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Remarks on compact operators between interpolation spaces
associated to polygons

Fernando Cobos, Luz M. Fernández-Cabrera, and Antón Martı́nez

Abstract. This note deals with interpolation methods defined by means of polygons. We show necessary
and sufficient conditions for compactness of operators acting from a J-space into a K-space.

Notas sobre operadores compactos entre espacios de interpolación
asociados a polı́gonos

Resumen. Esta nota trata de métodos de interpolación definidos por medio de polı́gonos. Damos
condiciones necesarias y suficientes para la compacidad de operadores actuando desde un J-espacio a un
K-espacio.

1. Introduction

Interpolation theory has a number of important applications in geometry of Banach spaces, as can be seen,
for example, in the monographs by Beauzamy [1], Lindenstraus and Tzafriri [18], or the papers by Kalton
and Montgomery-Smith [17], and Pisier and Xu [19]. The more important interpolation methods are the
real and complex methods, denoted by (·, ·)θ,q and (·, ·)[θ], respectively. Both of them work for Banach
couples. In the special case of two Banach spaces A0, A1 with A0 continuously embedded in A1, they
generate a ”continuous scale” of spaces joining A0 and A1. It is useful to imagine A0 and A1 sitting on the
endpoints of the segment [0, 1] and the space (A0, A1)θ,q [respectively, (A0, A1)[θ]] located at the point θ.
See Fig. 1.1.
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Full details on interpolation methods can be found, for example, in the monographs by Bergh and Löfström
[2], Triebel [21], Beauzamy [1] and Brudnyı̌ and Krugljak [3]. As concern to applications in geometry of
Banach spaces, the real method fits better than the complex method (see [18], [1] and [2]).

We deal here with interpolation methods similar to the real method, but working for finite families
(N -tuples) of Banach spaces instead of couples and incorporating some geometrical elements which are
essential in developing their theory. They were introduced by Peetre and one of the present authors in [11].
They are defined by using a convex polygon Π = P1 · · ·PN in the plane R

2 with vertices Pj , an interior
point (α, β) of Π, and two scalar parameters t, s. The Banach spaces A1, . . . , AN of the N -tuple should
be thought of as sitting on the vertices of Π. The J- and K-methods associated to polygons give a unified
point of view for the multidimensional methods which extend the real method to N -tuples. So, when the
polygon Π is equal to the simplex, these methods give back (the first nontrivial case) of spaces studied by
Sparr [20], and if Π coincides with the unit square we recover spaces studied by Fernandez [13], [14]. The
geometrical point of view of Cobos and Peetre explains the restrictions on parameters in Fernandez’ case.

A large part of the paper [11] is devoted to investigate the behaviour of compact operators under interpo-
lation by the J- and K-methods. Later, Cobos, Kühn and Schonbek [9] studied the case when interpolated
operators act from a J-space into a K-space. An estimate for the measure of non-compactness of opera-
tors acting from J- to K-spaces was established by Cobos, Fernández-Martı́nez and Martı́nez [7]. Other
compactness results can be found in the papers by Cobos [4] and Cobos and Romero [12].

In this paper we compliment the results of [9] and [7] by characterizing compactness of interpolated
operators in terms of weaker compactness conditions and an approximation stipulation involving the K-
and the J-functionals.

In the case of the real method, the first result of this type was established by one of the present authors
[15]. Later, the authors proved in [5], [6] similar results for the complex method and other classical methods
for Banach couples. Very recently, two of the present authors [16] have investigated the multidimensional
case, dealing with operators which act between two K-spaces or two J-spaces. For this aim, they imposed
a certain geometrical condition on the polygon (to be admissible; see Section 2 below), already considered
by Cobos and Peetre in [11] for their compactness theorems.

The result that we shall derive here do not require any extra assumption on the polygon. We achieve
it thanks to the good estimate that holds for the norms of interpolated operators acting from a J- into a
K-space. As in [16], our arguments are based on families of projections on vector-valued sequence spaces
that come up when defining the K- and J-spaces but, in contrast to [16] where projections depend on the
polygon, we work here with fixed sequences of projections.

The paper is organized as follows. In Section 2, we review the definitions of J- and K-methods as-
sociated to polygons and some of their basic properties. In Section 3, we establish the characterization of
compact operators.

2. Interpolation methods defined by means of polygons

Let A = {A1, . . . , AN} be a Banach N -tuple, that is, a family of N Banach spaces all of them continuously
embedded in a common linear Hausdorff space. Let Σ(A) = A1 + · · · + AN be their sum and ∆(A) =
A1 ∩ · · · ∩ AN be their intersection. These two spaces become Banach spaces when endowed with the
norms

‖a‖Σ(A) = inf
{

N
∑

j=1

‖aj‖Aj
: a =

N
∑

j=1

aj , aj ∈ Aj

}

and

‖a‖∆(A) = max
{

‖a‖Aj
: 1 ≤ j ≤ N

}

respectively.
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Let Π = P1 · · ·PN be a convex polygon in the affine plane R
2, with vertices Pj = (xj , yj). We imagine

each Aj as sitting on the vertex Pj . By means of the polygon Π, we define the following family of norms
in Σ(A)

K(t, s; a) = inf
{

N
∑

j=1

txj syj‖aj‖Aj
: a =

N
∑

j=1

aj , aj ∈ Aj

}

, t, s > 0.

Similarly, in ∆(A), we introduce the family of norms

J(t, s; a) = max
{

txj syj‖a‖Aj
: 1 ≤ j ≤ N

}

, t, s > 0.

Given any interior point (α, β) of Π, [(α, β) ∈ Int Π] and 1 ≤ q ≤ ∞, the K-space A(α,β),q;K consists
of all elements a in Σ(A) which have a finite norm

‖a‖A(α,β),q;K
=





∑

(m,n)∈Z2

(

2−αm−βnK(2m, 2n; a)
)q





1/q

(the sum should be replaced by the supremum if q = ∞).
The J-space A(α,β),q;J is formed by all those a in Σ(A) which can be represented as

a =
∑

(m,n)∈Z2

um,n (convergence in Σ(A)) (2..1)

with {um,n} ⊆ ∆(A) and

‖{um,n}‖(α,β),q;J =





∑

(m,n)∈Z2

(

2−αm−βnJ(2m, 2n;um,n)
)q





1/q

< ∞. (2..2)

The norm ‖ · ‖A(α,β),q;J
on A(α,β),q;J is given by the infimum of the values of the sums (2..2) over all such

representations (2..1) of a.
In the special case when Π is equal to the simplex {(0, 0), (1, 0), (0, 1)}, we recover (the first non-trivial

case of) spaces introduced by Sparr [20], and in the case of the unit square {(0, 0), (1, 0), (1, 1), (0, 1)}, we
obtain spaces studied by Fernandez [13], [14].

In general, K- and J-spaces do not coincide, but we have that A(α,β),q;J ↪→ A(α,β),q;K (see [11], Thm.
1.3). Here ↪→ means continuous inclusion.

In order to show a concrete example, consider the N -tuple of L∞-spaces with weights

(L∞(w1), · · · , L∞(wN )).

It is shown in [8], Thm. 2.3, that

(L∞(w1), · · · , L∞(wN ))(α,β),∞;K = L∞(w̌α,β)

where the weight w̌α,β is defined by

w̌α,β(x) = min
{

wci

i (x)wck

k (x)wcr
r (x) : {i, k, r} ∈ P(α,β)

}

.

Here P(α,β) is the set of all those triples {i, k, r} such that (α, β) belongs to the triangle with vertices
Pi, Pk, Pr (see Fig. 2.1) and (ci, ck, cr) are the (unique) barycentric coordinates of (α, β) with respect to
Pi, Pk, Pr.
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Figure 2.1

For N -tuples of weighted L1-spaces, it is proved in [8], Thm. 2.5, that

(L1(w1), · · · , L1(wN ))(α,β),1;J = L1(ŵα,β)

where

ŵα,β(x) = max
{

wci

i (x)wck

k (x)wcr
r (x) : {i, k, r} ∈ P(α,β)

}

.

Other examples can be found in [11] or [10].
Let B = {B1, . . . , BN} be another Banach N -tuple. We write T ∈ L(A,B) to mean that T is a

linear operator from Σ(A) to Σ(B) whose restriction to each Aj gives a bounded operator from Aj into Bj ,
j = 1, . . . , N . It is easy to check that if T ∈ L(A,B), then the restrictions

T : A(α,β),q;K → B(α,β),q;K , T : A(α,β),q;J → B(α,β),q;J

are bounded operators. The norms of these restrictions satisfy the following inequalities (see [8], Thm. 1.9)

‖T‖A(α,β),q;K ,B(α,β),q;K
≤ C max

{

‖T‖ci

Ai,Bi
‖T‖ck

Ak,Bk
‖T‖cr

Ar,Br
: {i, k, r} ∈ P(α,β)

}

,

where C is a constant depending only on Π and (α, β). A similar estimate holds for the restriction of T to
the J-spaces.

If T ∈ L(A,B), then it is clear that the restriction

T : A(α,β),q;J → B(α,β),q;K

is bounded, as well. But in this case a more handy estimate holds. Let θ = (θ1, . . . , θN ) be any N -tuple of
positive numbers with

∑N
j=1 θj = 1 and

∑N
j=1 θjPj = (α, β). It was proved in [8], Thm. 3.2, that there is

a constant M > 0, depending only on θ, such that for any Banach N -tuples A, B and any T ∈ L(A,B), it
holds

‖T‖A(α,β),q;J ,B(α,β),q;K
≤ M

N
∏

j=1

‖T‖
θj

Aj ,Bj
. (2..3)

The following class of polygons was introduced in [11] to establish the compactness results for general
N -tuples. If Π = P1 · · ·PN , then for j > N or j < 1, we put

Pj = Pj0 if j ≡ j0 (mod N), 1 ≤ j0 ≤ N.

The convex polygon Π is said to be admissible if for each edge PjPj+1, j = 1, . . . , N , there is another
PkPk+1 satisfying the following two conditions:
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(a) The extension of the segment PjPk+1 in the direction of Pj meets the extension of Pj+1Pj+2 in the
direction of Pj+1; and

(b) the extension of the segment Pj+1Pk in the direction of Pj+1 meets the extension of Pj−1Pj in the
direction of Pj .

See Fig. 2.2.
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Figure 2.2

Characterizations for compact operators between J-spaces or K-spaces established by Fernández-
Cabrera and Martı́nez require the polygon Π to be the simplex, the unit square, or any admissible polygon
(see [16], Thms. 3.3 and 4.2). However, as we shall show in the next section, when operators act from a
J-space into a K-space no geometrical condition on the polygon is needed.

3. Compact operators from J- to K-spaces
Let {Wm,n}(m,n)∈Z2 be any sequence of Banach spaces and let {λm,n}(m,n)∈Z2 be any sequence of non-
negative numbers. We denote by `q(λm,nWm,n) the vector-valued `q-space formed by all sequences w =
{wm,n} with wm,n ∈ Wm,n which have a finite norm

‖w‖`q(λm,nWm,n) =
(

∑

(m,n)∈Z2

(λm,n‖wm,n‖Wm,n
)q

)1/q

.

If λm,n = 1 for all (m,n) ∈ Z
2, we write simply `q(Wm,n).

Next we establish the characterization for compact operators.

Theorem 3..1 Let Π = P1 · · ·PN be a convex polygon in R
2 with vertices Pj = (xj , yj), let (α, β) ∈

Int Π and 1 ≤ q ≤ ∞. Assume that A = {A1, . . . , AN} and B = {B1, . . . , BN} are Banach N -tuples,
and let T ∈ L(A,B).

If

(a) T : ∆(A) −→ B(α,β),q;K is compact,

(b) T : A(α,β),q;J −→ Σ(B) is compact, and
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(c) sup

{

(

∑

|m|>k
|n|>k

(

2−αm−βnK(2m, 2n;T
(

∑

|m|>k
|n|>k

um,n

)))q
)1/q

: ‖{um,n}‖(α,β),q;J ≤ 1

}

→ 0

as k → ∞ ,

then

T : A(α,β),q;J −→ B(α,β),q;K is compact.

Conversely, if q < ∞, then compactness of T : A(α,β),q;J −→ B(α,β),q;K implies conditions (a), (b)
and (c).

PROOF. Making a change of variables if necessary (see [9], Remark 4.1), we may assume without loss
of generality that Π has the form described in Fig. 3.1. That is

P1 = (0, 0), P2 = (1, 0) and PN = (0, 1).

Vertices are numbered counterclockwise.

�� ��

��

��

��

����

P1 = (0, 0) P2 = (1, 0)

Pj

PN = (0, 1)

Figure 3.1

Let Fm,n be the Banach space Σ(B) provided with the norm K(2m, 2n; ·), and write

`∞(j) = `∞(2−xjm−yjnFm,n) , j = 1, . . . , N,

and `∞ = {`∞(1), . . . , `∞(N)}. By [11], Thm. 3.1,

(`∞)(α,β),q;K = `q(2
−αm−βnFm,n) (equivalent norms). (3..1)

We denote by ι the operator assigning to each b ∈ Σ(B) the constant sequence ιb = {..., b, b, b, ...}. Clearly,
ι ∈ L(Bj , `∞(j)) for j = 1, . . . , N , with norm ≤ 1. Furthermore, ι : B(α,β),q;K → `q(2

−αm−βnFm,n)
is a metric embedding.

Following [9], for any k ∈ N, we consider the partition of Z
2 given by the sets

Γ
(0)
k =

{

(m,n) ∈ Z
2 : |m| < k, |n| < k

}

,

Γ
(1)
k =

{

(m,n) ∈ Z
2 : m ≤ −k, |n| < k

}

,

Γ
(2)
k =

{

(m,n) ∈ Z
2 : m ≥ k, |n| < k

}

,

Γ
(3)
k =

{

(m,n) ∈ Z
2 : n ≤ −k

}

,

Γ
(4)
k =

{

(m,n) ∈ Z
2 : n ≥ k

}

.
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Let {S(r)
k }0≤r≤4, k∈N be the projections on `∞ defined by S

(r)
k {wm,n} = {vm,n} where

vm,n =

{

wm,n if (m,n) ∈ Γ
(r)
k ,

0 otherwise .

It is not hard to check that these operators satisfy the following conditions:

(I) The identity operator on Σ(`∞) can be decomposed as

I =
4

∑

r=0

S
(r)
k , k = 1, 2, ...

(II) We have
‖S

(r)
k ‖`∞(j),`∞(j) = 1 for any k ∈ N , 0 ≤ r ≤ 4 and 1 ≤ j ≤ N.

(III) For each k ∈ N , S
(0)
k ∈ L(Σ(`∞),∆(`∞)).

(IV) For each k ∈ N we have

S
(1)
k : `∞(2−x2m−y2nFm,n) −→ `∞(2−x1m−y1nFm,n),

S
(2)
k : `∞(2−x1m−y1nFm,n) −→ `∞(2−x2m−y2nFm,n),

S
(3)
k : `∞(2−xN m−yN nFm,n) −→ `∞(2−x1m−y1nFm,n),

S
(4)
k : `∞(2−x1m−y1nFm,n) −→ `∞(2−xN m−yN nFm,n),

and their norms are equal to 2−k.

Let Gm,n be the Banach space ∆(A) endowed with the norm J(2m, 2n; ·). We put

`1(j) = `1(2
−xjm−yjnGm,n) , j = 1, . . . , N,

and `1 = {`1(1), . . . , `1(N)}. Relationship between these vector-valued sequence spaces and A is given
by the operator π{um,n} =

∑

(m,n)∈Z2 um,n. Clearly, π ∈ L(`1(j), Aj) , j = 1, . . . , N, and its norm is
≤ 1. Moreover, π acting from `q(2

−αm−βnGm,n) into A(α,β),q;J is a metric surjection.
On the N -tuple `1 we can define analogous operators to {S

(r)
k }. We call them {D

(r)
k }. Note that they

satisfy the corresponding versions of (I), (II), (III) and (IV).
In terms of projections D

(0)
k and S

(0)
k condition (c) can be equivalently stated as

‖(I − S
(0)
k )ιTπ(I − D

(0)
k )‖`q(2−αm−βnGm,n),`q(2−αm−βnFm,n) −→ 0 as k → ∞. (c’)

Assume that (a), (b) and (c’) holds. Using the diagrams of bounded operators

`q

(

2−αm−βnGm,n

) D
(0)
k−−−→ ∆(`1)

π
−→ ∆(A)

T
−→ B(α,β),q;K

ι
−→ `q

(

2−αm−βnFm,n

)

`q

(

2−αm−βnGm,n

) I−D
(0)
k−−−−−→ `q

(

2−αm−βnGm,n

) π
−→ A(α,β),q;J

T
−→ Σ(B)

ι
−→ Σ(`∞)

↓ S
(0)
k

`q

(

2−αm−βnFm,n

)
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and conditions (a) and (b), we derive that ιTπD
(0)
k and S

(0)
k ιTπ(I − D

(0)
k ) act compactly from

`q

(

2−αm−βnGm,n

)

into `q

(

2−αm−βnFm,n

)

.
Since

ιTπ − ιTπD
(0)
k − S

(0)
k ιTπ(I − D

(0)
k ) = (I − S

(0)
k )ιTπ(I − D

(0)
k ),

it follows from (c’) that

ιTπ : `q

(

2−αm−βnGm,n

)

−→ `q

(

2−αm−βnFm,n

)

is compact. Now, properties of π and ι yield that

T : A(α,β),q;J −→ B(α,β),q;K is compact.

Conversely, suppose that q < ∞ and that T acting from the J- into the K-space is compact. Then (a)
and (b) follows easily using that ∆(A) ↪→ A(α,β),q;J and B(α,β),q;K ↪→ Σ(B). In order to establish (c’),
observe that for w ∈ `q

(

2−αm−βnGm,n

)

we have

‖(I − S
(0)
k+1)ιTπ(I − D

(0)
k+1)w‖`q(2−αm−βnFm,n)

≤ ‖(I − S
(0)
k )ιTπ(I − D

(0)
k )

(

(I − D
(0)
k+1)w

)

‖`q(2−αm−βnFm,n).

Thus, the sequence
{

‖(I − S
(0)
k )ιTπ(I − D

(0)
k )‖`q(2−αm−βnGm,n),`q(2−αm−βnFm,n)

}

k∈N

is non-increasing. Let η be its limit. To complete the proof we must show that η = 0.
Choose vectors {wk} in the unit ball of `q(2

−αm−βnGm,n) such that

η = lim
k→∞

‖(I − S
(0)
k )ιTπ(I − D

(0)
k )wk‖`q(2−αm−βnFm,n).

Since q < ∞, we can select {wk} is such a way that each wk has only finitely many non-zero co-ordinates.
Therefore

{wk}k∈N ⊆ ∆(`1). (3..2)

Using the compactness of T : A(α,β),q;J −→ B(α,β),q;K and boundedness of the sequence

{π(I − D
(0)
k )wk},

we can find a subsequence {Tπ(I − D
(0)
k′ )wk′} converging to some b in B(α,β),q;K . We claim that

{

‖(I − S
(0)
k′ )ιTπ(I − D

(0)
k′ )wk′‖`q(2−αm−βnFm,n)

}

is a null sequence.
Indeed, given any ε > 0, we can find ν1 ∈ N such that for all k′ ≥ ν1

‖b − Tπ(I − D
(0)
k′ )wk′‖B(α,β),q;K

≤ ε/12.

Let z = Tπ(I − D
(0)
ν1 )wν1

. By (3..2), we have z ∈ ∆(B). On the other hand, we know from (IV) that
‖S

(1)
k ‖`1(2),`1(1) ≤ 2−k. Hence, using equality (3..1), the norm estimate (2..3) and factorization

∆(`∞) ↪→ (`∞(2), `∞(2), `∞(3), . . . , `∞(N))(α,β),q;J

S
(1)
k−−→

−→ (`∞(1), `∞(2), `∞(3), . . . , `∞(N))(α,β),q;K = `q

(

2−αm−βnFm,n

)
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we obtain that
‖S

(1)
k ‖∆(`∞),`q(2−αm−βnFm,n) −→ 0 as k → ∞.

A similar argument applies to S
(j)
k for j = 2, 3, 4. Let ν2 ∈ N such that for all k′ ≥ ν2

‖S
(j)
k′ ιz‖`q(2−αm−βnFm,n) < ε/12 , j = 1, 2, 3, 4.

For any k′ ≥ max{ν1, ν2} it follows that

‖(

4
∑

j=1

S
(j)
k′ )ιTπ(I − D

(0)
k′ )wk′‖`q(2−αm−βnFm,n)

≤

4
∑

j=1

[

‖S
(j)
k′ ι(Tπ(I − D

(0)
k′ )wk′ − b)‖`q(2−αm−βnFm,n)

+ ‖S
(j)
k′ ι(b − z)‖`q(2−αm−βnFm,n) + ‖S

(j)
k′ ιz‖`q(2−αm−βnFm,n)

]

≤

4
∑

j=1

[

‖Tπ(I − D
(0)
k′ )wk′ − b‖B(α,β),q;K

+ ‖b − z‖B(α,β),q;K
+ ‖S

(j)
k′ ιz‖`q(2−αm−βnFm,n)

]

≤ ε.

Consequently, η = lim
k′→∞

‖(

4
∑

j=1

S
(j)
k′ )ιTπ(I − D

(0)
k′ )wk′‖`q(2−αm−βnFm,n) = 0 . This completes the

proof. �
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