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Uniqueness of the boundary behavior for large solutions to a
degenerate elliptic equation involving the oo—Laplacian

G. Diaz and J. |. Diaz

Abstract. In this note we estimate the maximal growth rate at the baynofaviscosity solutions to
“Asu+Au|"tu=f InQ  (A>0, m>3).

In fact, we prove that there is a unique explosive rate on thetlary for large solutions. A version of
Liouville Theorem is also obtained whéh= RY.

Unicidad del comportamiento en la frontera de las solucione s explosivas de
una ecuaci on eliptica degenerada asociada al oco—Laplaciano

Resumen. En esta nota estimamos la tasa maxima de crecimiento emi@faode las soluciones de
viscosidad de
“Asu+ANu|"fu=f enQ  (A>0, m>3).

De hecho, mostramos que so6lo hay una Unica tasa de explesila frontera para esas soluciones explo-
sivas. También obtenemos una version del Teorema de illopara el cas@ = RY.

1. Introduction.

Itis clear that an arbitrary functiom can reach the infinity value = +o0o on a manifold in many ways.
This is not the case wheansolves certain PDE equations. We prove that $olves

~Asu+ANu|"tu=f inQ (A>0), (1)

the condition
u=-+oo 0N

only is satisfied in a unique way, provided > 3. HereQ) denotes a bounded open seffdf. We explicit
the boundary behavior in Theorem 2 below. Several consegsasan be pointed out. We remark that the
behavior depends only on the distance to the boun@@rgnd the structure of (1). Moreover, as we indicate
later, the conditionn > 3 is sharp(see Remark 3 and Proposition 2).
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By solutions we meamwiscosity solutions the sense introduced by M.G.Crandall, H.Ishii and P.anisi
in [3]. This kind of solutions is the most appropriate notiora wide class of nonlinear partial differential
equation, as it occurs if the leading part contains ternes lik

N
Aoou = Z DiuDijuDju,

5,5=1

called theco-Laplacian operatobecause, in an suitable sense (see [1]), it is the limit chdee@p— Lapla-
cian operator
Apu = div (|VulP7>Vu) .

There exist several justifying the relevance of this opmraFor instance, in [6] we develop an idea due
to G. Aronsson (see [1] or [4]) relative to the Calculus of isons involvingLL.>™ functionals when the
minimization is taken in the set of functions such that

u=+4+oo 0onof)

leading, in this way, to atate constraint problerfsee [5] for a similar problem).

So the paper is devoted with solutions with uniform blow ughatboundary so-calleeikplosive solu-
tionsor large solutions In Section 2 we estimate the maximal behavior at boundasphitions. As it is
shown also in Section 3, this maximality property is, in félse unique behavior on the boundary available
for large solutions.

We point out that in G. Diaz and R. Letelier [7] the assumptio

m>p—1
was proved to be as the necessary condition the existenaegef$olution to the quasilinear problem
—Apu+ Mu™ tu=f inQ.

Then, some kind of resemblance betweendtelaplacian and the—Laplacian arises in the cage= 4.
We study it in the more detailed paper [6] where existencelanigueness results for large solutions are
obtained.

2. Interior solutions.

Due to the strong nonlinear structure of the equation@3.pr W2 solutions are not available, in general.
The non divergence form of the operathg,u enables us to consider the theory of viscosity solutions. We
send to [3] (see also [6]) for a detailed explanation of howrecfionu € USC(2) (upper semi-continuous

in Q) solves, in theviscosity sense

—Agu+ANu|"tu < f inQ, (2)

for f € USC(L2). This discontinuous notion is close to tieak Maximum PrincipleMore precisely, ifu
is a solution of (2) and € C%(Q2) N C(Q) verifies

~Doev(z) + Mo(@)[" o(z) > g(z), zeQ (g€ LSC(R)),
then inequality

2m71
) < o(e) +supu— o)+ (Lmsup(7 =9 ) e @
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holds, provided thaf? is bounded. Analogously, in [3] one introduces how a furrctice £LSC(2) (lower
semi-continuous if) solves, in theviscosity sense

—Agu+ ANu|™tu > f inQ, (4)

for f € LSC(2). Then one verifies the relative applications to Yeak Maximum Principldn particular,
if u is a solution of (4) ana € C2(2) N C(Q) verifies

—Asov(x) + No(z)|™" tu(z) < g(z), z€Q (9€USC(N)),

then we have

2m71 _
o) < ule) +sup(o - 0 + (X swto - ) vl ©)
09 Ao
provided that? is bounded. The notion of solution of
—Asu+ Nu|/™tu=f inQ.

involves (2) and (4) simultaneously. Certainly, the visgosolutions are consistent with classical solutions.
Ouir first contribution deals with a classical interior praye

Proposition 1 (Universal interior bounds)
Let us assumen > 3. Then there exist a positive constatitdepending only om and A such that

u(x)gM(R—|x—:v0|)7ﬁ, z € Br(wo) C RY (6)

for any solutionu of
—Asotu + Mu|/™tu <0 inBgr(zo). W

Remark 1 This estimate is near the Harnack inequality. Several asth@ve studied that property for the
oo—Laplacian equation without any perturbation term (seg[llor [1], for example). B

Remark 2 The above result allows the application of the Perron Methaatder to obtain the existence
results of [6]. W

As immediate consequence of (6) follows by lettiRg— oo

Corollary 1 (Liouville Theorem)
Letw be any solution of

~Asu+AMu|"fu <0 inRY, A>0, m>3.

Then
u(z) <0, = eRN @)

Remark 3 In the above result the assumption > 3 is sharp Indeed, the positive funcion(z) = e*
satisfies
—Asu+u® =0 inR. g

In our study near the boundary we wilibular neighborhoods defined by
Oy ={xeQ: ¢<dist(z,00) <9}, 0<¢<.

The following technical result is a very useful tool
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Lemma 1 ([8])
LetQ c RN be an open set with bounded boundargbéclass. Then there exists a positive constant

dq, depending only of2, such thatist(-, 9Q) € C’f(@gn). Moreoverdaq(-) = dist(-, ) verifies

Vdoo(x)| =1, z€0;,. W

We recall that the functiodq (+) is Lipschitz continuous in the whole spaR€'. In fact, it is the unique
(viscosity) solution of

u=0 onofl.
Themaximalbehavior available at the boundary is collected now

{ [Vu| =1 in £,

Theorem 1 (Maximal behavior at the boundary)
Letof2 € C? and letu be any solution of

—Asu+Nu™ tu < f inQ (A>0,m>3) (8)
for f € USC(R?). Let us denotg = nj—T?,
Then, if X
limsup f(z) (doe(2))? < f3 € [0, 00]
don(x)—0
one has

limsup u(x) (daﬂ(f))% < uoo(g),
doq(z)—0

whereu,(§) is the positive root of

(G+m)@ 4

Pi(p) =™ = =——n" ~ fa.

On the other hand, if

limsup f(z)(daa(z))? < fq €]0,00[, ¢>¢
daq(x)—0

the following inequality holds

limsup u(x) (dag(x))% < (ﬁ) Y om
daq(z)—0 A

In the proof of the above result (see [6]) we use the reprasient

—As (doa ()™ = —aB(a + 1) (doa(2)) "™ + a3 (doa(z)) "™ Andon(z)

forxz € O%(@Q), R < dq, where the termA dgq involves the geometry of! (see Remark 5 below
for some details). In the particular ca®e= Bgr(0) one hasig, (o) = R (see Lemma 1). Moreover,
straightforward computations show that the relative distsfunction

daQ(CL‘) =R- |x|

is oo-harmonicg.e.
Aodsa (x) =0 x€ BR(O) \ {0}

Remark 4 As itis indicated later, the estimates of Theorem 1 ardottst maximal estimate on the behav-
ior at the boundanof solutions of (1)
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3. Large solutions.

Here we focus the attention on the behavior near the bourafahe large solutionsi.e. satisfying the
property
lim  w(z) = +o0.
dist(z,002)—0

The next result is the main contribution in this note. In féds a major key in order to obtain uniqueness
of these singular solutions (see [6]).

Theorem 2 (Uniqueness of the explosive rate)
LetQ be a bounded open setRF, N > 1, with 9Q € C2. Then all large solution of

~Asu+ANu|"tu=f inQ (A>0, m>3)

. . ... 4m )
has a unique explosive rate. More precisely; i p—y the assumption
m

Lm () (o) = fy € [0.00]

implies

lim  u(z) (dsa(x %:uooA,
Ll @) (ao(e) = ul@)

whereu(q) is the positive root of

m (@+m)E 4
Pi(p) = A R - fq
On the other hand,
lim  f(z) (doq())? = f, €]0,00[, q¢>7q
daQ(I)HO
leads to )
. N fq "
1 d mo= 2 . n
Wl (o) (e = (4

Remark 5 The main idea of the proofs of Theorems 1 and 2 lies on the nmmigin of some suitable
smooth sub and supersolutions given, respectively, by

Bes(@) = (c— <) (donle) +8)° — M, z € O
{ s(@) = (c =€) (doa(z) 5)_ V0<i<9<dq, V<1,

Ve s(z) = (c+¢) (daa(x) —8) %+ M, x € O

wherec, o and M are positive constants to be chosen. The paramétethe positive root of the relative
polynomials

(G+m)@ 4

Pi(p) =™ = =——n" — fa.

or
Pa(p) = \u™ — f,

and it leads to thélow up rate On the other hand, thielow up ordera is chosen by means of some
adequate balances between the constardaad m. The arguments conclude by passing to the limits
0 — 0, dpa(z) — 0ande - 0. H
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Remark 6 Lower terms in the expansion of the behavior will be obtaimea future paper. B

As it was partially quoted in Remark 3, conditiem > 3 is sharp Concerning the non—existence of
large solutions we have

Proposition 2
The equation
—Agou + h(u) > 0,

possed in a bounded domdnc RY, has no explosive positive solutions, provided thit a nonnegative
continuous function verifying
h(r)

sup ——= < +oo. W 9
r>0 T
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