_\alpha)_{\alpha \in A} \subseteq \mathcal{C} \cap \mathcal{D}$, where $A = \{\alpha : \alpha < \alpha_0\}$ and $\alpha_0 < \omega$, and for every $V_0 \in \mathcal{V}$, there exists $f \in \bigcap_{\alpha} C_{\alpha}$ such that f = 1 on $K \setminus V_0$. It is easy to prove (with the obvious notation) that for all $\alpha \in A$ there exists $\varepsilon_\alpha > 0$ such that if $W \in \mathcal{V}$ then there exist $j \in J_\alpha$ and $f \in U'_j$ with f = 1 on $K \setminus W$, where

$$U'_{i} = \{ f \in F : \forall p \le k_{\alpha}, \mu^{p}_{i,\alpha}(f) \in (a^{p}_{\alpha} + \varepsilon_{\alpha}, b^{p}_{\alpha} - \varepsilon_{\alpha}) \}.$$

Let \mathcal{U}_{α} be an ultrafilter on J_{α} containing all the sets

$$\{j \in J_{\alpha} : \exists f \in U'_i, f = 1 \text{ on } K \setminus V\}$$

whenever $V \in \mathcal{V}$. Let $p \leq k_{\alpha}$ be given, and let us put $\nu_{\alpha}^{p} = \lim_{\mathcal{U}_{\alpha}} \mu_{j,\alpha}^{p}$. Then, there exists $V \in \mathcal{V}, V \subseteq V_{0}$, such that $\nu_{\alpha}^{p}(V \setminus W) = 0$ for all $W \in \mathcal{V}, p \leq k_{\alpha}$ and $\alpha \in A$. In the same way as in [7], but performing a transfinite induction in $\alpha \in A$, it can be proved that there exist $f_{\alpha}, j_{\alpha} \in J_{\alpha}, V_{\alpha}, V_{\alpha}' \in \mathcal{V}$, and open-closed sets $H_{\alpha,0}, H_{\alpha,1}$ in K such that

- (i) The sets V_{α} satisfy $V_{\alpha} \subseteq \bigcap_{\beta < \alpha} V'_{\beta}$ and $V_{\alpha} \cap (H_{\beta 0} \cup H_{\beta 1}) = \emptyset$ for all $\beta < \alpha \in A$, with $V_1 = V$.
- (ii) $\mu_{i_{\alpha},\alpha}^{p}(V \setminus V_{\alpha}) < \varepsilon_{\alpha}/2$ for all $\alpha \in A$ and $p \leq k_{\alpha}$.
- (iii) $f_{\alpha} \in U'_{i_{\alpha}}$ and $f_{\alpha} = 1$ on $K \setminus V_{\alpha}$.
- (iv) $f_{\alpha} = 0$ on $V'_{\alpha} \subseteq V_{\alpha}$ and $\mu^{p}_{i_{\alpha},\alpha}(V'_{\alpha} \setminus \{\omega\}) = 0$ for all $\alpha \in A$ and $p \leq k_{\alpha}$.
- $(\mathbf{v}) \ A_{00} = \emptyset, A_{01} = K \setminus V, A_{\alpha 0} = \{t \in V_{\alpha} \setminus V'_{\alpha} : f_{\alpha}(t) = 0\}, \text{and } A_{\alpha 1} = \{t \in V_{\alpha} \setminus V'_{\alpha} : f_{\alpha}(t) = 1\}.$
- (vi) $\{\omega\}$, $H_{\alpha 0}$ and $H_{\alpha 1}$ are disjoint sets such that $H_{\alpha i} \supseteq A_{\alpha i} \cup H_{\alpha-1i}$ if α has a predecessor $\alpha 1$, and $H_{\alpha i} \supseteq A_{\alpha i} \cup \overline{\bigcup_{\beta < \alpha} H_{\beta i}}$ whenever α is a limit ordinal $(H_{0i} = A_{0i})$ for i = 0, 1.

It is obvious that for $\alpha = \alpha_0$ (or $\alpha < \alpha_0$), the open sets $G_0 = \bigcup_{\beta < \alpha} H_{\beta 0}$ and $G_1 = \bigcup_{\beta < \alpha} H_{\beta 1}$ are disjoint, and moreover

$$\overline{G_0} \cap \overline{G_1} = \overline{(G_0 \cap T)} \cap \overline{(G_1 \cap T)} = \emptyset,$$

because the sets $G_i \cap T$ are disjoint and open-closed in T_0 . Then $H = \overline{G_1}$ is an open-closed set in K such that $\overline{G_0} \cap H = \emptyset$ and $\omega \notin H$.

35

The function $f = \mathcal{X}_H$ satisfies $f = f_\alpha$ on $A_\alpha = A_{\alpha 0} \cup A_{\alpha 1}$. Moreover, for all $\alpha \in A$ and all $p \leq k_\alpha$ we have $\mu_{j_\alpha}^p (f \neq f_\alpha) < \varepsilon_\alpha$. Hence it follows that $f \in U_{j_\alpha}$ for all $\alpha \in A$. Therefore $f \in \bigcap_{\alpha \in A} C_\alpha$ and f = 1 on $K \setminus V_0$.

Since for every family $(F_{\alpha})_{\alpha \in A}$ of null λ -measure sets $F_{\alpha} \in \mathcal{B}_{\Omega}$ with $cardA < \kappa$ we have $\lambda_*(\bigcup_{\alpha \in A} F_{\alpha}) = 0$ then, according to Theorem 8, it turns out that there exists an extension μ of λ such that $\kappa(\mu) \geq \kappa$.

Given a cardinal κ , a σ -algebra Σ is said to be a κ -algebra provided Σ is stable under unions and intersections of cardinal less than κ . A measure μ on a κ -algebra Σ is said to be κ -additive provided that for every disjoint family $(H_{\alpha})_{\alpha \in A}$ of sets $H_{\alpha} \in \Sigma$ with $cardA < \kappa$ one has $\mu(\bigcup_{\alpha \in A} H_{\alpha}) = \sum_{\alpha \in A} \mu(H_{\alpha})$.

Remark 10 Given a cardinal κ , a slight modification of the above proof allows to show, without using Theorem 11, the existence of a κ -additive measure $\mu \neq 0$ taking values in $\{0, 1\}$, with empty support on a κ -algebra Σ of subsets of a space $\Omega = (C(K), weak)$. Then $\kappa(\mu) \geq \kappa$ holds too.

For such measures μ taking values in $\{0, 1\}$, in a similar way and with the same notations as in the remark following Theorem 6, it turns out that if *cardA* is non-measurable, then $f = (\mathcal{X}_{A_{\alpha}})_{\alpha \in A} : \Omega \longrightarrow X = \mathbb{R}^{A}$ is a non-Borel-measurable function which is the uniform limit of a net of quasi-continuous functions.

Going more deeply into this matter, we shall prove the following Theorem without the above hypothesis.

Theorem 16 Let Ω , \mathcal{D} and $\kappa = \aleph_{\xi+1}$ be as in Theorem 15, let Σ be the κ -algebra generated by the Borel sets of Ω , and let μ be the κ -additive measure defined on Σ by setting $\mu(A) = 1$ if $A \in \Sigma$ and Acontains an intersection of \aleph_{ξ} subsets of \mathcal{D} , and $\mu(A) = 0$ otherwise. Then there exists a non-measurable union of a disjoint family of κ closed null measure sets F_{α} , and therefore $f = (\mathcal{X}_{F_{\alpha}})_{\alpha} : \Omega \longrightarrow X = \mathbb{R}^{\kappa}$ is a non-Borel-measurable function which is the uniform limit of a net of quasi-continuous functions, and $\kappa(\mu) = \kappa$.

PROOF. Using the same notations as in Theorem 15, let $G_t = \{f \in F : f(t) = 0\}$ for $t \in T = \{t : t < \omega\}$. Then, in the usual way, we can obtain a disjoint family $(F_t)_{t\in T}$ of closed sets such that $F_t \subseteq G_t$ for every t and $\bigcup_{t\in T} F_t = \bigcup_{t\in T} G_t = F$. Assume that every union of sets F_t is μ -measurable. Then we an define a measure ν on all the subsets of T by setting $\nu(H) = \mu(\bigcup_{t\in H} F_t)$ for every subset $H \subseteq T$. Now, proceeding as in [12], we can construct a matrix (A_t^s) of \aleph_{ξ} rows and $\aleph_{\xi+1}$ columns whose entries are subsets of T with the following properties:

- (i) For each row s, $(A_t^s) \cap (A_{t'}^s) = \emptyset$ for $t \neq t'$.
- (ii) For each column $t, T \setminus \bigcup_{s} A_t^s$ is a set of cardinal less than κ .

Being $\nu(T \setminus \bigcup_s A_t^s) = 0$, it follows that $\nu(\bigcup_s A_t^s) = 1$, and therefore for each t there exists $s = s_t$ such that $\nu(A_t^s) > 0$, since the union of $\aleph_{\xi} \nu$ -null measure sets has measure zero. But then there exists a row s with $\kappa > \aleph_0$ pairwise disjoint sets of positive ν measure, which contradicts the fact that the measure ν is finite.

Acknowledgement. This paper is supported in part by DGICYT grant PB97-0240.

References

- [1] R. Engelking and Sieklucki (1968). Outline General Topology. North-Holland Pub. Co.
- [2] Gardner, R. J. (1982). The regularity of Borel measures. In *Measure Theory Oberwolfach*, 1981. Editors D. Kölzow and D. Maharam-Stone. Let. Notes in Math. 945 (Springer) 42-100.
- [3] Horváth, J. (1966). Topological Vector Spaces and Distributions. Addison Wesley.
- [4] Jayne, J. E. and Rogers, C. A. (1995). Radon measures on Banach spaces with their weak topologies. Serdica Math. Journal, 4, 283-334.

- [5] Koumoullis, G. (1981). On perfect measures. Trans. Amer. Math. Soc. 264, 521-537.
- [6] Marczewski, E. and Sikorski, R. (1948). Measures in non-separable metric spaces. Collog. Math. 1, 133-139.
- [7] María, J. L. de and Rodríguez-Salinas, B. (1991). The space $(\ell_{\infty}/c_0, weak)$ is not a Radon space. *Proc. Amer. Math. Soc.* **112**, 1095-1100.
- [8] Schaefer H. H. (1966). Topological Vector Spaces. Springer Verlag, New York.
- [9] Schwartz, L. (1973). Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures. Oxford University Press.
- [10] Talagrand, M. (1978). Sur un théorème de L. Schwartz. C. R. Acad. Sci. Paris, Sér. I, 286, 265-267.
- [11] Talagrand, M. (1984). Pettis integral and measure theory. Mem. Amer. Math. Soc., Vol.51.
- [12] Ulam, S. (1930). Zur Masstheorie in der allgemeinen Mengenlehre. Fund. Math. 16,140-150.

B. Rodríguez–Salinas
Departamento de Análisis Matemático
Facultad de Matemáticas
Universidad Complutense de Madrid
28040 Madrid, Spain