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The impact of the Radon-Nikodým property on the weak
bounded approximation property

Eve Oja

Abstract. A Banach space X is said to have the weak λ-bounded approximation property if for every
separable reflexive Banach space Y and for every compact operator T : X → Y , there exists a net (Sα)
of finite-rank operators on X such that supα ‖TSα‖ ≤ λ‖T‖ and Sα → IX uniformly on compact
subsets of X .

We prove the following theorem. Let X∗∗ or Y ∗ have the Radon-Nikodým property; if X has the
weak λ-bounded approximation property, then for every bounded linear operator T : X → Y , there exists
a net (Sα) as in the above definition. It follows that the weak λ-bounded and λ-bounded approximation
properties are equivalent for X whenever X∗ or X∗∗ has the Radon-Nikodým property. Relying on
Johnson’s theorem on lifting of the metric approximation property from Banach spaces to their dual
spaces, this yields a new proof of the classical result: if X∗ has the approximation property and X∗ or
X∗∗ has the Radon-Nikodým property, then X∗ has the metric approximation property.

El impacto de la propiedad de Radon-Nikodým en la propiedad de
aproximación acotada débil

Resumen. Se dice que un espacio de Banach X tiene la propiedad de aproximación λ-acotada débil
si para todo espacio de Banach reflexivo y separable Y , y para todo operador compacto T : X → Y ,
existe una red (Sα) de operadores de rango finito sobre X tal que supα ‖TSα‖ ≤ λ‖T‖ y Sα → IX

uniformemente sobre subconjuntos compactos de X .
Probamos el siguiente teorema. Supongamos que X∗∗ o Y ∗ tengan la propiedad de Radon-Nikodým;

si X tiene la propiedad de aproximación λ-acotada débil, entonces para todo operador lineal acotado
T : X → Y , existe una red (Sα) como en la definición anterior. Resulta que las propiedades de
aproximación λ-acotada débil y de aproximación λ-acotada son equivalentes para X , si X∗, o bien X∗∗,
tiene la propiedad de Radon-Nikodým. Gracias al teorema de Johnson sobre el levantamiento de la
propiedad de aproximación métrica de los espacios de Banach a sus duales, esto proporciona una nueva
prueba del siguiente resultado clásico: si X∗ tiene la propiedad de aproximación y X∗, o bien X∗∗, tiene
la propiedad de Radon-Nikodým, entonces X∗ tiene la propiedad de aproximación métrica.

1. Introduction
Let X and Y be Banach spaces. We denote by L(X,Y ) the Banach space of bounded linear operators from
X to Y , and by F(X, Y ) and K(X,Y ) its subspaces of finite-rank operators and compact operators.

Let IX denote the identity operator on X . If there exists a net (Sα) ⊂ F(X,X) such that Sα → IX

uniformly on compact subsets of X , then X is said to have the approximation property. If (Sα) can be
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chosen with supα ‖Sα‖ ≤ λ for some λ ≥ 1, then X is said to have the λ-bounded approximation property.
If λ = 1, then X has the metric approximation property.

The following is a long-standing famous open problem (see, e.g., [1, page 289]).

Problem 1 Does the approximation property of the dual space X∗ of a Banach space X imply the metric
approximation property of X∗?

By an important result of Grothendieck [11, Chapter I, proof of Corollary 2 on page 182 together
with Corollary 3, pages 134–135], separable dual spaces with the approximation property have the metric
approximation property. The proof of this result “has always been a little mysterious” as written in [1,
page 289]. The most far-reaching result in this direction is as follows.

Theorem 1 (see [5, page 246], [18, Theorem 4] and [10, Corollary 1.6]). Let X be a Banach space such
that X∗ or X∗∗ has the Radon-Nikodým property. If X∗ has the approximation property, then X∗ has the
metric approximation property.

Recently, the weak bounded approximation property was introduced and studied by Lima and Oja [16].
Let 1 ≤ λ < ∞. Following [16, Theorem 2.4], we say that a Banach space X has the weak λ-bounded ap-
proximation property if for every separable reflexive Banach space Y and for every operator T ∈ K(X,Y ),
there exists a net (Sα) ⊂ F(X, X) such that supα ‖TSα‖ ≤ λ‖T‖ and Sα → IX uniformly on compact
subsets of X . We say that X has the weak bounded approximation property if X has the weak λ-bounded
approximation property for some λ. We say that X has the weak metric approximation property if X has
the weak 1-bounded approximation property.

It was proven in [16] that Problem 1 can be reformulated in terms of the weak metric approximation
property in different equivalent ways. For instance (see [16, Problem 1.2]), does the weak metric approxi-
mation property of X∗ imply the metric approximation property of X∗?

The following theorem is the main result of this paper.

Theorem 2 Let X and Y be Banach spaces and let 1 ≤ λ < ∞. Assume that X has the weak λ-
bounded approximation property. If X∗∗ or Y ∗ has the Radon-Nikodým property, then for every operator
T ∈ L(X, Y ), there exists a net (Sα) ⊂ F(X, X) such that supα ‖TSα‖ ≤ λ‖T‖ and Sα → IX uniformly
on compact subsets of X .

Theorem 2 will be proven in Section 2. Section 3 presents some applications of Theorem 2. Among
others a new rather unexpected proof of Theorem 1 will be given that uses Johnson’s theorem [12]: if X
has the metric approximation property in every equivalent norm, then X∗ has the metric approximation
property.

The notation we use is standard. We shall consider X as a subspace of X∗∗. The closed unit ball of X
is denoted by BX .

2. Proof of Theorem 2

The idea of the proof comes from [16, Theorem 2.4].
Let X and Y be Banach spaces and let 1 ≤ λ < ∞. We assume that X has the weak λ-bounded

approximation property and X∗∗ or Y ∗ has the Radon-Nikodým property.
Let T ∈ L(X,Y ). We may assume without loss of generality that ‖T‖ = 1. We need to show that, for

every compact subset K of X and for every ε > 0, there is an operator S ∈ F(X,X) such that ‖TS‖ ≤ λ
and ‖Sx− x‖ ≤ ε for all x ∈ K.

Let us fix a compact subset K of X and ε > 0. Consider the seminorm

p(A) = sup{‖Ax‖ : x ∈ K}, A ∈ L(X, X),
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and put
C = {TS : S ∈ F(X, X), p(S − IX) ≤ ε/2}.

Then C is a convex subset of F(X, Y ). It is not empty because X has the approximation property (this is
obvious if one takes T = 0 in the definition of the weak bounded approximation property). Let us fix δ > 0
such that

δ

λ + δ

(ε

2
+ p(IX)

)
≤ ε

2
.

We shall show below that
C ∩ (λ + δ)BF(X,Y ) 6= ∅.

If then Sδ ∈ F(X, X) is such that p(Sδ − IX) ≤ ε/2 and ‖TSδ‖ ≤ λ + δ, then

S =
λ

λ + δ
Sδ ∈ F(X, X)

will be the operator that we need. Indeed, ‖TS‖ ≤ λ and, for all x ∈ K,

‖Sx− x‖ ≤ p(S − IX) ≤ p(S − Sδ) + p(Sδ − IX)

≤ δ

λ + δ
p(Sδ) +

ε

2
≤ δ

λ + δ

(
p(Sδ − IX) + p(IX)

)
+

ε

2
≤ ε.

To complete the proof, suppose to the contrary that

C ∩ (λ + δ)BF(X,Y ) = ∅.

Then there exists f ∈ (F(X,Y )
)∗ such that ‖f‖ = 1 and

λ + δ = sup{Ref(A) : ‖A‖ ≤ λ + δ} ≤ inf{Ref(A) : A ∈ C}.

By the description of
(K(X,Y )

)∗ due to Feder and Saphar [7, Theorem 1] (here one needs the Radon-
Nikodým property of X∗∗ or Y ∗), through the Hahn-Banach theorem, there exists an element u in the
projective tensor product Y ∗⊗̂X∗∗ such that ‖u‖π = ‖f‖ = 1 and f(A) = trace(A∗∗u) for all A ∈
F(X,Y ).

Let u =
∑∞

n=1 y∗n ⊗ x∗∗n , y∗n ∈ Y ∗, x∗∗n ∈ X∗∗, with
∑∞

n=1 ‖y∗n‖‖x∗∗n ‖ < 1 + δ/2λ. Let (ηn)∞n=1

be a sequence of positive scalars tending to ∞ such that
∑∞

n=1 ηn‖y∗n‖‖x∗∗n ‖ < 1 + δ/λ. We clearly may
assume that ηn ≥ 1 and ‖y∗n‖ = 1 for all n.

Denote by C the closed absolutely convex hull in X∗ of the compact set {0, T ∗y∗1/η1, T
∗y∗2/η2, . . .}.

Since C is a compact absolutely convex subset of BX∗ , by the isometric version of the famous Davis-Figiel-
Johnson-Pełczyński factorization lemma [4] due to Lima, Nygaard, and Oja [15], there exists a separable
reflexive Banach space Z, which is a linear subspace of X∗, such that the identity embedding J : Z → X∗

is compact and ‖J‖ ≤ 1. Moreover,

{T ∗y∗1/η1, T
∗y∗2/η2, . . .} ⊂ J(BZ).

Since X has the weak λ-bounded approximation property, for the operator J∗|X ∈ K(X, Z∗), there
exists S ∈ F(X, X) such that ‖J∗|XS‖ ≤ λ and p(S − IX) ≤ ε/2. Observe that ‖S∗J‖ ≤ λ, because
S∗J = S∗(J∗|X)∗ = (J∗|XS)∗ and ‖J∗|XS‖ ≤ λ.

Since TS ∈ C, we have
λ + δ ≤ |f(TS)|.
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On the other hand, choosing zn ∈ BZ such that T ∗y∗n = ηnJzn for all n, we have

|f(TS)| = |trace(T ∗∗S∗∗u)| = |
∞∑

n=1

x∗∗n (S∗T ∗y∗n)|

= |
∞∑

n=1

ηnx∗∗n (S∗Jzn)| ≤ ‖S∗J‖
∞∑

n=1

ηn‖x∗∗n ‖

< λ(1 + δ/λ) = λ + δ.

This contradiction completes the proof.

3. Applications

3.1. Bounded approximation property and its weak version
The λ-bounded approximation property implies the weak λ-bounded approximation property. This is obvi-
ous from the definitions. It is not known whether the weak λ-bounded approximation property implies the
λ-bounded approximation property.

Conjecture 1 (Lima-Oja [16]). The weak λ-bounded and the λ-bounded approximation properties are,
in general, different.

Our first application concerns Conjecture 1.

Corollary 1 Let X be a Banach space and let 1 ≤ λ < ∞. If X∗ or X∗∗ has the Radon-Nikodým
property, then the weak λ-bounded and the λ-bounded approximation properties are equivalent for X .

PROOF. This is immediate from Theorem 2 applied to Y = X and T = IX .

Problem 2 Are the weak λ-bounded and the λ-bounded approximation properties equivalent for a Banach
space X having the Radon-Nikodým property?

Recall that if X has the Radon-Nikodým property and is complemented in its bidual X∗∗ by a projection
P , then already the approximation property of X implies the ‖P‖-bounded approximation property for X
(see [18, Theorem 4] or e.g. [3, page 194]).

Corollary 1 applies, for instance, to closed subspaces of c0. In particular, the Johnson-Schechtman space
(see [13, Corollary JS]) XJS , which has the 8-bounded approximation property (see [8, Theorem VI.3 and
its proof]) and does not have the metric approximation property, does not have the weak metric approxi-
mation property. (This result was proven in [16, Proposition 2.3] relying on a theorem [16, Theorem 4.1]
asserting that some geometric structure permits to lift the weak metric approximation property from spaces
to their dual spaces.)

The famous example of a Banach space XFJ which has the approximation property but fails the
bounded approximation property due to Figiel and Johnson [6] can be done with X∗

FJ separable (see [6]).
Therefore, by Corollary 1, XFJ fails the weak bounded approximation property. By Corollary 1, also
the Casazza-Jarchow space XCJ [2, Theorem 1] fails the weak bounded approximation property. Recall
that XCJ has the approximation property, fails the bounded compact approximation property, and its duals
X∗

CJ , X∗∗
CJ , . . . are all separable and have the metric compact approximation property.

Let us recall that a Banach space X is said to have the unique extension property if the only operator
T ∈ L(X∗∗, X∗∗) such that ‖T‖ ≤ 1 and T |X = IX is T = IX∗∗ . This property was introduced and
deeply studied by Godefroy and Saphar in [9] (using the term “X is uniquely decomposed”) and [10]. They
proved in [10, Theorem 2.2] that the unique extension property of X permits to lift the metric approximation
property from X to X∗. From this and Corollary 1, the following is immediate.
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Corollary 2 Let X be a Banach space having the unique extension property and let X∗ or X∗∗ has the
Radon-Nikodým property. If X has the weak metric approximation property, then its dual X∗ has the metric
approximation property.

Notice that Corollary 2 is also immediate from Theorem 1 and a recent result due to Vegard Lima
[14, Theorem 2.9] that the unique extension property of X permits to lift the weak metric approximation
property from X to X∗.

Concerning a possible strengthening of Corollary 2, let us mention the following special case of Problem
2.

Problem 3 Are the weak metric and metric approximation properties equivalent for a Banach space X
having the Radon-Nikodým property and the unique extension property?

3.2. A conjecture of Defant and Floret

Consider the trace mapping V from the projective tensor product X⊗̂Y ∗ to (F(X, Y ))∗, defined by

(V u)(S) = trace(Su), u ∈ X⊗̂Y ∗, S ∈ F(X, Y ).

It is well known and easy to see that ‖V u‖ ≤ ‖u‖π, u ∈ X⊗̂Y ∗. It is proven in [16] that Conjecture 1 is,
in fact, equivalent to the following.

Conjecture 2 (Defant-Floret [3, page 283]). The λ-bounded approximation property cannot be charac-
terized using only reflexive spaces, that is, the λ-bounded approximation property of a Banach space X is
not equivalent to the condition

for all reflexive Banach spaces Y , the trace mapping V : X⊗̂Y ∗ → (F (X, Y ))∗

satisfies ‖u‖π ≤ λ‖V u‖, u ∈ X⊗Y ∗. (∗)

Let us mention that the λ-bounded approximation property of X is equivalent to the strengthening of
condition (∗) with all Banach spaces Y (instead of reflexive Y ). This well-known result (see, e.g., [3,
page 193]) is essentially due to Grothendieck [11].

Concerning Conjecture 2, we have the next result.

Corollary 3 Let X be a Banach space and let 1 ≤ λ < ∞. If X∗ or X∗∗ has the Radon-Nikodým
property, then the λ-bounded approximation property of X can be characterized using only the reflexive
spaces, meaning that it is equivalent to condition (∗).

PROOF. It is proven in [16, Theorem 3.2 and Remark 3.2] that (∗) is equivalent to the weak λ-bounded
approximation property. Therefore the claim is immediate from Corollary 1.

3.3. A proof of Theorem 1

Let X be a Banach space such that X∗ or X∗∗ has the Radon-Nikodým property. Let us assume that X∗

has the approximation property. By [16, Theorem 4.2], the approximation property of X∗ is equivalent
to the fact that X has the weak metric approximation property for all its equivalent renormings. Since the
Radon-Nikodým property is invariant under isomorphisms, by Corollary 1, X has the metric approximation
property for all its equivalent renormings. But in this case, X∗ already has the metric approximation
property by a well-known lifting result due to Johnson [12, Theorem 4] (see, e.g., [1, page 289]). This
completes the proof of Theorem 1.

As the first step in the above proof, we applied Theorem 4.2 of [16]. For completeness, let us comment
on ideas that we actually need from this theorem.
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Since the approximation property is preserved under changes to equivalent norms, for the first step of
the above proof, it suffices to prove that X has the weak metric approximation property. As we mentioned
in the proof of Corollary 3, by [16, Theorem 3.2 and Remark 3.2], this is equivalent to condition (∗) with
λ = 1. This condition can be verified as follows (see [16, Theorem 4.2, proof of (c) ⇒ (a)]).

Let Y be a reflexive Banach space and let u ∈ X ⊗ Y ∗. Since (X⊗̂Y ∗)∗ = L(X, Y ∗∗) = L(X,Y ),
there exists T ∈ L(X, Y ) with ‖T‖ = 1 such that ‖u‖π = trace(Tu). Since T is weakly compact, by a
criterion of the approximation property for X∗ in [17, Theorem 5], there exists a net (Tα) ⊂ F(X, Y ) with
supα ‖Tα‖ ≤ ‖T‖ = 1 such that T ∗αy∗ → T ∗y∗ for all y∗ ∈ Y ∗. But then

‖u‖π =trace(Tu) = lim
α

trace(Tαu)

≤ sup
α
|trace(Tαu)| = sup

α
|(V u)(Tα)| ≤ ‖V u‖

as desired.
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