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Holomorphic extension maps for spaces of Whitney jets

J. Schmets and M. Valdivia

Abstract. The key result (Theorem 1) provides the existence of a holomorphic approximation map
for some space of C°°-functions on an open subset of R™. This leads to results about the existence of a
continuous linear extension map from the space of the Whitney jets on a closed subset F' of R into a
space of holomorphic functions on an open subset D of C* such that D NR"® =R" \ F'.

Operadores de extension holomorfa para espacios de jets de Whitney
Resumen. El resultado clave (Teorema 1) prueba que existen operadores de extension holomorfa
para ciertos espacios de funciones de clase C™ en un abierto de R™. Esto conduce a resultados sobre
la existencia de un operador de extensién lineal y continuo del espacio de jets de Whitney sobre un

subconjunto cerrado F' de R en un espacio de funciones holomorfas en D, un subconjunto abierto de C*
talque DNR™ =R™ \ F.

1. Introduction

Let €2 be a proper open subset of R™. For a C*°-function f on 2, we set

lal
D f(z) = %(x), Vo e NI,z € Q.

By BC*(Q), we designate the Fréchet space of the C°*°-functions on 2 which are bounded on 2 as well as
all their derivatives, endowed with the system of norms {||-||,,, : m € N} defined by

1£1l,, = sup 207+l D,
al

<m

Moreover * stands for the following open subset of C":
Q' ={u+iv:ueQueR,|v <d(u,0N)}.

For a closed subset F' of R”, we designate as usual by £(F’) the Fréchet space of the Whitney jets on F
(cf. [4]).

In [2], the key result states that there is a continuous linear map T from BC* () into BC*(R™) such
that, for every f € BC™(Q),
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a) T'f has a holomorphic extension on {0*;
b) for every s € Nand e > 0, there is a compact subset K of Q) such that

lStllf ID%f = D*(T f)llg\x <&

This result is then used to prove that, if K is a compact subset of R™, then

a) every Whitney jet on K has a BC® (R™)-extension which is real-analytic on R™ \ K ;

b) there is a continuous linear extension map from E(K) into C*(R™) if and only if there is such a map
with values real-analytic outside K.

Since then L. Frerick and D. Vogt have solved in [1] the problem raised in [2] as to how this last property
extends for a closed subset. Their result reads as follows: if there is a continuous linear extension map from
E(F) into C*(R™), then there also is such a map E with values having a holomorphic extension on Q* if
and only if, for every bounded subset B of R", the boundary of the union of the connected components of
R™\ F having non empty intersection with B is compact. Their proof makes use of the key result mentioned
here above.

The purpose of this paper is to generalize all these results.

Let U be a proper open subset of C". For a holomorphic function f on U, we set

alely
0z ...0z¢
By Hoo (U), we designate the Fréchet space of the holomorphic functions on U which are bounded on U as
well as all their derivatives, endowed with the system of norms {||-||,,, : m € N} defined by

I/l = sup [D*flly -

la|<m

Firstly we are going to construct in Paragraph 2. an open subset D of C™ such that Do NR™ = 2 and
u € Q for every u + v € Dgq. Then we prove in Paragraph 4. the following extension of the previous key
result.

Theorem 1 There is a continuous linear map Tq from BC™(Q) into Heo(Dq) such that for every f €
BC*(Q), e > 0and s € N there is a compact subset K of Q such that

ID*(Ta f)(u+iv) — D% f(u)| <€
foreveryu + iv € Dq and o € Nj verifying u € Q\ K and |a| < s.

Finally we use this new key result to enhance the previous extension theorems (cf. Section 5.).
In some way, this paper is a continuation of [2]. The idea is to use the fact that the functions G(, f)
have a holomorphic extension on 2* D Dq.

2. Construction of the open subset Dy, of C"

Given a proper open subset {2 of R™, the construction of the open subset Dg of C* comes from a refinement
of the construction of the sequence (\)cy made in the Paragraph 2 of [2].

For the sake of clarity and completeness, we give the construction explicitely. The reader may skip it
at first reading and come back to it as needed. The point is that we want to be able to use the inequalities
of [2] involving the numbers A, in order to obtain supplementary results about the space BC*(2).

We first fix a compact cover {K,: r € N} of Q subject to the following requirements: (K1)° # 0,
d(K1,0Q) < landforeveryr € N, (K,)>~ = K, C (Kr4+1)° as well as

Nr = d(K’ra R \K’T+1) > %d(K’T’ 89)
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Of course the sequence (7, )¢n strictly decreases to 0 and 7; < 1.

Next for every r € N, a, designates an element of C*°(R"), identically 1 on a neighbourhood of
K42\ (K,41)° and with support contained in (K,43)° \ K.

Then for every r, m € N, we choose d ,,, > 1 such that

(7‘ + 1)d$,m < dT‘-‘rl,ﬂ'M
dr,m < dr,m+17

sup 20V D, g < dy -

la|<m

Finally we remark that, by the Poisson formula,

®(p) := w‘"”/ e dy 11

lyl<p

as p > 0 increases to +00.
So if we introduce the numbers p, = dy., &, = 27"P+2 and §, = &,(3np2p,+1227+2) ! for every
r € N, we can fix a strictly increasing sequence (A, )cn of positive integers by the following procedure.
We choose A; > 1 verifying the conditions hereunder if they apply to A; only and then the numbers Ag,
A3, ...successively, submitted to the following requirements:

(D p2(1 = @(M\rdr)) < b
(2) T2 \ne= N p2 (K, 1 3) < 277, where p is the Lebesgue measure;
3) A\, 12n+27r—"/2p3(1 + u(Kpy3)) <2775
@) )\r+1 < d(K,, R™\ Q);
($emit < Ay D,
(6) Ar(n )\pfl)_ 1 foreveryp e {1,...,r — 1}
(7) ,\;Jf1 <A (1),
(8) A — 1 < A
(9) forevery p € N, we set R, = sup{|u| : u € Kp} and, if A1, ..., \, are fixed, we first choose ©, > 0
such that |e? — 1] < Ay ™ for every 6 € [-©,,0,] and next impose AN R, y2 < O, for every
r>Dp.
Lit us remark that the requirements (1) and (2) are exactly the conditions imposed in [2] for the defini-
tion of the sequence (\;)ren. So all the inequalities established in [2] are available.

Definition 1 Now we have at our disposal all we need to introduce the open subset Dg of C* as the
interior of

U{u-ﬁ-w u € Kry1 \ Kryv €R™, o] <A,
r=0

where K¢ := 0.
The requirement (4) has been introduced in order to have Dg C Q*.

3. Auxiliary result about BC*(Q)

Asin [2], given f € BC*(Q), we define the sequence (G (-, f))ren, of functions on C™ by the following
recursion: we set Go(w, f) = 0 and

r—1

Gr(wvf)=77_"/2)\?/ ar()(f(y) =Y Gjly, e Zimws=s)" gy

n

Jj=1
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forevery r € Nand w € C".
As the functions a,, € C°°(R™) have compact support contained in (2, this makes sense and the functions
G, (-, f) are holomorphic on C". Moreover we have

DGy (w, f)
r—1
=" / D | ar(®)(F(y) = Y Gj(y, 1)) | e 2=l ay
. =

forevery o € Nj andr € N.
We are going to estimate |[D*G,.(u + v, f) — D*G,(u, f)| forevery u+iv € Do, € N} andr € N.
By use of the inequality (1) of the Proposition 3.1 of [2], we certainly have

ID*G.r(u + iv, f) — DGy (u, f)| <7 "/2A0-d2, 27l || f|| - T

for every m € N and o € Ny verifying |a| < m, with

2 g i )2 a2
I = sup / e_>‘7‘ > 1 (i +ivi—y;) —e A =1 (i — vi)? dy
u+iveED J K, 3\ K,

Lemma 1 We have Iy < (1 + e)u(Ky) and
I < 2"P2(1 4 p(K, )\ YD vre {2,3,...).
PROOF. The estimation of I is a direct consequence of

oM Z?:l(uj-‘rivj_yj)z‘ < Aol < QATA? <eand oA Xioy (w5 —v;)? <1.

The case » > 2 needs more care. Let us first make some evaluations of
n
2 2
X=X (w5 —y;)* —v3) = X(ju—yl* — o).
j=1

a) If u belongs to K1, the requirement (6) of the definition of the numbers A, leads to
X > MK R\ K = [of”) > X 0f = A7) > $A

b) If u does not belong to K7y, there is a unique p € N such that u belongs to K1 \ K, and we distinguish
the following two possibilities:
b.1)if p+ 1 <r — 1, the requirement (6) provides

X > )‘2(d2( 1, R\ Kr) — )\p—i2) > )‘3(7712;-}-1 Apta) > %)‘H

b.2)if p+ 1 > r, then we set J, = [[}_, [u; — ~+1,u; + Ay ] and successively get
b2i)ifye J.: X > —/\%)\pfz > -1,
b.2.ii) ify & J,: asy € K3, the requirements (8) and (9) give

ef)‘?" S0y (uitivi—y;)® _ eﬂ\f Z?:d%‘*?ﬁ)z‘

S ‘ ’\?- EJ" 1(” —2iv;(u;—y;)) _ 1‘ < e)\le‘Q *21’\2 1 vi(ui—y5) _ 1| + (e)\g\v|2 _ 1)

)\ (n+1)+)\ (n+1) <22)\ (n+1)

since ‘2@)\2 > v — y])‘ <222 |v| [u —y| < 4NIA L Rpra < O
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Consequently
a)ifu € Ky orifu € Kpyq1 \ Kp with p+ 1 < r — 1, the requirement (5) provides

I, < 2/ e—kf S (ug—y;)*—v3) dy
K, 3\ K,

< 2072 p(Kpys) < 20, MY (K s);

b)if u € Kptq \ Kp with p + 1 > 7, the requirement (7) leads to

I < / + /
(Kr43\Kr)\Jr (Kr43\Kr)NJr

< 2N (K s) + (e + Dp( ;)
< PATH (K, ) + 22T, < 2ASH (14 (K, 4g). W
Proposition 1 a) For everym € N, there is C,;, > 0 such that
IDG.(u + iv, f) = D*Gr(u, )] < Crn2 ™ 1],

forevery f e BC®(Q), u+iv € Dq,r € {1,...,m} and o € N} such that |a| < m.
b) For every f € BC*(Q), m, r € N u + iv € Dgq and o € N} such that || < m, one has

D G (w4 0, f) = D* G (w, )] < 27 D2l 1]
PROOF. a) Indeed for r = 1, the Lemma 1 leads immediately to
ID*G1(u + iv, f) — D*G1(u, f)|
<m AL R 27 - (14 @)a(K)
and, forr € {2,...,m}, it leads to
ID*G(u + iv, f) = DGy (u, f)]
SN+ pl(Ergg)) - w2 22 2mmled g
b) Again the Lemma 1 leads to
IDYGrpr (v + 10, f) — D*Grpr (w0, )|
<A T2 (L wlEor3) P - 27 1 ]

hence the conclusion by use of the requirement (3) of the definition of the numbers A,.. B

4. Main result

Let us now set G(u + v, f) = 3.2 Gr(u + iv, f) for every f € BC®(Q) and u + iv € Q*. By ([2],
Proposition 3.8), we know that G(-, f) is a holomorphic function on Q* hence on Dq.

In fact a lot more can be said: everything is now in order to obtain the key result about the space
BC® () in view of the extension theorems.

Theorem 2 There is a continuous linear map Tq from BC®(Q) into Heo(Dgq) such that for every f €
BC*®(Q), e > 0and s € N there is a compact subset K of Q such that

ID*(Taf)(u+iv) = D*f(u)| <&

foreveryu + iv € Dq and a € Ny verifying uw € Q\ K and |a| < s.
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PROOF. In fact we have just to set (Tq f)(u+iv) = G(u+iv, f) forevery f € BC®(2) and u+iv € Dq.
We already know that, for every f € BC*(Q), G(:, f) is a holomorphic function on Q* hence on Dqg,

by ([2], Proposition 3.8). Moreover it is clear that the construction of G(-, f) is linearly depending on f.

As forevery f € BC®(Q2),m € N, u +iv € Dg and o € Nj such that |a| < m, we successively have

DG (u + v, f)] < [D*G(u, f)| + Y [D*Gr(u +iv, f) = D*Gur(u, f)]

r=1
o0
+ D IDGr(u+iv, f) = DGy (u, f)]
r=m-+1
< cm ||f||erl +mC,,2 ™l £, + 9—mg—m|a 71,
< (em +mCyp +27™) ||f||m+1

by use of ([2], Proposition 3.7) and of the Proposition 1 to get the second inequality, it is already established
that Tq is a continuous linear map from BC*°(Q) into Heo (Dg).

Let us now prove the second part of the statement: let f € BC*(Q2), ¢ > 0 and s € N be fixed.

The part b) of the Proposition 1 leads to

DG, (u + v, f) — D*G(u, f)| < 277270l || f||,

forevery u +iv € Do, € N, o € NJ such thatr > s + 1 and || < s. So it is possible to fix a positive

integer m > s such that
o0

Z DG, (u + iv, f) — D*Gr(u, f)| <

r=m+1

€
3
for every u + iv € Dg and o € N such that |a| < s.
As the sequence (g, ) ey decreases to 0, the Lemma 3.6 of [2] then provides dg € N such that

PG, f) = D*fw)] < 3

forevery u € Q\ Kg4, and o € Nj such that [a| < s.
Now we turn our attention to the evaluation of

ID*Gy(u + v, f) = D*Gr(u, f)]

foreveryr € {1,...,m},u+iv € Dg and o € Nj such thatw € Q\ Kq withd > dy and |a| < s. We
already know that it is

< W_n/2)‘? : di,sz_sla‘ ”f”s : Ir,u-‘riv < W_n/2)‘% 'p$n2_sla| ||f||s : Ir,u-‘riv

with

2 2 2 n 2_ ;. . P— .
IT',u+i'v = / e—/\rlu—y\ eA,. Zj:l('uj 21’0_7(11,] yj)) _ 1‘ dy
K.y 3\K,

</ ‘ekf\vlze*%*f j=1viwi—yj) _ 1‘ dy.
Kr+3\K7‘

For u + iv € Dq verifying u € Kq441 \ Kq with d > sup{m + 2,dy}, we have
QMalvl? o= 2iA7 ST v (u—y;) _ 1‘

< eMAZL |20 Tioa vi(u—ws) _ 1| 4 (@b\ﬁz -1)
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with exp(A2A;7,) < e and exp(AZA;7,) — 1 — 0 if d — co. Moreover we have

2)\3 ZU]'(UJ' — yj) S 2)\7%)\;_{{2““' + |y|)
7j=1

< 2X2A7 {5 (Ray1 + Rrys) <4X2 A7 5 Rayr.

So we can choose d; > sup{m + 2, dp} such that

DG, (u + iv, f) — D*Gir(u, f)| < 3im

foreveryr € {1,...,m},« € N§ and u + iv € Dg such that |a| < sandu € Q\ Kg,.
Taking all these informations together leads then to the conclusion with K = K4,. B

5. Existence of holomorphic extension maps
Case 1: F is compact or R" \ F is bounded.

Definition 2 Given a proper open subset Q of R™, HoC>® () designates the following Fréchet space.
Its elements are the functions f defined on R™ U Dq such that

(1) flgn € C=(R");

(2) flpa € Hoo(Da);

(3)lim,_,, D*(f|pg,) = D*(f|rn)(x) for every o € N} and x € Ogn 2.

It is endowed with the countable system of semi-norms {|||-|||,,, : m € N} defined by

£l = sup IID“(fIRn)IIbm\Q+|S|u<p 1D%(£1pa)llpg,

loe|<m
where by, == {z € R": |z| <m}.

Theorem 3 Let F be a proper closed subset of R™ and set Q) := R" \ F.
If F is compact or if Q is bounded, then the existence of a continuous linear extension map E from E(F)
into C®°(R™) implies the existence of a continuous linear extension map Ef from E(F) into H, C®(Q).

PROOF. If F' is compact, we choose a function ¢ € C*°(R") identically 1 on a neighbourhood of F with
compact support and check that the map

Ei:EF)—» ¢—=¢.Ep

also is a continuous linear extension map. So up to substituting F; to F itself, we may very well suppose
that E is a continuous linear extension map from E(F') into C*°(R™) such that (E -)|q is a continuous
linear map from £(F) into BC*(Q2).

Now to every jet ¢ € E(F), we associate the function Er¢ defined on R” U Dg, as follows

(Ere)(x) (Ep)(x), Ve € F,
(Erp)(z) = Ta((E¢)le)(2), Vze€ Dq.

By use of the key Theorem 2, it is a direct matter to check that Er so defined is a linear extension map
from &£ (F) into H oo C>(Q). Let us prove that it also is continuous. For this purpose, we just need to prove
that for every continuous semi-norm |||-[||,, on HC>(€2), there is a continuous semi-norm p on &(F)
such that

IErolll,, < ple), Yo €&(F).
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This is easy: we just have to note that we have

llll, = sup [[D*(E@)lenlly, \p, + sup ID*(Ta(E@)la)llp,

la|<m la|<m

with
sup ”DQ(E‘PHR"HI;M\DQ = sup ||80a||bmmF
la|<m la|<m

and

Sup ID*(Ta(Ep)|o)llp, < a((Ep)la) < p(p)
for some continuous semi-norms ¢ on BC*(Q) since Tq is a continuous linear map from BC*(Q) into
Hoo(Dgq) and for some continuous semi-norm p on £(F') since (E-)|q is a continuous linear map from
E(F) into BC*(Q). W
Case 2: F'is a closed subset of R™.

Definition 3 Let us abbreviate “connected component” by “c.c.”. Given a proper open subset Q2 of R™,
let us set

O =U{w:w=cc of Q,wNn By # 0},

introduce by recursion the sets
Qi =U{w:w=cc of QwnB; #0,wnN (ﬁi;iﬂk) =0}

forj =23 ...and write J := {j € N: Q; # 0}. For every j € J, the construction of Paragraph 2.

applied to QU provides an open subset Dg; of C* such that R" NDgq; = Q; and (u+iv € Dq; = u € Q).
Then we set D := Ujc Do, and introduce the following Fréchet space HC™ (). Its elements are the

Sfunctions f defined on R™ U D such that

(1) flrn € E(RY);

(2) flp € H(D);

(3) f and its derivatives are bounded on each one of the sets Dq;;

(4)lim,_,, D*(f|p)(2) = D*(f|r=)(2) for every a € N§ and x € Ogn L.

It is endowed with the countable system of semi-norms {|||-|l|,,, : m € N} defined by

WAl = sup [ID%(flr~)lly,\o + sup sup [[D°fllp, -
o] <m J<m|a|<m ’

Theorem 4 Let F be a proper closed subset of R™ and set Q@ = R" \ F.

If there is a continuous linear extension map E: E(F) — E(R™), the following assertions are equiva-
lent:
(1) there is a continuous linear extension map E from E(F) into HC™>(Q);
(2) for every bounded subset B of R™, the boundary of the union of the connected components of ) having
non empty intersection with B is compact.

PROOF. (1) = (2). One has just to follow the argument of Frerick and Vogt in [1]. For the sake of
completeness, we repeat it. If it is not the case, there is » > 0 such that the boundary of

wr =U{w: w= cc.of Q,wnb, # 0}

is unbounded. As ||-||, is a continuous semi-norm on HC>°({2), the continuity of the map F; provides the
existence of m € N such that m > r and

1E1olly, <mlpl,, Yeel(F),
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where |-, denotes the m-th continuous semi-norm on £(F') (i.e. corresponding to the compact set F'Nbyy,).
Now we choose zg € (Ornwy) \ b1 and ¥g € C°(R™) such that 1g(zo) = 1, and finally consider the
jet o = ((D%o)|F)aeny € E(F). On one hand, as |¢ql,,, = 0, E1¢y is identically 0 on b,.. On the other
hand, E; ¢ is not identically 0 on any neighbourhood of z¢. Hence a contradiction.

(2) = (1). If F is compact or if £ is bounded, the condition (2) is automatically satisfied and the
previous theorem provides a better result.

If F is not compact and if € is not bounded, we proceed as follows.

If n > 2, as F is not compact, the condition (2) implies that all the connected components of (2 are
bounded and, as {2 is not bounded, J is infinite. If n = 1, as F' is not compact, the condition (2) implies that
one and only one connected component w of {2 may be unbounded: it is of the type | — 0o, a[ or ]b, +o0].
We then choose a function ¢ € C*°(R) identically 1 on a neighbourhood of [a, +o00[ or ] — 00, b] and 0 on
] — 00,a — 1] or [b+ 1, +oo] respectively and check that

Ey: E(F) 5 C®(R) ¢~ 9.Ep

is a continuous linear extension map such that (Ez-)|,, is a continuous linear map from £(F') into BC* (w).

So up to a substitution, we may very well suppose that, for every j € J, (E-)|q;, is a continuous linear
map from £(F’) into BC™(Q2;).

Now we apply the Theorem 1 for every j € J and get continuous linear extension maps Tq; from
BC™(Q;) into Hoo(D;) such that for every f € BC™(Q;),e > 0 and s € N, there is a compact subset
K of Q; such that ‘Da(Tij)(u + ) — Do‘f(u)‘ < egforevery u +iv € Dj and o € Nj such that
ueQ;\ Kjand|a <s.

To every jet ¢ € £(F'), we then associate the function E ¢ defined on R* U D by

{(Eup)(w) (Ee)(@), Vo € F,
(Big)(z) = To,(Bp)la,)(2), Vze€Djjel

It is a rather classic matter to check that E; so defined is a linear extension map from £(F) into
HC>=(Q).

To conclude, we still have to establish its continuity. As it is a linear map, we just need to prove that for
every m € N, there is a continuous semi-norm p on £(F) such that ||| E1¢|||,,, < p(yp) forevery ¢ € E(F).
This is a direct matter since we have

1E1¢lll,, = sup [ID*((E1p)lrn)lly,,\@ + sup sup [[D*(E1¢)lIp,

la|<m i<m |a|<m
with
sup |[D*((Erp)lr=)lly, o < sup lleally, nr
la|<m la|<m
and

sup sup [IDY(E1¢)llp, < sup q;((Ep)le;) < sup pj(y)
j<m|a|<m 7 gsm is

for some continuous semi-nors ¢; on BC*(€2;) since Tq; is a continuous linear map from BC>°(£2;) into
HooC>(Dg, ) and some continuous semi-norms p; on £(F) since (E-)|q; is a continuous linear map from
E(F) into BC™(Q;). W

Remark 1 The same method applies to the case of the ultradifferentiable Whitney jets of the Beurling or
Roumieu type (cf. [3]).
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