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Abstract
In this paper we use the Malliavin calculus techniques to obtain an ex-

pression for the short-time behavior of the at-the-money implied volatility
skew for a generalization of the Bates model, where the volatility does not
need to be neither a difussion, nor a Markov process, as the examples in
section 7 show. This expression depends on the derivative of the volatility
in the sense of Malliavin calculus.
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1 Introduction

In the last years several authors have studied different extensions of the classical
Black-Scholes model in order to explain the current market behavior. Among
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these extensions, one of the most popular is to allow the volatility to be a
stochastic process (see for example Hull and White (1987), Scott (1987), Stein
and Stein (1991), Heston (1993) or Ball and Roma (1994), among others).
It is well-known that classical stochastic volatility diffusion models, where

the volatility also follows a diffusion process, capture some important features
of the implied volatility. For example, its variation with respect to the strike
price, described graphically as a smile or skew (see Renault and Touzi (1996)).
But the observed implied volatility exhibits dependence not only on the strike
price, but also on time to maturity (term structure). Unfortunately, the term
structure is not easily explained by classical stochastic volatility models. For
instance, a popular rule-of-thumb for the short-time behavior with respect to
time to maturity, based on empirical observations, states that the skew slope is
approximately O((T−t)− 1

2 ), while the rate for these stochastic volatility models
is O(1), (see Lewis (2000), Lee (2004) or Medveved and Scaillet (2003)). Note
that in these models, for reasonable coefficients in their dynamics, volatility
behaves almost as a constant, on a very short-time scale. Consequently, re-
turns are roughly normally distributed and the skew becomes quite flat. This
problem has motivated the introduction of jumps in the asset price dynamic
models. Although the rate of the skew slope for models with jumps is still O(1)
(as it is shown by Medveved and Scaillet (2003)), they allow flexible modelling,
and generate skews and smiles similar to those observed in market data (see
Bates (1996), Barndorff-Nielsen and Shephard (2001a, 2001b) or Carr and Wu
(2003)). Recently, Fouque, Papanicolau, Sircar and Solna (2004) have intro-
duced continuous diffusion models again to describe the empirical short-time
skew. Their idea is to include suitable coefficients that depend on the time till
the next maturity date and that guarantee the variability is large enough near
the maturity time.
The main goal of this paper is to provide a method based on the techniques

of the Malliavin calculus to estimate the rate of the short-dated behavior of the
implied volatility (see Theorem 7 below) for general jump-diffusion stochastic
volatility models. It is well-known that the Malliavin calculus is a powerful tool
to deal with anticipating processes. Since the future volatility is not adapted,
this theory becomes a natural tool to analyze this problem. Hence, now it
is possible to deal with a volatility in a class that includes either fractional
processes with parameter in (0, 1), Markov processes, or processes with time-
varying coefficients, among others.
The paper is organized as follows. In Section 2 we introduce the framework

and the notation that we utilize in this paper. In Section 3 we state our basic
tool. Namely, an anticipating Itô’s formula for the Skorohod integral. As a
consequence, in Section 4, we obtain an extended Hull and White formula for a
general class of jump-diffusion models with stochastic volatility. An expression
for the derivative of the implied volatility is given in Section 5. Section 6 is
devoted to the main result of this article. That means, we figure out the short-
time limit behavior. Finally, in Section 7, we give some examples in order to
show that we can not only extend some known results, but also consider new
volatility models so that we are able to capture the short-time behavior of skew
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slopes of order (T − t)δ, for δ > −1/2.

2 Statement of the model and notation

In this paper we will consider the following model for the log-price of a stock
under a risk-neutral probability measure Q:

Xt = x+(r−λk)t− 1
2

Z t

0

σ2sds+

Z t

0

σs(ρdWs+
p
1− ρ2dBs)+Zt, t ∈ [0, T ]. (1)

Here, x is the current log-price, r is the instantaneous interest rate,W and B are
independent standard Brownian motions, ρ ∈ (−1, 1), Z is a compound Poisson
process with intensity λ and Lévy measure ν, k = 1

λ

R
R(e

y − 1)ν(dy) < ∞,
and σ is a second-order stochastic process adapted to the filtration generated
by W. Notice that this model is a generalization of the classical Bates model
introduced in Bates (1996), in the sense that we do not assume the volatility to
be a diffussion process.
In the following we denote by FW ,FB and FZ the filtrations generated by

W,B and Z respectively. Moreover we define F := FW ∨FB ∨FZ .
It is well-known that if we price an European call with strike price K by the

formula
Vt = e−r(T−t)E[(eXT −K)+|Ft], (2)

where E is the expectation with respect to Q, there is no arbitrage opportunity.
Thus Vt is a possible price for this derivative. Notice that any allowable choice of
Q leads to an equivalent martingale measure and to a different no arbitrage price.
The approach that we will follow here is the same as in Fouque, Papanicolau,
Sircar and Solna (2003), where it is assumed that the market selects a unique
equivalent martingale measure under which derivative contracts are priced.
In the sequel, we will make use the following notation:

• vt :=
³

Yt
T−t

´ 1
2

, with Yt :=
R T
t
σ2sds, will denote the future average volatil-

ity.

• For any τ > 0, p(x, τ) will denote the centered Gaussian kernel with
variance τ2. If τ = 1 we will write p(x).

• BS(t, x, σ) will denote the price of an european call option under the clas-
sical Black-Scholes model with constant volatility σ, current log stock price
x, time to maturity T − t, strike price K and interest rate r. Remember
that in this case:

BS(t, x, σ) = exN(d+)−Ke−r(T−t)N(d−),

where N denotes the cumulative probability function of the standard nor-
mal law and
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d± :=
x− x∗t
σ
√
T − t

± σ

2

√
T − t,

with x∗t := lnK − r(T − t).

• LBS (σ) will denote the Black-Scholes differential operator, in the log vari-
able, with volatility σ :

LBS(σ) = ∂t +
1

2
σ2∂2xx + (r −

1

2
σ2)∂x − r·

It is well known that LBS(σ)BS(·, ·, σ) = 0.
• G(t, x, σ) := (∂2xx − ∂x)BS(t, x, σ).

3 Preliminaries on Malliavin Calculus

Let us consider a standard Browian motion W = {Wt, t ∈ [0, T ]} defined
in a complete probability space (Ω,F , P ). Set H = L2([0, T ]), and denote by
W (h) =

R T
0 h(s)dWs the Wiener integral of a deterministic function h ∈ H.

In this section we introduce the basic notations and results of the Malliavin
calculus following closely to Nualart (1995).
Let S be the set of smooth and cylindrical random variables of the form

F = f(W (h1), . . . ,W (hn)), where n ≥ 1, f ∈ C∞b (Rn) (f and all its derivatives
are bounded), and h1, .., hn ∈ H. Given a random variable F of this form, we
define its derivative as the stochastic process

©
DW
t F, t ∈ [0, T ]ª given by

DW
t F =

nX
i=1

(∂if)(W(h1), . . . ,W (hn))hi(t), t ∈ [0, T ].

The operator DW and the iterated operators DW,n are closable and unbounded
from L2 (Ω) into L2 ([0, T ]n ×Ω) , for all n ≥ 1. We denote by Dn,2W the closure
of S with respect to the norm defined by

kFk2n,2 = kFk2L2(Ω) +
nX

k=1

°°DW,kF
°°2
L2([0,T ]k×Ω) .

We denote by δW the adjoint of the derivative operator DW that is an
extension of the Itô integral in the sense that the set L2a([0, T ] × Ω) of square
integrable and adapted processes (with respect to to the filtration generated
by W ) is included in DomδW and the operator δW restricted to L2a([0, T ]× Ω)
coincides with the Itô stochastic integral. We will make use of the notation
δW (u) =

R T
0 utdWt. We recall that Ln,2 := L2([0, T ];Dn,2W ) is included in the

domain of δW for all n ≥ 1.
Now we can prove the following ad-hoc version of Itô’s formula, which follows

from Alòs and Nualart (1998) and Alòs (2006). In the sequel, we use the notation
D = DW to simplify the exposition.
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Proposition 1 Assume model (1) and σ2 ∈ L1,2. Let F : [0, T ] × R2 → R a
function in C1,2([0, T ] × R2) such that there exists a positive constant C such
that, for all t ∈ [0, T ] , F and its partial derivatives evaluated in (t,Xt, Yt) are
bounded by C. Then it follows that

F (t,Xt, Yt) = F (0,X0, Y0) +

Z t

0

∂sF (s,Xs, Ys)ds

+

Z t

0

∂xF (s,Xs, Ys)(r − λk − σ2s
2
)ds

+

Z t

0

∂xF (s,Xs, Ys)σs(ρdWs +
p
1− ρ2dBs)

−
Z t

0

∂yF (s,Xs, Ys)σ
2
sds+ ρ

Z t

0

∂2xyF (s,Xs, Ys)Λsds

+
1

2

Z t

0

∂2xxF (s,Xs, Ys)σ
2
sds

+

Z t

0

Z
R
(F (s,Xs− + y, Ys)− F (s,Xs−, Ys))J̃X(ds, dy)

+

Z t

0

Z
R
(F (s,Xs− + y, Ys)− F (s,Xs−, Ys))dsν(dy),

where Λs := (
R T
s
Dsσ

2
rdr)σs, JX is the Poisson random measure such that Zt =R

[0,t]×R yJX(ds, dy) and J̃X(ds, dy) := JX(ds, dy)− dsν(dy).

Proof: Denote by Ti, i = 1, . . . , NT the jump instants of X. On [Ti, Ti+1),
X evolves according to its continuous part Xc given by the equation:

dXc
t = (r − λk − σ2t

2
)dt+ σt(ρdWt +

p
1− ρ2dBt).

Then, applying Theorem 1 in Alòs (2006) we have that

F (Ti+1−,XTi+1− , YTi+1−)− F (Ti,XTi , YTi)

=

Z Ti+1−

Ti

∂sF (s,Xs, Ys)ds+

Z Ti+1−

Ti

∂xF (s,Xs, Ys)dX
c
s

−
Z Ti+1−

Ti

∂yF (s,Xs, Ys)σ
2
sds+ ρ

Z Ti+1−

Ti

∂2xyF (s,Xs, Ys)Λsds

+
1

2

Z Ti+1−

Ti

∂2xxF (s,Xs, Ys)σ
2
sds,

since dXt = dXc
t in [Ti, Ti+1). If a jump of size ∆Xt occurs then the resulting

change in F (t,Xt, Yt) is given by F (t,Xt− + ∆Xt, Yt) − F (t,Xt−, Yt). There-
fore the total change in F (t,Xt, Yt) can be written as the sum of these two
contributions:
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F (t,Xt, Yt) = F (0,X0, Y0) +

Z t

0

∂sF (s,Xs, Ys)ds

+

Z t

0

∂xF (s,Xs, Ys)dX
c
s −

Z t

0

∂yF (s,Xs, Ys)σ
2
sds

+ ρ

Z t

0

∂2xyF (s,Xs, Ys)Λsds+
1

2

Z t

0

∂2xxF (s,Xs, Ys)σ
2
sds

+
X
0≤s≤t

[F (s,Xs− +∆Xs, Ys)− F (s,Xs−, Ys)].

Hence we deduce the desired result.

4 An extension of Hull and White formula

In this section, using the Itô’s formula and the arguments developed in Alòs
(2006), we prove an extension of the Hull and White formula that gives the
price of an European call option as a sum of the price when the model has
no jumps and no correlation plus three terms: one describes the impact of the
correlation on option prices and two of them, which can be presented jointly,
describe the impact of jumps in this prices. Hence this formula will be a useful
tool to compare the effect of correlation and jumps (see Section 5).
We will need the following result, inspired in Lemma 5 in Fouque, Papani-

colau, Sircar and Solna (2003).

Lemma 2 Let 0 ≤ t ≤ s ≤ T , ρ ∈ (−1, 1) and Gt := Ft ∨FW
T ∨ FZ

T . Then for
every n ≥ 0, there exists C = C(n, ρ) such that

|E (∂nxG (s,Xs, vs)| Gt)| ≤ C

ÃZ T

t

σ2sds

!− 1
2 (n+1)

.

Proof: A simple calculation gives us that

∂xBS (s, x, σ) = exN (d+) + ex
N 0 (d+)
σ
√
T − t

−Ke−r(T−t)
N 0 (d−)
σ
√
T − t

.

Since exN 0 (d+) = Ke−r(T−t)N 0 (d−) it follows that

∂xBS (s, x, σ) = exN (d+)

and

∂2xxBS (s, x, σ) = exN (d+) +Ke−r(T−t)
N 0 (d−)
σ
√
T − t

.

In consequence

G(s,Xs, vs) = Ke−r(T−s)p
³
Xs − µ, vs

√
T − s

´
,
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where µ = lnK − ¡r − v2s/2
¢
(T − s). This allows us to write

E(∂nxG(s,Xs, vs)
¯̄Gt) = (−1)nKe−r(T−s)∂nµE(p(Xs − µ, vs

√
T − s)

¯̄Gt). (3)

Since the conditional expectation of Xs given Gt is a normal random variable
with mean equal to

φ = Xt +

Z s

t

¡
r − σ2θ/2

¢
dθ + Zs − Zt − λk (s− t) + ρ

Z s

t

σθdWθ

and variance equal to
¡
1− ρ2

¢ R s
t
σ2θdθ, it follows that

E
³
p
³
Xs − µ, vs

√
T − s

´¯̄̄
Gt
´

=

Z
R

p
³
y − µ, vs

√
T − s

´
p

Ã
y − φ,

s
(1− ρ2)

Z s

t

σ2θdθ

!
dy

= p

φ− µ,

sZ T

s

σ2sds+ (1− ρ2)

Z s

t

σ2θdθ


= p

φ− µ,

s
(1− ρ2)

Z T

t

σ2θdθ+ ρ2
Z T

s

σ2θdθ

 .

Putting this result in (3), we have

E(∂nxG(s,Xs, vs)
¯̄Gt) = (−1)nKe−r(T−s)∂nµp

φ− µ,

s
(1− ρ2)

Z T

t

σ2θdθ+ ρ2
Z T

s

σ2θdθ

 .

A simple calculation and the fact that, for every positive constants c, d the
function xce−dx

2

is bounded, give us that

|∂nµp
φ− µ,

s
(1− ρ2)

Z T

t

σ2sds+ ρ2
Z T

s

σ2sds

 |
≤ C

Ã¡
1− ρ2

¢ Z T

t

σ2sds+ ρ2
Z T

s

σ2sds

!− 1
2 (n+1)

≤ C

ÃZ T

t

σ2sds

!− 1
2 (n+1)

,

and thus the proof is complete.
Now we are able to prove the main result of this section, the extended Hull

and White formula.
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Theorem 3 Assume the model (1) holds with σ ∈ L1,2. Then it follows that

Vt = E(BS(t,Xt, vt)|Ft) + ρ

2
E(

Z T

t

e−r(s−t)∂xG(s,Xs, vs)Λsds|Ft)

+E(

Z T

t

Z
R
e−r(s−t)(BS(s,Xs + y, vs)−BS(s,Xs, vs))ν(dy)ds|Ft)

−λkE(
Z T

t

e−r(s−t)∂xBS(s,Xs, vs)ds|Ft).

Proof: This proof is similar to the one of the main theorem in Alòs (2006).
Notice that BS(T,XT , vT ) = VT . Then, from (2) we have

e−rtVt = E(e−rTBS(T,XT , vT )|Ft).
Now, our idea is to apply Proposition 1 to the process e−rtBS(t,Xt, vt). As

the derivatives of BS(t, x, σ) are not bounded we will make use of an approxi-
mating argument, changing vt by

vδt :=

r
1

T − t
(Yt + δ),

and BS(t, x, σ) by BSn(t, x, σ) := BS(t, x, σ)ψn (x) , where ψn (Xt) := φ
¡
1
nx
¢
,

for some φ ∈ C2b such that φ (x) = 1 for all x < 1 and φ (x) = 0 for all x > 2.
Now, applying Proposition 1 between t and T and grouping terms according
with the type of derivative we obtain:

e−rTBSn(T,XT , v
δ
T )

= e−rtBSn(t,Xt, v
δ
t ) +

Z T

t

e−rsLBS(σs)BSn(s,Xs, v
δ
s)ds

−1
2

Z T

t

e−rs∂σBSn(s,Xs, v
δ
s)
(σ2s − (vδs)2)
vδs(T − s)

ds

−λk
Z T

t

e−rs∂xBSn(s,Xs, v
δ
s)ds

+

Z T

t

e−rs∂xBSn(s,Xs, v
δ
s)σs(ρdWs +

p
1− ρ2dBs)

+
ρ

2

Z T

t

e−rs∂2σxBSn(s,Xs, v
δ
s)

1

vδs(T − s)
Λsds

+

Z T

t

Z
R
e−rs(BSn(s,Xs− + y, vδs)−BSn(s,Xs−, vδs))J̃X(ds, dy)

+

Z T

t

Z
R
e−rs(BSn(s,Xs− + y, vδs)−BSn(s,Xs−, vδs))ν(dy)ds.

Notice that LBS(σs)BSn(s,Xs, vδs) =
¡LBS(σs)BS(s,Xs, vδs)

¢
ψn(Xs)+An(s),
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where

An(s) =
1

2
σ2s
£
2∂xBS(s,Xs, v

δ
s)ψ

0
n(Xs)

+BS(s,Xs, v
δ
s)
¡
ψ00n(Xs)− ψ0n(Xs)

¢¤
+ rBS(s,Xs, v

δ
s)ψ

0
n(Xs).

Also note that the classical relation between the Gamma, the Vega and the
Delta gives us that

∂σBS(s, x, σ)
1

σ(T − s)
= G(s, x, σ).

Then we can write

e−rTBSn(T,XT , v
δ
T )

= e−rtBSn(t,Xt, v
δ
t ) +

Z T

t

e−rs
£
(LBS(σs)BS)(s,Xs, v

δ
s)ψn(Xs) +An(s)

¤
ds

−1
2

Z T

t

e−rsG(s,Xs, v
δ
s)ψn(Xs)(σ

2
s − (vδs)2)ds

−λk
Z T

t

e−rs∂xBSn(s,Xs, v
δ
s)ds

+

Z T

t

e−rs∂xBSn(s,Xs, v
δ
s)σs(ρdWs +

p
1− ρ2dBs)

+
ρ

2

Z T

t

e−rs
£
(∂xG) (s,Xs, v

δ
s)ψn(Xs) +G(s,Xs, v

δ
s)ψ

0
n(Xs)

¤
Λsds

+

Z T

t

Z
R
e−rs(BSn(s,Xs− + y, vδs)−BSn(s,Xs−, vδs))J̃X(ds, dy)

+

Z T

t

Z
R
e−rs(BSn(s,Xs− + y, vδs)−BSn(s,Xs−, vδs))ν(dy)ds

Hence, taking into account that LBS(σs) = LBS(vδs)+ 1
2(σ

2
s− (vδs)2)

¡
∂2xx − ∂x

¢
it follows that (using the fact that LBS(vδs)BS(s,Xs, v

δ
s) = 0)

e−rTBSn(T,XT , v
δ
T ) = e−rtBSn(t,Xt, v

δ
t ) +

Z T

t

e−rsAn(s)ds

−λk
Z T

t

e−rs∂xBSn(s,Xs, v
δ
s)ds

+

Z T

t

e−rs∂xBSn(s,Xs, v
δ
s)σs(ρdWs +

p
1− ρ2dBs)

+
ρ

2

Z T

t

e−rs
£
(∂xG) (s,Xs, v

δ
s)ψn(Xs) +G(s,Xs, v

δ
s)ψ

0
n(Xs)

¤
Λsds

+

Z T

t

Z
R
e−rs(BSn(s,Xs− + y, vδs)−BSn(s,Xs−, vδs))J̃X(ds, dy)

+

Z T

t

Z
R
e−rs(BSn(s,Xs− + y, vδs)−BSn(s,Xs−, vδs))ν(dy)ds

9



Now, taking conditional expectations we obtain that

E
¡
e−rTBSn(T,XT , v

δ
T )
¯̄Ft¢

= E

(
e−rtBSn(t,Xt, v

δ
t ) +

Z T

t

e−rsAn(s)ds

−λk
Z T

t

e−rs∂xBSn(s,Xs, v
δ
s)ds

+
ρ

2

Z T

t

e−rs
£
(∂xG) (s,Xs, v

δ
s)ψn(Xs) +G(s,Xs, v

δ
s)ψ

0
n(Xs)

¤
Λsds

+

Z T

t

Z
R
e−rs(BSn(s,Xs− + y, vδs)−BSn(s,Xs−, vδs))ν(dy)ds

¯̄̄̄
¯Ft

)
.

Finally we have that |BS (t, x, σ)| + |∂xBS (t, x, σ)| ≤ 2ex + K and that the
processes ψ0n(Xs) and ψ00n(Xs) are bounded and tend to zero a.s. Moreover,

Lemma 2 gives us thatE(G(s,Xs, vδs)
¯̄Gt) ≤ C

³R T
t
σ2sds

´− 1
2

and thatE(∂xG(s,Xs, vδs)
¯̄Gt) ≤

C
³R T

t σ2sds
´−1

, for some positive constant C. Also, by Hölder’s inequality we
have ¯̄̄̄

¯
Z T

t

Λsds

¯̄̄̄
¯ ≤ 2

Z T

t

σs

Z T

s

σθ |Dsσθ| dθds

≤ 2

ÃZ T

t

σ2θdθ

!ÃZ T

t

Z T

t

(Drσθ)
2 drdθ

! 1
2

. (4)

Then, letting first n ↑ ∞ and then δ ↓ 0, and using the dominated convergence
theorem, the proof is complete.

5 An expression for the derivative of the implied
volatility

Let It(Xt) denote the implied volatility process, which satisfies by definition
Vt = BS(t,Xt, It(Xt)). In this section we will prove a formula for its at-the-
money derivative that we will use in Section 6 to study the short-time behavior
of the implied volatility

Proposition 4 Assume the model (1) holds with σ ∈ L1,2 and for every fixed
t ∈ [0, T ] , E

³R T
t
σ2sds

¯̄̄
Ft
´−1

<∞ a.s. Then it follows that

∂It
∂Xt

(x∗t ) =
E(
R T
t
(∂xF (s,Xs, vs)− 1

2F (s,Xs, vs))ds|Ft)
∂σBS(t, x∗t , It(x∗t ))

¯̄̄̄
¯
Xt=x∗t

, a.s.
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where

F (s,Xs, vs) :=
ρ

2
e−r(s−t)∂xG(s,Xs, vs)Λs

+

Z
R
e−r(s−t)[BS(s,Xs + y, vs)−BS(s,Xs, vs)]ν(dy)

− λke−r(s−t)∂xBS(s,Xs, vs).

Proof: Taking partial derivatives with respect to Xt on the expression Vt =
BS(t,Xt, It(Xt)) we obtain

∂Vt
∂Xt

= ∂xBS(t,Xt, It(Xt)) + ∂σBS(t,Xt, It(Xt))
∂It
∂Xt

(Xt). (5)

On the other hand, from Theorem 3 we deduce that

Vt = E(BS(t,Xt, vt)|Ft) +E(

Z T

t

F (s,Xs, vs)ds|Ft),
which implies that

∂Vt
∂Xt

= E(∂xBS(t,Xt, vt)|Ft) +E(

Z T

t

∂xF (s,Xs, vs)ds|Ft). (6)

Using now the fact that E
³R T

t σ2sds
¯̄̄
Ft
´−1

< ∞ we can check that the con-

ditional expectation E(
R T
t
∂xF (s,Xs, vs)ds|Ft) is well defined and finite a.s.

Thus, (5) and (6) imply

∂It
∂Xt

(x∗t ) (7)

=
E(∂xBS(t, x∗t , vt)|Ft)− ∂xBS(t, x∗t , It(x∗t )) +E(

R T
t
∂xF (s,Xs, vs)ds|Ft)|Xt=x∗t

∂σBS(t, x∗t , It(x∗t ))
.

Notice that

E(∂xBS(t, x
∗
t , vt)|Ft) = ∂xE(BS(t, x, vt)|Ft)|x=x∗t = ∂xBS(t, x, I

0
t (x))|x=x∗t ,

(8)
where I0t (Xt) is the implied volatility in the case ρ = λ = 0.
Also, by the classical Hull and White formula, we have

∂x(BS(t, x, I
0
t (x))

¯̄
x=x∗t

= ∂xBS(t, x
∗, I0t (x

∗)) + ∂σBS(t, x
∗, I0t (x

∗))
∂I0t
∂x

(x∗t ) . (9)

From Romano and Touzi (1996) we know that ∂I0t
∂x (x

∗
t ) = 0. Then, (7), (8) and

(9) imply that

∂It
∂Xt

(x∗t ) =
∂xBS(t, x∗t , I0t (x∗t ))− ∂xBS(t, x∗t , It(x∗t )) +E(

R T
t
∂xF (s,Xs, vs)ds|Ft)

∂σBS(t, x∗t , It(x∗t ))

¯̄̄̄
¯
Xt=x∗t

.

(10)

11



On the other hand, straightforward calculations lead us to

∂xBS(t, x
∗
t , σ) = ex

∗
tN(

1

2
σ
√
T − t)

and

BS(t, x∗t , σ) = ex
∗
t (N(

1

2
σ
√
T − t)−N(−1

2
σ
√
T − t))

Then
∂xBS(t, x

∗
t , σ) =

1

2
(ex
∗
t +BS(t, x∗t , σ))

and

∂xBS(t, x
∗
t , I

0
t (x
∗
t ))− ∂xBS(t, x

∗
t , It(x

∗
t ))

=
1

2
(BS(t, x∗t , I

0
t (x
∗
t ))−BS(t, x∗t , It(x

∗
t )))

=
1

2
(E(BS(t, x∗t , vt)− Vt(x

∗
t )|Ft))

= −1
2
E(

Z T

t

F (s,Xs, vs)ds|Ft)
¯̄̄̄
¯
Xt=x∗t

.

This, together with (10), implies that the result holds.

6 Short-time limit behavior

Here, our purpose is to study the limit of ∂It
∂Xt

(x∗t ) when T ↓ t. Toward this
end, we will need the following lemma:

Lemma 5 Assume the model (1) is satisfied. Then It(x
∗
t )
√
T − t tends to 0

a.s. as T → t.

Proof: Using the dominated convergence theorem it is easy to see that

Pt := E[e−r(T−t)(K − eXT )+|Ft]
¯̄̄
Xt=x∗t

−→
T→t

(K − ex
∗
t )+ = 0, a.s.

Now, by the classical call-put parity relation, we obtain

Vt = E[e−r(T−t)(eXT −K)+|Ft]
¯̄̄
Xt=x∗t

−→ (ex
∗
t −K)+ = 0.

Hence, taking into account that, in the at-the-money case, Vt = BS(t, x∗t , It(x∗t )),
we deduce that

12



BS(t, x∗t , It(x
∗
t )) = 2Ke−r(T−t)

·
N

µ
I(x∗t )

√
T − t

2

¶
− 1
2

¸
−→ 0,

and this allows us to complete the proof.
Henceforth we will consider the following hypothesis:
(H1) σ ∈ L2,4
(H2) There exists a constant a > 0 such that σ > a > 0.
(H3) There exists a constant δ > −12 such that, for all 0 < t < s < r < T,

E
³
(Dsσr)

2
¯̄̄
Ft
´
≤ C (r − s)2δ , (11)

E
³
(DθDsσr)

2
¯̄̄
Ft
´
≤ C (r − s)2δ (r − θ)−2δ (12)

Proposition 6 Assume that the model (1) and hypotheses (H1)-(H3) hold.
Then:

∂σBS(t, x
∗
t , It(x

∗
t ))

∂It
∂Xt

(x∗t )

=
ρ

2
E(L(t, x∗t , vt)

Z T

t

Λsds|Ft)

−λkE(G(t, x∗t , vt)(T − t)|Ft) +O(T − t)(1+2δ)∧1,

as T → t and where L(t, x∗t , vt) = (∂2xx − 1
2∂x)G(t, x

∗
t , vt).

Proof: Proposition 4 gives us that

∂σBS(t, x
∗
t , It(x

∗
t ))

∂It
∂Xt

(x∗t )

=
ρ

2
E(

Z T

t

e−r(s−t)(∂x − 1
2
)∂xG(s,Xs, vs)Λsds|Ft)|Xt=x∗t

+ E(

Z T

t

Z
R
e−r(s−t)(∂x − 1

2
)[BS(s,Xs + y, vs)−BS(s,Xs, vs)]ν(dy)ds|Ft)|Xt=x∗t

−λkE(
Z T

t

e−r(s−t)(∂x − 1
2
)∂xBS(s,Xs, vs)ds|Ft)|Xt=x∗t = T1 + T2 + T3. (13)

Now the proof will be decomposed into several steps.
Step 1. Here we see that

T1 =
ρ

2
E(L(t, x∗t , vt)

Z T

t

Λsds|Ft) +O (T − t)1+2δ , (14)

where L(s,Xs, vs) = (∂
2
xx − 1

2∂x)G(s,Xs, vs). In fact, applying Itô formula to

ρ

2
e−r(s−t)L(s,Xs, vs)(

Z T

s

Λrdr)

13



as in the proof of Theorem 3 and taking conditional expectations with respect
Ft, we obtain that

ρ

2
E(

Z T

t

e−r(s−t)L(s,Xs, vs)Λsds|Ft) = ρ

2
E(L(t,Xt, vt)(

Z T

t

Λsds)|Ft)

+
ρ2

4
E(

Z T

t

e−r(s−t)(∂3xxx − ∂2xx)L(s,Xs, vs)(

Z T

s

Λrdr)Λsds|Ft)

+
ρ2

2
E(

Z T

t

e−r(s−t)∂xL(s,Xs, vs)(

Z T

s

DsΛrdr)σsds|Ft)

+
ρ

2
E(

Z T

t

Z
R
e−r(s−t)[L(s,Xs− + y, vs)− L(s,Xs−, vs)](

Z T

s

Λrdr)ν(dy)ds|Ft)

− λk
ρ

2
E(

Z T

t

e−r(s−t)∂xL(s,Xs−, vs)(
Z T

s

Λrdr)ds|Ft)

=
ρ

2
E(L(t,Xt, vt)(

Z T

t

Λsds)|Ft) + S1 + S2 + S3 + S4.

Using Lemma 2 we can write

S1 =
ρ2

4
E(

Z T

t

e−r(s−t)E
£
(∂3xxx − ∂2xx)L(s,Xs, vs)

¯̄Gt¤ (Z T

s

Λrdr)Λsds|Ft)

≤ C
6X

k=4

E

ÃZ T

t

σ2sds

!−k
2 Z T

t

|(
Z T

s

Λrdr)Λs|ds|Ft
 .

Taking into account inequality (4) and using Hypotheses (H2) and (H3) we can
write

S1 ≤ C
2X

k=0

E

ÃZ T

t

σ2θdθ

!−k
2
ÃZ T

t

Z T

t

(Drσθ)
2 drdθ

!
|Ft


≤ C(T − t)−1
ÃZ T

t

Z θ

t

(θ − r)
2δ
drdθ

!
≤ C(T − t)1+2δ.

Using similar arguments it follows that S2 + S3 + S4 = O(T − t)1+2δ, which
proves (14).
Step 2. As |BS (t, x, σ)| + |∂xBS (t, x, σ)| ≤ 2ex +K if follows that T2 =

O(T − t).
Step 3. Let us prove that

T3 = −λkE(G(t, x∗t , vt)(T − t)|Ft) +O (T − t) . (15)

14



In fact,

E(

Z T

t

e−r(s−t)(∂x − 1
2
)∂xBS(s,Xs, vs)ds|Ft)|Xt=x∗t

= E

ÃZ T

t

e−r(s−t)G(s,Xs, vs)ds
¯̄̄
Ft
!
|Xt=x∗t

+
1

2
E

ÃZ T

t

e−r(s−t)∂xBS(s,Xs, vs)ds
¯̄̄
Ft
!
|Xt=x∗t .

As |∂xBS (t, x, σ)| ≤ ex it follows easily that the second term in the right-hand
side of this equality is O(T − t). On the other hand, Itô’s formula allows us to
write

E
³
e−r(s−t)G(s,Xs, vs)

¯̄̄
Ft
´

= E (G(t,Xt, vt)| Ft)
+
ρ

2
E

µZ s

t

e−r(u−t)
¡
∂3xxx − ∂2xx

¢
G(u,Xu, vu)Λudu

¯̄̄̄
Ft
¶

+E

µZ s

t

Z
R

e−r(u−t) (G(u,Xu + y, vu)−G(u,Xu, vu)) ν (dy) du

¯̄̄̄
Ft
¶

−λkE
µZ s

t

e−r(u−t)∂xG(u,Xu, vu)du

¯̄̄̄
Ft
¶
.

Now, using again the same arguments of Step 1, (15) follows. Therefore the
proof is complete.
Now we can state the main result of this paper. We will consider the following

hypothesis:
(H4) σ has a.s. right-continuous trajectories.

(H5) For every fixed t > 0, sups,r,θ∈[t,T ]E
³¡

σsσr − σ2θ
¢2 ¯̄̄Ft´→ 0 as T → t.

Theorem 7 Consider the model (1) and suppose that Hypotheses (H1)-(H5)
hold:

1. Assume that δ in (H3) is nonnegative and that there exists a Ft-measurable
random variable D+

t σt such that, for every t > 0,

sups,r∈[t,T ]
¯̄
E
¡¡
Dsσr −D+

t σt
¢¯̄Ft¢¯̄→ 0, (16)

a.s. as T → t. Then

lim
T→t

∂It
∂Xt

(x∗t ) = −
1

σt

µ
λk + ρ

D+
t σt
2

¶
. (17)

2. Assume that δ in (H3) is negative and that there exists a Ft-measurable
random variable Lδ,+t σt such that, for every t > 0,

1

(T − t)2+δ

Z T

t

Z T

s

E (Dsσr| Ft) drds− Lδ,+t σt → 0, (18)
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a.s. as T → t. Then

lim(T − t)−δ
∂It
∂Xt

(x∗t ) = −
ρ

σt
Lδ,+t σt (19)

Proof: Using Proposition 6 and the facts that

∂σBS(t, x
∗
t , It(x

∗
t )) =

Ke−r(T−t)e
−It(x∗t )2(T−t)

8

√
T − t√

2π
,

L(t, x∗t , vt) = −Ke−r(T−t)
1√
2π

e−
v2t (T−t)

8 v−3t (T − t)−
3
2

and

G(t, x∗t , vt) =
Ke−r(T−t)e

−vt2(T−t)
8

vt
p
2π(T − t)

we can write

∂It
∂Xt

(x∗t )

= −ρ
2
e
It(x
∗
t )
2(T−t)
8 (T − t)−2E(e−

v2t (T−t)
8 v−3t

Z T

t

Λsds|Ft)

−λke It(x
∗
t )
2(T−t)
8 E

µ
e
−vt2(T−t)

8 v−1t |Ft
¶
+O(T − t)(

1
2+2δ)∧ 12

=: S1 + S2 +O(T − t)(
1
2+2δ)∧1

By Lemma 5 we know that It(x∗t )2(T − t)→ 0 as T → t. Then,

lim
T→t

S1 = −ρ
2
lim
T→t

"
(T − t)

−2E(e−
v2t (T−t)

8 v−3t

Z T

t

Λsds|Ft)
#
.

Using again Lemma 5, observe that (H4) and the dominated convergence theo-
rem imply that

lim
T→t

S2 = −λk
σt

(20)

Now the proof will be decomposed into two steps.
Step 1. Here we analyze the case δ ≥ 0. In this case, we only need to show

that

lim
T→t

µ
S1 +

ρ

2σt
D+
t σt

¶
= 0. (21)

Indeed, we can write

lim
T→t

µ
S1 +

ρ

2σt
D+
t σt

¶
= lim

T→t
E

µ
ATBT +

ρ

2σt
D+
t σt

¯̄̄̄
Ft
¶
,
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where

AT :=
ρ

vt
exp

µ
−(v

2
t )(T − t)

8

¶
and

BT := − 1

v2t (T − t)2

Z T

t

Z T

s

σrσsDsσrdrds.

Notice that

lim
T→t

E

µ
ATBT +

ρ

2σt
D+
t σt

¯̄̄̄
Ft
¶

= lim
T→t

E

µµ
AT − ρ

σt

¶
BT

¯̄̄̄
Ft
¶
+

ρ

σt
lim
T→t

E

µµ
BT +

D+
t σt
2

¶¯̄̄̄
Ft
¶

= lim
T→t

U1 +
ρ

σt
lim
T→t

U2.

Applying Schwartz inequality it follows that

U1 ≤
"
E

Ãµ
AT − ρ

σt

¶2 ¯̄̄̄¯Ft
!# 1

2 £
E
¡
B2
T

¯̄Ft¢¤ 12 .
Using the dominated convergence theorem it is easy to see thatE

µ³
AT − ρ

σt

´2 ¯̄̄̄
Ft
¶

tends to zero as T → t, and a simple calculation gives us that E
¡
B2
T

¯̄Ft¢ is
bounded, from where we deduce that limT→t U1 = 0. On the other hand,

|U2| =

¯̄̄̄
¯ 1

(T − t)2
E

ÃZ T

t

Z T

s

µ
σsσr
v2t

Dsσr −D+
t σt

¶
drds

¯̄̄̄
¯Ft

!¯̄̄̄
¯

≤ C

(T − t)2

¯̄̄̄
¯E
ÃZ T

t

Z T

s

µ
σsσr
v2t
− 1
¶
Dsσrdrds

¯̄̄̄
Ft
!¯̄̄̄
¯

+
C

(T − t)2

¯̄̄̄
¯E
ÃZ T

t

Z T

s

¡
Dsσr −D+

t σt
¢¯̄̄̄¯Ft

!
drds

¯̄̄̄
¯

=: |U2,1|+ |U2,2| .
Using now Schwartz’s inequality and the fact that Hypothesis (H3) holds with
δ ≥ 0 we obtain that

|U2,1| ≤ C

(T − t)2

Ã
E

ÃZ T

t

Z T

s

µ
σsσr
v2t
− 1
¶2

drds

!¯̄̄̄
¯Ft

! 1
2

×
Ã
E

ÃZ T

t

Z T

s

(Dsσr)
2 drds

!¯̄̄̄
¯Ft

! 1
2

≤ C

(T − t)

Ã
E

ÃZ T

t

Z T

s

µ
σsσr
v2t
− 1
¶2

drds

!¯̄̄̄
¯Ft

! 1
2

.
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Now, (H2) and (H4) allow us to write

|U2,1| ≤ C

(T − t)

ÃZ T

t

Z T

s

³
E
¡
σsσr − v2t

¢2 ¯̄̄Ft´ drds!
1
2

= (
C

(T − t)

Z T

t

Z T

s

E

Ã
σsσr −

Ã
1

T − t

Z T

t

σ2θdθ

!!2 ¯̄̄̄¯̄Ft
drds)

1
2

≤ C

(T − t)
3
2

(

Z T

t

Z T

s

Z T

t

E
³¡

σsσr − σ2θ
¢2 ¯̄̄Ft´dθdrds) 12 ,

which tends to zero by Hypothesis (H5). Similarly,

|U2,2| ≤ C

(T − t)2

¯̄̄̄
¯
Z T

t

Z T

s

E
¡¡
Dsσr −D+

t σt
¢¯̄Ft¢ drds

¯̄̄̄
¯ ,

which tends to zero by 16. Now we have proved (21). Then, (20), (21) and the
fact that δ ≥ 0 give (17) holds.
Step 2. Finally we show that 19 is true. Let us see that

lim
T→t

µ
S1(T − t)−δ +

ρ

σt
Lδ,+t σt

¶
= 0. (22)

Note that

lim
T→t

µ
S1(T − t)−δ +

ρ

σt
Lδ,+t σt

¶
= lim

T→t
E

µ
AT B̃T +

ρ

σt
Lδ,+t σt

¯̄̄̄
Ft
¶
,

where AT is defined as in Step 1 and

B̃T := − 1

v2t (T − t)2+δ

Z T

t

Z T

s

σrσsDsσrdrds.

But

lim
T→t

E

µ
AT B̃T +

ρ

σt
Lδ,+t σt

¯̄̄̄
Ft
¶

= lim
T→t

E

µµ
AT − ρ

σt

¶
B̃T

¯̄̄̄
Ft
¶
+

ρ

σt
lim
T→t

E
³³

B̃]T + Lδ,+t σt
´¯̄̄
Ft
´

Then, using similar arguments as in the proof of Step 1 we can easily see that
this expression is equal to zero. Now we have proved (22). Finally, using (22),
(20) and the fact that −12 < δ < 0 the result follows.
Remark: Notice that (17) and (19) can be written in terms of ∂It

∂Z , being
Z = logK, the log-strike, simply by changing the sign of the limits.
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7 Examples

7.1 Diffusion stochastic volatilities

Assume that the volatility σr can be written as σr = f(Yr), where f ∈ C1b (R)
and Yr is the solution of a stochastic differential equation:

dYr = a (r, Yr) dr + b (r, Yr) dWr, (23)

for some real functions a, b ∈ C1b (R). Then, classical arguments (see for example
Nualart (1995)) give us that Y ∈ L1,2 and that

DsYr =

Z r

s

∂a

∂x
(u, Yu)DsYudu+ b(s, Ys) +

Z r

s

∂b

∂x
(u, Yu)DsYudWu. (24)

Taking now into account that Dsσr = f 0(Yr)DsYr it can be easily deduced from
(24) that (H3) holds with δ = 0 and that

sups,r∈[t,T ] |E ( (Dsσr − f 0(Yt)b(t, Yt))| Ft)|→ 0

as T → t. Then, Theorem 7 gives us that

lim
T→t

∂It
∂Xt

(x∗t ) = −
1

σt
(λk +

ρ

2
f 0(Yt)b (t, Yt)),

that agrees with the results in Medveved and Scaillet (2004).
In particular, if Yr is an Ornstein-Uhlenbeck process of the form

Yr =m+ (Yt −m) e−α(r−t) + c

Z r

t

√
2α exp (−α (r − s)) dWs, (25)

DsYr = c
√
2α exp (−α (r − s)) for all t ≥ s < r and then it follows that

lim
T→t

∂It
∂Xt

(x∗t ) = −
1

σt
(λk + c

√
2α

ρ

2
f 0(Yt)).

7.2 Fractional stochastic volatility models

Assume that the volatility σ can be written as σr = f(Yr), where f ∈ C1b (R)
and Yr is a process of the form

Yr = m+ (Yt −m) e−α(r−t) + c
√
2α

Z r

t

e−α(r−s)dWH
s , (26)

where WH
s :=

R s
0
(s− u)H−

1
2 dWu.
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7.2.1 Case H > 1
2 .

As in Comte and Renault (1998), assume the volatility model (26), for someH >
1/2.Notice that (see for example Alòs, Mazet and Nualart (2001))

R r
t e−α(r−s)dWH

s

can be written asµ
H − 1

2

¶Z r

0

µZ r

s

11[t,r](u)e
−α(r−u)(u− s)H−

3
2 du

¶
dWs,

from where it follows easily that sups,r∈[t,T ] |E (Dsσr| Ft)|→ 0 as T → t. Then,
Theorem 7 gives us that limT→t

∂It
∂Xt

(x∗t ) = −λk
σt
. That is, the at-the-money

short-dated skew slope of the implied volatility is not affected by the correlation
in this case.

7.2.2 Case H < 1
2

Assume again the model (26), taking 0 < H < 1/2. It can be proved (see
for example Alòs, Mazet and Nualart (2001)) that

R r
t
e−α(r−s)dWH

s can be
expressed asµ

1

2
−H

¶Z r

0

µZ r

s

h
11[t,r](u)e

−α(r−u) − 11[t,r](s)e−α(r−s)
i
(u− s)H−

3
2 du

¶
dWs

+

Z r

t

e−α(r−s)(r − s)H−
1
2 dWs

Then it follows (H3) holds for every δ = H − 1
2 and we can easily check that

E

Ã
1

(T − t)2+H− 1
2

Z T

t

Z T

s

DW
s σrdrds− c

√
2αf 0 (Yt)

¯̄̄̄
¯Ft

!
→ 0 as T → t

Then, Theorem 7 gives us that

lim
T→t

(T − t)
1
2−H ∂It

∂Xt
(x∗t ) = −c

√
2α

ρ

σt
f 0 (Yt) .

That is, the introduction of fractional components with Hurst parameter H <
1/2 in the definition of the volatility process allows us to reproduce a skew slope
of order O(T − t)δ, for every δ > −1/2.

7.3 Time-varying coefficients

Fouque, Papanicolau, Sircar and Solna (2004) have introduced a new approach
to capture the maturity-dependend behavior of the implied volatility, by allow-
ing the volatility coefficients to depend on the time till the next maturity date.
Namely, they assume that the volatility σr can be written as σr = f(Yr), where
f is a regular enough function and Yr is a diffusion process of the form (25), be-

ing
p
α (s) a suitable cutoff of the function

¡
Tn(s) − s

¢−1
2 , with fixed maturity

dates {Tk} (the third Friday of each month) and n(t) = inf {n : Tn > s} .
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Following this idea, we can consider Yr to be a diffusion process of the form

(25), with
p
α (s) =

¡
Tn(s) − s

¢− 1
2+ε , for some ε > 0. It is now easy to see that

Yr ∈ L1,2and that
1

(T − t)2+(
1
2−ε)

Z T

t

Z T

s

E (Dsσr| Ft) drds+ ρc

µ
1

−1/2 + ε

¶µ
1

1/2 + ε

¶
f 0(Yt)
2

tends to zero as T − t tends to zero. Hence we deduce that, in this case, the
short-date skew slope of the implied volatility is of the order O(T − t)−

1
2+ε.

8 Conclusions

We have seen that the Malliavin Calculus may provide a natural approach to
deal with the short-date behavior of the implied volatility for jump-diffusion
models with stochastic volatility. This theory do not require the volatility to
be a diffusion, nor a Markov process. Moreover, with these techniques the
short-time behaviour of the implied volatility can be analyzed for known and
new volatility models. In particular, models that reproduce short-date skews of
order O(T − t)δ, for δ > −12 .
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