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Uniqueness of the boundary behavior for large solutions to a
degenerate elliptic equation involving the ∞–Laplacian

G. Dı́az and J. I. Dı́az

Abstract. In this note we estimate the maximal growth rate at the boundary of viscosity solutions to

−∆∞u + λ|u|m−1
u = f in Ω (λ > 0, m > 3).

In fact, we prove that there is a unique explosive rate on the boundary for large solutions. A version of
Liouville Theorem is also obtained whenΩ = R

N.

Unicidad del comportamiento en la frontera de las solucione s explosivas de
una ecuaci ón elı́ptica degenerada asociada al ∞–Laplaciano

Resumen. En esta nota estimamos la tasa maxima de crecimiento en la frontera de las soluciones de
viscosidad de

−∆∞u + λ|u|m−1
u = f enΩ (λ > 0, m > 3).

De hecho, mostramos que sólo hay una única tasa de explosi´on en la frontera para esas soluciones explo-
sivas. También obtenemos una versión del Teorema de Liouville para el casoΩ = R

N.

1. Introduction.

It is clear that an arbitrary functionu can reach the infinity valueu = +∞ on a manifold in many ways.
This is not the case whenu solves certain PDE equations. We prove that ifu solves

−∆∞u + λ|u|m−1u = f in Ω (λ > 0), (1)

the condition
u = +∞ on∂Ω

only is satisfied in a unique way, providedm > 3. HereΩ denotes a bounded open set ofR
N. We explicit

the boundary behavior in Theorem 2 below. Several consequences can be pointed out. We remark that the
behavior depends only on the distance to the boundary∂Ω and the structure of (1). Moreover, as we indicate
later, the conditionm > 3 is sharp(see Remark 3 and Proposition 2).
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By solutions we meanviscosity solutionsin the sense introduced by M.G.Crandall, H.Ishii and P.L.Lions
in [3]. This kind of solutions is the most appropriate notionin a wide class of nonlinear partial differential
equation, as it occurs if the leading part contains terms like

∆∞u
.
=

N∑

i,j=1

DiuDijuDju,

called the∞-Laplacian operatorbecause, in an suitable sense (see [1]), it is the limit case of thep– Lapla-
cian operator

∆pu
.
= div

(
|∇u|p−2∇u

)
.

There exist several justifying the relevance of this operator. For instance, in [6] we develop an idea due
to G. Aronsson (see [1] or [4]) relative to the Calculus of Variations involvingL∞ functionals when the
minimization is taken in the set of functions such that

u = +∞ on∂Ω

leading, in this way, to astate constraint problem(see [5] for a similar problem).
So the paper is devoted with solutions with uniform blow up atthe boundary so-calledexplosive solu-

tionsor large solutions. In Section 2 we estimate the maximal behavior at boundary ofsolutions. As it is
shown also in Section 3, this maximality property is, in fact, the unique behavior on the boundary available
for large solutions.

We point out that in G. Dı́az and R. Letelier [7] the assumption

m > p − 1

was proved to be as the necessary condition the existence of large solution to the quasilinear problem

−∆pu + λ|u|m−1u = f in Ω.

Then, some kind of resemblance between the∞–Laplacian and thep–Laplacian arises in the casep = 4.
We study it in the more detailed paper [6] where existence anduniqueness results for large solutions are
obtained.

2. Interior solutions.

Due to the strong nonlinear structure of the equation (1),C2 orW2,p solutions are not available, in general.
The non divergence form of the operator∆∞u enables us to consider the theory of viscosity solutions. We
send to [3] (see also [6]) for a detailed explanation of how a functionu ∈ USC(Ω) (upper semi-continuous
in Ω) solves, in theviscosity sense,

−∆∞u + λ|u|m−1u ≤ f in Ω, (2)

for f ∈ USC(Ω). This discontinuous notion is close to theWeak Maximum Principle. More precisely, ifu
is a solution of (2) andv ∈ C2(Ω) ∩ C(Ω) verifies

−∆∞v(x) + λ|v(x)|m−1v(x) ≥ g(x), x ∈ Ω (g ∈ LSC(Ω)),

then inequality

u(x) ≤ v(x) + sup
∂Ω

(u − v)+ +

(
2m−1

λ
sup
Ω

(f − g)+)

)
, x ∈ Ω, (3)
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holds, provided thatΩ is bounded. Analogously, in [3] one introduces how a function u ∈ LSC(Ω) (lower
semi-continuous inΩ) solves, in theviscosity sense,

−∆∞u + λ|u|m−1u ≥ f in Ω, (4)

for f ∈ LSC(Ω). Then one verifies the relative applications to theWeak Maximum Principle. In particular,
if u is a solution of (4) andv ∈ C2(Ω) ∩ C(Ω) verifies

−∆∞v(x) + λ|v(x)|m−1v(x) ≤ g(x), x ∈ Ω (g ∈ USC(Ω)),

then we have

v(x) ≤ u(x) + sup
∂Ω

(v − u)+ +

(
2m−1

λ
sup
Ω

(g − f)+)

)
, x ∈ Ω, (5)

provided thatΩ is bounded. The notion of solution of

−∆∞u + λ|u|m−1u = f in Ω.

involves (2) and (4) simultaneously. Certainly, the viscosity solutions are consistent with classical solutions.
Our first contribution deals with a classical interior property.

Proposition 1 (Universal interior bounds)
Let us assumem > 3. Then there exist a positive constantM depending only onm andλ such that

u(x) ≤ M (R − |x − x0|)
−

4

m−3 , x ∈ BR(x0) ⊂ R
N (6)

for any solutionu of
−∆∞u + λ|u|m−1u ≤ 0 in BR(x0). �

Remark 1 This estimate is near the Harnack inequality. Several authors have studied that property for the
∞–Laplacian equation without any perturbation term (see [9], [2] or [1], for example). �

Remark 2 The above result allows the application of the Perron Methodin order to obtain the existence
results of [6]. �

As immediate consequence of (6) follows by lettingR → ∞

Corollary 1 (Liouville Theorem)
Letu be any solution of

−∆∞u + λ|u|m−1u ≤ 0 in R
N, λ > 0, m > 3.

Then
u(x) ≤ 0, x ∈ R

N. (7)

Remark 3 In the above result the assumptionm > 3 is sharp. Indeed, the positive funciónu(x) = ex

satisfies
−∆∞u + u3 = 0 in R. �

In our study near the boundary we willtubularneighborhoods defined by

Oς
ϑ = {x ∈ Ω : ς < dist(x, ∂Ω) < ϑ}, 0 ≤ ς < ϑ.

The following technical result is a very useful tool
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Lemma 1 ([8])
Let Ω ⊂ R

N be an open set with bounded boundary ofCk-class. Then there exists a positive constant

δΩ, depending only onΩ, such thatdist(·, ∂Ω) ∈ Ck(O
0

δΩ
). Moreover,d∂Ω(·) = dist(·, ∂Ω) verifies

|∇d∂Ω(x)| = 1, x ∈ O
0

δΩ
. �

We recall that the functiond∂Ω(·) is Lipschitz continuous in the whole spaceR
N. In fact, it is the unique

(viscosity) solution of {
|∇u| = 1 in Ω,

u = 0 on∂Ω.

Themaximalbehavior available at the boundary is collected now

Theorem 1 (Maximal behavior at the boundary)
Let∂Ω ∈ C2 and letu be any solution of

−∆∞u + λ|u|m−1u ≤ f in Ω (λ > 0, m > 3) (8)

for f ∈ USC(Ω). Let us denotêq =
4m

m − 3
.

Then, if
lim sup

d∂Ω(x)→0

f(x) (d∂Ω(x))
q̂
≤ fq̂ ∈ [0,∞[

one has
lim sup

d∂Ω(x)→0

u(x) (d∂Ω(x))
q̂
m ≤ u∞(q̂),

whereu∞(q̂) is the positive root of

P1(µ) = λµm −
(q̂ + m)q̂3

m4
µ3 − fq̂.

On the other hand, if
lim sup

d∂Ω(x)→0

f(x) (d∂Ω(x))
q
≤ fq ∈]0,∞[, q > q̂

the following inequality holds

lim sup
d∂Ω(x)→0

u(x) (d∂Ω(x))
q
m ≤

(
fq

λ

) 1

m

. �

In the proof of the above result (see [6]) we use the representation

−∆∞ (d∂Ω(x))
−α

= −α3(α + 1) (d∂Ω(x))
−(3α+4)

+ α3 (d∂Ω(x))
−(3α+3)

∆∞d∂Ω(x)

for x ∈ O0
R(∂Ω), R < δΩ, where the term∆∞d∂Ω involves the geometry ofΩ (see Remark 5 below

for some details). In the particular caseΩ = BR(0) one hasδBR(0) = R (see Lemma 1). Moreover,
straightforward computations show that the relative distance function

d∂Ω(x) = R − |x|

is∞-harmonic,i.e.
∆∞d∂Ω(x) = 0 x ∈ BR(0) \ {0}.

Remark 4 As it is indicated later, the estimates of Theorem 1 are thebest maximal estimate on the behav-
ior at the boundaryof solutions of (1).�
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3. Large solutions.

Here we focus the attention on the behavior near the boundaryof the large solutions,i.e. satisfying the
property

lim
dist(x,∂Ω)→0

u(x) = +∞.

The next result is the main contribution in this note. In fact, it is a major key in order to obtain uniqueness
of these singular solutions (see [6]).

Theorem 2 (Uniqueness of the explosive rate)
LetΩ be a bounded open set ofR

N, N ≥ 1, with ∂Ω ∈ C2. Then all large solution of

−∆∞u + λ|u|m−1u = f in Ω (λ > 0, m > 3)

has a unique explosive rate. More precisely, ifq̂ =
4m

m − 3
, the assumption

lim
d∂Ω(x)→0

f(x) (d∂Ω(x))q̂ = fq̂ ∈ [0,∞[

implies

lim
d∂Ω(x)→0

u(x) (d∂Ω(x))
q̂
m = u∞(q̂),

whereu∞(q̂) is the positive root of

P1(µ) = λµm −
(q̂ + m)q̂3

m4
µ3 − fq̂.

On the other hand,
lim

d∂Ω(x)→0
f(x) (d∂Ω(x))

q
= fq ∈]0,∞[, q > q̂

leads to

lim
d∂Ω(x)→0

u(x) (d∂Ω(x))
q
m =

(
fq

λ

) 1

m

. �

Remark 5 The main idea of the proofs of Theorems 1 and 2 lies on the construction of some suitable
smooth sub and supersolutions given, respectively, by

{
Φε,δ(x) = (c − ε) (d∂Ω(x) + δ)

−α
− M, x ∈ O0

ϑ

Ψε,δ(x) = (c + ε) (d∂Ω(x) − δ)
−α

+ M, x ∈ Oδ
ϑ

0 < δ < ϑ < δΩ, ϑ ≪ 1,

wherec, α andM are positive constants to be chosen. The parameterc is the positive root of the relative
polynomials

P1(µ) = λµm −
(q̂ + m)q̂3

m4
µ3 − fq̂.

or
P2(µ) = λµm − fq

and it leads to theblow up rate. On the other hand, theblow up orderα is chosen by means of some
adequate balances between the constantsq and m. The arguments conclude by passing to the limits
δ → 0, d∂Ω(x) → 0 andε → 0. �
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Remark 6 Lower terms in the expansion of the behavior will be obtainedin a future paper. �

As it was partially quoted in Remark 3, conditionm > 3 is sharp. Concerning the non–existence of
large solutions we have

Proposition 2
The equation

−∆∞u + h(u) ≥ 0,

possed in a bounded domainΩ ⊂ R
N, has no explosive positive solutions, provided thath is a nonnegative

continuous function verifying

sup
r>0

h(r)

r3
< +∞. � (9)
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