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The algebraic dimension of linear metric spaces and Baire
properties of their hyperspaces

Taras Banakh and Anatolij Plichko

Abstract. Answering a question of Halbeisen we prove (by two different methods) that the algebraic
dimension of each infinite-dimensional complete linear metric space X equals the size of X . A topolog-
ical method gives a bit more: the algebraic dimension of a linear metric space X equals |X| provided
the hyperspace K(X) of compact subsets of X is a Baire space. Studying the interplay between Baire
properties of a linear metric space X and its hyperspace, we construct a hereditarily Baire linear metric
space X with meager hyperspace K(X). Also under (d = c) we construct a metrizable separable non-
complete linear metric space with hereditarily Baire hyperspace. We do not know if such a space can be
constructed in ZFC.

Dimensión algebraica de espacios métricos lineales y propiedades de Baire
de sus hiperespacios

Resumen. En contestación a una pregunta de Halbeisen se demuestra (mediante dos técnicas distintas)
que la dimensión algebraica de cada espacio métrico lineal completo de dimensión infinita X iguala el
tamaño de X . Si se utiliza un método topológico aún puede obtenerse más: la dimensión algebraica de
un espacio métrico lineal X es igual a |X| si el hiperespacio K(X) de subconjuntos de X compactos es
un espacio de Baire. Si se estudia la relación entre las propiedades de Baire de un espacio métrico lineal
X y su hiperespacio, se construye un espacio métrico lineal hereditariamente Baire con un hiperespacio
K(X) magro. También en (d = c) puede construirse un espacio métrico lineal, separable y no-completo
con un hiperespacio hereditariamente Baire. No sabemos si dicho espacio puede ser construido en ZFC.

It is well-known that the algebraic dimension (= the size of a Hamel basis) of each infinite-dimensional
Banach space X equals the size of X (see [8] or [7] for an elementary proof). In [5] Lorenz Halbeisen
asked if the same is true for all complete linear metric spaces. The precise question was if the algebraic
dimension of any separable complete linear space equals continuum.

In this paper we answer this question affirmatively using two alternative approaches: analytical and
topological. The latter approach leads to interesting open problems on interplay between Baire properties
of a linear metric space and its hyperspace.

1. Analytic approach

We start with analytical approach. The basic tool is the following theorem that can have an independent
value.
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Theorem 1 For an infinite-dimensional separable Banach space X and an infinite-dimensional separable
complete linear metric space Y there is an injective compact linear operator T : X → Y with dense range.

PROOF. In case of Banach Y this theorem is well known (see, e.g., [1, 2.1]) and follows from the
existence of a Markushevich basis in every separable Banach space [9]. The general case can be reduced to
the “Banach” case as follows. Given a complete linear metric space Y apply [11, p.9] to find an invariant
metric d on Y such that d(λy, 0) ≤ d(y, 0) for all y ∈ Y and all scalars λ with |λ| ≤ 1. The invariant
metric d induces a “norm” ‖y‖ = d(y, 0) on Y with the property ‖λy‖ ≤ ‖y‖ if |λ| ≤ 1.

Being infinite-dimensional and separable, the space Y contains a linearly independent sequence (yi)i∈ω

such that ‖yi‖ ≤ 2−i for all i ∈ ω and lin(yi)i∈ω is dense in Y . Let `f
1 denote the linear hull of the standard

basis in the Banach space `1 and let A : `f
1 → Y be the linear operator assigning to each (eventually

null) sequence ~t = (ti)i∈ω ∈ `f
1 the vector A(~t) =

∑
i∈ω tiyi. It follows from the convergence of the

series
∑∞

i=1 ‖yi‖ that the operator A : `f
1 → Y is uniformly continuous and hence extends to a continuous

linear operator A : `1 → Y . This operator is factorized through the quotient space Z = `1/KerA, which
is infinite-dimensional because the kernel of A misses the subspace `f

1 . Let Ã : Z → Y be an injective
continuous operator induced by A. As we mentioned, for every separable Banach space X there is a
compact linear injective operator C : X → Z with dense range. Then the composition T = Ã◦C : X → Y
is a compact injective operator from X into Y with dense range.

Corollary 1 Each infinite-dimensional complete linear metric space Y contains a linearly independent
copy of any compact metric space Q.

PROOF. Of course, we can suppose Q to be infinite. Let C(Q) be the Banach space of continuous
functions on Q and C∗(Q) be the dual Banach space, endowed with the weak* topology. Identifying
each point x ∈ Q with the Dirac measure δx, we embed Q into C∗(Q) as a linearly independent set. By
Theorem 1, there is a linear injective compact operator T : `2 → C(Q) with dense range. Then T ∗ :
C∗(Q) → `∗2 is injective, compact and weakly* continuous. Consequently, T ∗(Q) is linearly independent
and endowed with weak* topology is homeomorphic to Q. Since T ∗(Q) is norm compact, T ∗(Q) endowed
with norm topology is homeomorphic to Q too.

Given any infinite-dimensional complete linear metric space Y , we may apply Theorem 1 to find an
injective compact linear operator C : `∗2 → Y . Then the composition C ◦ T ∗|Q maps Q onto a linearly
independent compact subset of Y , homeomoprhic to Q.

In particular, we can take as Q the Hilbert cube [0, 1]ω . So, in a standard way Corollary 1 implies
another corollary that answers the question of Halbeisen.

Corollary 2 The algebraic dimension of each infinite-dimensional complete linear metric space X equals
|X|.

2. A topological approach
In this section we give an alternative topological proof of Corollary 2 based on Mycielski-Kuratowski
Theorem, see [6, 19.1]. We shall show that a completely-metrizable subset X of a linear metric space L
contains a linearly independent Cantor set iff X has uncountable algebraic dimension.

At first we recall some definitions. By the algebraic dimension of a subset X of a linear space L we
understand the algebraic dimension of the linear hull linX of X in L. A Cantor set is any topological
copy of the Cantor cube {0, 1}ω. By [6, 6.2], each uncountable Polish space contains a Cantor set, and
by the classical Brouwer Theorem [6, 7.4] a topological space is a Cantor set if and only if it is compact,
metrizable, zero-dimensional and has no isolated point.

Given a metric space (X, d) by K(X) we denote the hyperspace of compact subsets of X , endowed
with the Hausdorff metric dH(A, B) = inf{ε > 0 : A ⊂ O(B, ε), B ⊂ O(A, ε)}. It is known that this
metric is complete if and only if the metric of X is complete.
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A subset K ⊂ X is called perfect if it has no isolated points. It is well known (and easy to see) that for
a perfect metrizable space X the family of perfect compacta is comeager in K(X). We recall that a subset
A of a topological space X is comeager if its complement X \A is a meager subset of X .

For a set A let (A)n = {(ai) ∈ An : ai 6= aj for i 6= j}.
Our basic tool is the classical theorem of Mycielski and Kuratowski, see [6, 19.1].

Theorem 2 Let X be a metrizable space and for each n ∈ N let Rn be a comeager set in Xn. Then the set
{K ∈ K(X) : ∀n (K)n ⊂ Rn} is comeager in K(X). So, if X has no isolated points and the hyperspace
K(X) is Baire (which happens if X is complete), then there is a Cantor set C ⊂ X with (C)n ⊂ Rn for
all n ∈ N.

This theorem will be used to prove

Proposition 1 Let X be a (metric) subspace of a linear metric space L such that each non-empty open
subset of X has infinite algebraic dimension. If the hyperspace K(X) of X is Baire, then X contains a
linearly independent Cantor set.

PROOF. For each n,m ∈ N consider the open dense subset

Rn,m =
{
(xi) ∈ Xn : ∀(αi) ∈ Rn 1

m ≤ maxi≤n |αi| ≤ m ⇒ α1x1 + · · ·+ αnxn 6= 0
}

in Xn (the density of Rn,m follows from the fact that non-empty open subsets of X have infinite al-
gebraic dimension). Using the Mycielski-Kuratowski Theorem, find a Cantor set C ⊂ X such that
(C)n ⊂ ⋂

m∈NRn,m for all n ∈ N. It is clear that C is a linearly independent subset in X .

Corollary 3 Each infinite-dimensional linear metric space X with Baire hyperspace K(X) contains a
linearly independent Cantor set and hence has algebraic dimension equal to |X|.

It light of Corollary 3 it is interesting to remark that a Baire normed space need not have continual
algebraic dimension. A counterexample exists under the set-theoretic assumption non(M) < c where
non(M) stands for the smallest size of a non-meager subset of the real line, see [13].

Proposition 2 Each separable complete linear metric space X contains a dense linear subspace L ⊂ X
which is Baire and has algebraic dimension dim(L) ≤ non(M).

PROOF. By the Lavrentiev’s Theorem [6, 3.9], each countable dense subset D ⊂ X can be enlarged
to a zero-dimensional Gδ-subspace G ⊂ D. By Aleksandrov-Urysohn Theorem [6, 7.7], this subspace is
homeomorphic to the space of irrationals and hence contains a dense non-meager subspace B ⊂ G of size
|B| = non(M). The linear hull L of B has algeraic dimension dim(L) ≤ |B| ≤ non(M) and is non-
meager because it contains a dense non-meager subspace B. Being topologicall homogeneous, the space L
is Baire.

Since the hyperspace of any complete metric space is complete (and hence Baire), Corollary 3 general-
izes Corollary 2 and gives an alternative answer the Halbeisen question.

We shall derive from Proposition 1 another corollary that will be applied in the next section.

Corollary 4 If a Polish subspace X of a linear metric space L has uncountable algebraic dimension, then
X contains a linearly independent Cantor set.

PROOF. Assume that X has uncountable algebraic dimension and consider the set U of all points
x ∈ X having a neighborhood with countable algebraic dimension. It is clear that U is an open set and the
complement Y = X \ U is a closed subset whose any non-empty open subset has uncountable algebraic
dimension. Since X is Polish, the closed subspace Y of X is Polish as well and so it its hyperspace K(Y ).
In this case it is legal to apply Proposition 1 to find a linearly independent Cantor set C ⊂ Y .

In light of Corollary 3 the following problem arises naturally.

Problem 1 Characterize linear metric spaces whose hyperspaces are Baire spaces.
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3. On spaces with (hereditarily) Baire hyperspaces
In this section, inspired by Problem 1 we study the Baire properties of hyperspaces of linear metric spaces.
We recall that a space X is hereditarily Baire if all its closed subspaces are Baire. The following character-
ization of metric hereditarily Baire spaces is well-known and follows from [3].

Lemma 1 For a subspace X of a complete metric space X̃ the following conditions are equivalent:

1. X is hereditarily Baire;

2. X contains no closed countable subset without isolated points;

3. For any Cantor set C ⊂ X̃ the intersection C ∩X fails to be countable and dense in C.

Since each metrizable space X is homeomorphic to a closed subset of the hyperspace K(X), X is
hereditarily Baire if so is its hyperspace. Similarly, X is Baire if K(X) is Baire, see [10]. Thus we have
the following diagram describing the interplay between the Baire properties of a metric space X and its
hyperspace:

X is : complete ⇒ hereditarily Baire ⇒ Baire

m ⇑ ⇑
K(X) is: complete ⇒ hereditarily Baire ⇒ Baire

None of these implications can be reversed (at least in ZFC). The simplest example of a hereditarily
Baire space X with meager hyperspace is a Bernstein subset B on the real line R, that is a subset such that
both B and R \ B contains no uncountable compact subset. It can be shown that B is a hereditarily Baire
space but its hyperspace K(X) is meager. Bernstein sets can be easily constructed by transfinite induction.
We modify this construction to get a linear version of a Bernstein set.

Theorem 3 In each infinite-dimensional complete metric linear space L there is a hereditarily Baire sub-
space X ⊂ L whose hyperspace K(X) is meager. That is so because each compact subset of X has at
most countable algebraic dimension.

PROOF. Replacing L with a suitable subspace, we can assume that L is separable complete metric
linear space. Let K be the family of compact subsets K of X having uncountable algebraic dimension. By
Corollary 4, each compact set K ∈ K contains a linearly independent Cantor set.

Since L, being metrizable and separable, contains at most continuum many compact sets, the family K
has size continuum c and hence can be enumerated asK = {Kα : α < c}. By transfinite induction of length
c in each compact set Kα choose two points xα, yα so that xα does not belong to the linear hull of the set
{xβ , yβ : β < α} and yα does not belong to the linear hull of the set {xα, xβ , yβ : β < α}. Such a choice
is always possible since the set Kα contains a compact linearly independent subset of size continuum.

After completing the inductive construction, consider the linear hull X of the set {xα : α < c}. We
claim that X is a hereditarily Baire subspace of L. Assuming the converse, find, by Lemma 1, a countable
closed subset Q ⊂ X having no isolated points. We claim that the closure Q of Q in L has uncountable
algebraic dimension. Assuming the converse and using Baire theorem, we would find a non-empty open
subset U ⊂ Q lying in a finite-dimensional subspace F ⊂ L. Then Q∩F ⊂ X , being linearly independent,
is finite, which is not true because this space contains a subspace Q ∩ U having no isolated point.

Thus Q has uncountable linear dimension and by Corollary 4, the set Q contains an uncountable linearly
independent compactum K. Replacing K by a smaller uncountable compact set, we may assume that
Q ∩K = ∅ and thus X ∩K ⊂ X ∩ (Q \ Q) = ∅, which contradicts the fact that X meets each compact
subset of uncountable linear dimension. The latter property of X implies also that X is dense in L and thus
is infinite-dimensional.
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To show that the hyperspace K(X) is meager, let us note that each compact subsets K of X has
countable algebraic dimension and thus lies in a countable union of finite-dimensional linear subspaces.
Then the Baire Theorem implies that some non-empty open set of K lies in a finite-dimensional space.
Consequently, K(X) =

⋃
n,mKn,m where

Kn,m = {K ∈ K(X) : ∃x ∈ K such that K ∩B(x, 1
m ) has algebraic dimension ≤ n}.

It remains to check that each set Kn,m is closed and nowhere dense. To show that Kn,m is closed, take
any sequence (Ki)∞i=1 ⊂ Kn,m convergent to a compact set K∞ ∈ K(X) in the hyperspace K(X). For
each Ki find a point xi ∈ Ki with Ki ∩ B(xi,

1
m ) having algebraic dimension ≤ n. It follows from the

convergence Ki → K∞ that the sequence (xi) has a subsequence convergent to some point x∞ ∈ K∞.
Replacing the sequence (Ki) by a suitable subsequence we may assume that xi → x∞. We claim that
K∞ ∩ B(x∞, 1

m ) has algebraic dimension ≤ n and thus K∞ ∈ Kn,m. Assuming that it is not so, find
(n + 1) linearly independent points z0, . . . , zn ∈ K∞ ∩ B(x∞, 1

m ). These points have neighborhoods
U0, . . . , Un such that any points z′0, . . . , z

′
n with z′i ∈ Ui, i ≤ n, are linearly independent.

Let δ = 1
m − maxi≤n d(x∞, zi) and find a number m1 such that d(xm, x∞) < δ

2 for all m ≥ m1.
The convergence of the sequence (Km) to K∞ yields a number m ≥ m1 such that for every i ≤ n
there is a point z′i ∈ Km ∩ Ui ∩ B(zi,

δ
2 ). Then the points z′0, . . . , z

′
n are linearly independent and lie in

Km ∩ B(xm, 1
m ) which is not possible as the latter set has algebraic dimension ≤ n. So, each set Kn,m is

closed in K(X).
Next, we show that it is nowhere dense. Given any ε > 0 and a compact set K ∈ K(X) we should find

a compact set Kε /∈ Kn,m with dH(K, Kε) < ε. For this take any finite cover U of K by open subsets of
X such that any open ball B(x, 1

m ) centered at a point x ∈ K contains some set U ∈ U . We may assume
that U ∩K 6= ∅ for all U ∈ U . Using the infinite-dimensionality of X in each set U pick a finite linearly
independent subset FU ⊂ U of size |FU | > n. Consider the compact set Kε = K ∪⋃{FU : U ∈ U} and
note that dH(Kε,K) < ε and Kε /∈ Kn,m. This completes the proof of the nowhere density of Kn,m in
K(X). Being the countable union of closed nowhere dense sets, the hyperspace K(X) =

⋃
n,mKn,m is

meager.
Next, we construct a (consistent) example of a non-complete separable linear metric space X whose

hyperspace K(X) is hereditarily Baire. Up to our knowledge it is still an open question if there is a ZFC-
example of a separable metrizable space X which is not Polish but has hereditarily Baire hyperspace. On
the other hand, there is a metrizable space X such that the hyperspace K(X) is hereditarily Baire but the
topology of X is not generated by a complete metric, see [2]. This space has an additional feature that each
closed separable subspace of X is completely-metrizable, see [12]. However such a pathological space
cannot happen among linear metric spaces.

Our construction is carried out under a relatively mild set-theoretic assumption d = c, where c stands for
the cardinality of continuum and d is the smallest number of compact sets that cover the countable product
Nω . The equality d = c holds under Martin Axiom but fails in some models of ZFC, see [13], [4]. We shall
use the following property of the cardinal d.

Lemma 2 Let U be a family of open subsets of a Cantor set C with |U| < d. If the intersection
⋂U is

dense in C, then it is uncountable.

PROOF. Assuming that ∩U is countable and dense in C, consider the complement C \ ∩U and note
that it is homeomorphic to Nω, being a Polish zero-dimensional nowhere locally compact space, see [6,
7.7]. Observe also that C \ ∩U =

⋃
U∈U C \ U is the union of |U| < d many compacta, which contradicts

the definition of d.
Now we are able to state the promised

Theorem 4 If d = c, then each infinite-dimensional complete linear metric space X contains a non-closed
linear subspace Y whose hyperspace K(Y ) is hereditarily Baire.
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PROOF. Without loss of generality we can assume that the space X is separable. In this case the
hyperspace K(X) has size continuum and hence can be listed as K(X) = {Kα : α < c}. Without loss of
generality we can assume that the linear hull linK0 is dense in X and the compact set K1 contains a point
y1 /∈ linK0.

The family Z ⊂ K(K(X)) of Cantor sets Z ⊂ K(X) also has size continuum and can be listed as
Z = {Zα : α < c} so that for every Cantor set Z ∈ Z the set {α < c : Z 6= Zα} is unbounded in [0, c).

By induction we shall construct transfinite sequences (Cα)α<c of compact subsets of X , (Lα)α<c of
linear subspaces of X , and (Yα)α<c of subsets of X so that for every non-zero ordinal α < c the following
conditions are satisfied:

(1)
⋃

β<α Yβ ⊂ Yα;

(2) |Yα| ≤ |α|;
(3) Lα = L<α + linCα, where L<α =

⋃
β<α Lβ ;

(4) Lα ∩ Yα = ∅;

(5) If Kα 6⊂ L<α, then Kα ∩ Yα 6= ∅;

(6) If Zα ∩K(L<α) is countable and dense in Zα, then Cα ∈ Zα \K(L<α).

To start the induction we put Y0 = ∅, Y1 = {y1}, C1 = K0, L0 = {0}, and L1 = linC1. Assume that
for some ordinal α the sets Yβ , Lβ , Cβ have been constructed for all β < α.

We shall construct sets Yα, Cα and Lα. Let Y<α =
⋃

β<α Yβ and L<α =
⋃

β<α L<β . If Kα 6⊂ L<α,
then pick any point yα ∈ Kα \ L<α and put Yα = {yα} ∪ Y<α. If Zα ∩ K(L<α) is not countable and
dense in Zα, then we put Cα = ∅, Lα = L<α and finish the inductive step.

If Zα ∩K(L<α) is countable and dense in Zα, then some extra work is required. First we prove that
the set C = {C ∈ Zα : Yα ∩ (L<α + linC) = ∅} is uncountable. Note that L<α, being the linear hull of
the union C<α =

⋃
β<α Cβ of α many compacta, can be written as the union L<α = ∪Lα of some family

Lα of compacta with |Lα| < c. Then the set Lα × [0, α]× N has size < c = d.
For every quadruple (K, β, n, m) ∈ Lα × [0, α]× N× N consider the set CK,β,n,m of all compact sets

C ∈ Zα ⊂ K(X) such that for any n-tuple (λ1, . . . , λn) ∈ Rn with 1
m ≤ max{|λ1|, . . . , |λn|} ≤ m and

any points c1, . . . , cn ∈ C with d(ci, cj) ≥ 1
m for i 6= j we get yβ /∈ K + λ1c1 + . . . λncn. It is easy to

check that the set CK,β,n,m is open in Zα. It is also clear that

C =
⋂

K,β,n,m

CK,β,n,m

is the intersection of < c = d many open sets and is dense in Zα because it contains the dense subset
Zα∩K(L<α). By Lemma 2, this intersection is uncountable and hence we can find a set C ∈ C\K(L<α).
Put Cα = C and Lα = L<α+linC. It follows from the inclusion Cα ∈ C that Lα∩Yα = ∅. This completes
the inductive construction.

Finally consider the linear space L =
⋃

α<c Lα. It is dense in X because it contains the dense subspace
L1. Next, L 6= X because y1 /∈ L. So, L is a dense non-complete subspace of X . We claim that the
hyperspace K(L) is hereditarily Baire. First notice that K(L) =

⋃
β<c K(Lβ). Indeed, for any compact

subset K ⊂ L we can find an ordinal α < c with K = Kα. If Kα ⊂ L<α, then K ∈ Lα ⊂
⋃

β<c Lβ and
we are done. Otherwise, ∅ 6= K ∩ Yα ⊂ K ∩X \ L = K \ L, which contradicts the inclusion K ⊂ L.

To prove that K(L) is hereditarily Baire it suffices to check that for any Cantor set Z in K(X) the
intersection Z ∩ K(L) is not countable and dense in Z . Assuming the converse, find an ordinal α with
Z ∩ K(L) ⊂ Z ∩ K(L<α). Then Z ∩ K(L<α) = Z ∩ K(Lβ) for all β ≥ α. Replacing the ordinal
α by a larger ordinal, if necessary, we can assume that Z = Zα (this is possible due to the choice of the
enumeration (Zα)). Then the conditions (3) and (6) of the inductive construction imply thatZα∩K(Lα) 6=
Zα ∩K(L<α), which is a contradiction.
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Question 1 Is there a ZFC-example of a non-complete linear metric space X with (hereditarily) Baire
hyperspace K(X)?
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