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Facultad de Matemáticas
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ABSTRACT

We recall a recent extension of the classical Banach fixed point theorem to
partially ordered sets and justify its applicability to the study of the existence
and uniqueness of solution for fuzzy and fuzzy differential equations. To this
purpose, we analyze the validity of some properties relative to sequences of fuzzy
sets and fuzzy functions.
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1. Preliminaries

Results on existence of fixed points in partially ordered sets and some applications
to the resolution of matrix equations are presented in [20] and the main result is the
following:

Theorem 1.1 ([20]). Let X be a partially ordered set such that every pair x, y ∈ X
has an upper and a lower bound. Let d be a metric on X such that (X, d) is complete.
Let f : X → X be a continuous and monotone (either order-preserving or order-
reversing) operator. Suppose that the following assertions hold:
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• there exists k ∈ (0, 1) with d(f(x), f(y)) ≤ k d(x, y), ∀x ≥ y.

• there exists x0 ∈ X with x0 ≤ f(x0) or x0 ≥ f(x0).

Then f has a unique fixed point x∗ ∈ X, and for each x ∈ X, (fn(x))n∈N → x∗.

In [16,18], the authors analyze the existence of a unique fixed point for mappings
defined in partially ordered sets and they show the applicability of the results obtained
to the study of the existence of a unique solution for first-order ordinary differential
equations with periodic boundary conditions. The authors obtained the following
results.

Theorem 1.2 ([16]). Let (X,≤) be a partially ordered set and suppose that there
exists a metric d in X such that (X, d) is a complete metric space. Let f : X → X
be a monotone nondecreasing mapping such that there exists k ∈ [0, 1) with

d(f(x), f(y)) ≤ k d(x, y), ∀x ≥ y.

Suppose that either f is continuous or X is such that

if a nondecreasing sequence (xn)n∈N → x in X, then xn ≤ x, ∀n. (1)

If there exists x0 ∈ X with x0 ≤ f(x0), then f has a fixed point.

Theorem 1.3 ([16]). Let (X,≤) be a partially ordered set and suppose that there exists
a metric d in X such that (X, d) is a complete metric space. Let f : X → X be a
monotone nondecreasing mapping such that there exists k ∈ [0, 1) with d(f(x), f(y)) ≤
k d(x, y), ∀x ≥ y. Suppose that either f is continuous or X is such that

if a nonincreasing sequence (xn)n∈N → x in X, then x ≤ xn, ∀n. (2)

If there exists x0 ∈ X with x0 ≥ f(x0), then f has a fixed point.

An additional condition which allows to obtain uniqueness of fixed point and global
convergence of the method of successive approximations is

every pair of elements of X has a lower bound or an upper bound, (3)

or, equivalently,

for every x, y ∈ X, there exists z ∈ X which is comparable to x and y.

For nonincreasing functions, some positive results were presented in [18].

Theorem 1.4 ([18, Theorem 4]). Let (X,≤) be a partially ordered set satisfying (3)
and suppose that there exists a metric d in X such that (X, d) is a complete metric
space. Let f : X → X be a nonincreasing function such that there exists k ∈ [0, 1)
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with d(f(x), f(y)) ≤ k d(x, y), ∀x ≥ y. Suppose also that either f is continuous or X
is such that

if (xn)n∈N → x is a sequence in X whose consecutive terms are
comparable, then there exists a subsequence (xnk

)k∈N

of (xn)n∈N such that every term is comparable to the limit x. (4)

If there exists x0 ∈ X with x0 ≤ f(x0) or x0 ≥ f(x0), then f has a unique fixed point.

More generally, for non necessarily monotone operators, it was proved the following
theorem.

Theorem 1.5 ([18, Theorem 7]). Let (X,≤) be a partially ordered set and suppose
that (3) holds and that there exists a metric d in X such that (X, d) is a complete met-
ric space. Let f : X → X be such that f maps comparable elements into comparable
elements, that is,

x, y ∈ X, x ≤ y =⇒

⎧⎪⎨
⎪⎩
f(x) ≤ f(y)
or
f(x) ≥ f(y)

and such that there exists k ∈ [0, 1) with d(f(x), f(y)) ≤ k d(x, y), ∀x ≥ y. Suppose
that either f is continuous or X is such that condition (4) holds. If there exists
x0 ∈ X with x0 comparable to f(x0), then f has a unique fixed point x̄. Moreover,
∀x ∈ X, limn→+∞ fn(x) = x̄.

In this paper, we illustrate the applicability of these results to obtain the existence
of a unique solution for a fuzzy equation, that is, an equation defined in the space of
fuzzy subsets of R

m and also for fuzzy differential equations.
The paper is organized as follows. In sections 2 and 3, we recall the basic concepts

of fuzzy sets and fuzzy functions, presenting some interesting properties for fuzzy
spaces. Then we present different orders (section 5) in the space of fuzzy numbers
and functions. Finally, we apply the results to the Cauchy problem for fuzzy dif-
ferential equations (section 6) and to fuzzy functional differential equations with an
initial condition (section 7). We obtain new results in the theory of fuzzy differential
equations.

2. Fuzzy sets

The set of fuzzy real numbers E1 is the family of elements x : R −→ [0, 1] satisfying
the following properties [5]:

• x is normal: there exists t0 ∈ R with x(t0) = 1,

• x is upper semicontinuous,
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• x is fuzzy convex,

x(λt1 + (1 − λ)t2) ≥ min{x(t1), x(t2)}, for all t1, t2 ∈ R, λ ∈ [0, 1],

• The support of x, supp(x) = {t ∈ R : x(t) > 0} is a bounded subset of R.

For a fuzzy number x ∈ E1, we denote the α-level set by

[x]α = { t ∈ R : x(t) ≥ α },

which is an interval, since it is a nonempty compact convex subset of R, for every
α ∈ [0, 1]. Hence [x]α = [xαl, xαr], for all α ∈ (0, 1], and

[x]0 =
⋃

α∈(0,1]

[x]α = [x0l, x0r].

In E1, we define the following partial orderings: ≤ and �, given by

x, y ∈ E1, x ≤ y ⇐⇒ xαl ≤ yαl and xαr ≤ yαr, for all α ∈ (0, 1],

and
x, y ∈ E1, x � y ⇐⇒ [x]α ⊆ [y]α, for all α ∈ (0, 1],

that is,
xαl ≥ yαl and xαr ≤ yαr, for all α ∈ (0, 1].

E1 is a complete metric space [5] considering the distance

d∞(x, y) = sup
α∈[0,1]

dH([x]α, [y]α), for x, y ∈ E1,

where dH represents the Hausdorff distance between nonempty compact convex sub-
sets of R.

For a fuzzy number x ∈ E1, we define the functions

xL : [0, 1] −→ R, xL(α) = xαl, ∀α ∈ [0, 1],
xR : [0, 1] −→ R, xR(α) = xαr, ∀α ∈ [0, 1].

The product and sum of fuzzy numbers x and y is given by the Zadeh’s Extension
principle: [x + y]α = [x]α + [y]α, and [x · y]α = [x]α · [y]α, for every α ∈ [0, 1].
See [5, page 4] or [12, page 3].

We denote by Em the space of all fuzzy subsets u of R
m u : R

m → [0, 1] such that
u is normal, upper semicontinuous, fuzzy convex with bounded support. The level
sets of u are obtained similarly to E1. Thus, [u]α is a convex and compact subset
of R

m (see [5]).
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The supremum metric on Em is defined by

d∞(x, y) = sup
α∈[0,1]

dH([x]α, [y]α), for x, y ∈ Em,

and (Em, d∞) is a complete metric space [5].
For the case of m-dimensional fuzzy sets, we can supply Em with a partial order-

ing � defined similarly to the one-dimensional case:

x, y ∈ Em, x � y ⇐⇒ [x]α ⊆ [y]α, for all α ∈ (0, 1].

This order relation is given by the inclusion of subsets of R
m.

Some interesting properties of fuzzy sets with respect to the partial orderings ≤
and � are

x ≤ y =⇒ x+ z ≤ y + z, for x, y, z ∈ E1,

x � y =⇒ x+ z � y + z, for x, y, z ∈ Em,

and, for fuzzy functions,

f ≤ g =⇒
∫ t

0

f(s) ds ≤
∫ t

0

g(s) ds, for t ∈ J, f, g ∈ C(J,E1),

f � g =⇒
∫ t

0

f(s) ds �
∫ t

0

g(s) ds, for t ∈ J, f, g ∈ C(J,Em).

We will use them in sections 6 and 7 to obtain some existence results for fuzzy
differential equations.

Reference [3] provides some results on existence of extreme fixed points for some
kind of fuzzy mappings. Besides, in [3], the authors apply a Sadovskii-like fixed
point theorem to solve the fuzzy equation Ex2 + Fx + G = x, with E, F , G, and x
nonnegative fuzzy numbers satisfying some appropriate conditions. In particular, in
their approach they consider Lipschitzian fuzzy numbers.

In [15], the authors extend the results of [3] and some resolute results are deduced
from the application of the classical Tarski’s Fixed Point Theorem [22]. Also, it is
considered in E1, in relation with [16], the existence and uniqueness of solution for
general fuzzy equations of the type

F (x) = x.

In order to justify the validity of these results and deal with the case in Em, m > 1,
we need to guarantee the validity of certain properties involving sequences of fuzzy
sets and fuzzy functions.
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3. Properties of spaces of fuzzy sets and fuzzy functions

Firstly, we prove that the spaces (E1,≤) and (E1,�) satisfy conditions (1) and (2)
(see Theorems 1.2 and 1.3). Indeed, consider (xn)n∈N ⊆ E1 a nondecreasing sequence
such that (xn)n∈N → x in E1. Then the relation xn ≤ xn+1 for every n ∈ N means
that

(xn)αl ≤ (xn+1)αl, (xn)αr ≤ (xn+1)αr, ∀α ∈ (0, 1], ∀n ∈ N.

Since

d∞(xn, x) = sup
α∈[0,1]

dH([xn]α, [x]α)

= sup
α∈[0,1]

max{|(xn)αl − xαl|, |(xn)αr − xαr|} n→+∞−−−−−→ 0,

then (xn)αl → xαl, (xn)αr → xαr as n → +∞, for every α ∈ (0, 1], and they are
nondecreasing sequences, which implies

(xn)αl ≤ xαl, (xn)αr ≤ xαr for every n and every α.

Hence, xn ≤ x, ∀n ∈ N.
Analogous conclusion can be derived for the partial ordering �, since xn � xn+1

for every n ∈ N implies [xn]α ⊆ [xn+1]α, for every n ∈ N, α ∈ (0, 1]. Therefore, for
every α, (xn)αl is nonincreasing in n and (xn)αr is nondecreasing in n. The convergent
character of those sequences towards xαl and xαr, respectively, provides that

(xn)αl ≥ xαl, (xn)αr ≤ xαr for every n ∈ N and every α ∈ (0, 1].

In consequence [xn]α ⊆ [x]α, for every n ∈ N and α ∈ (0, 1], so that xn � x, ∀n ∈ N.
Similarly, it is easy to check that condition (2) also holds for the partial orderings ≤

and �.
Consider the space C(J,E1) = {x : J −→ E1 : x is continuous }, where J is a

compact interval in R and define the partial orderings induced by ≤ and �:

x, y ∈ C(J,E1), x ≤ y ⇐⇒ x(t) ≤ y(t), ∀t ∈ J,

x, y ∈ C(J,E1), x � y ⇐⇒ x(t) � y(t), ∀t ∈ J.

Considering the distance

D(x, y) = sup
t∈J

d∞(x(t), y(t)), x, y ∈ C(J,E1),

C(J,E1) is a complete metric space [5].
Conditions (1) and (2) are satisfied for the partially ordered spaces

(C(J,E1),≤)
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and
(C(J,E1),�).

Indeed, if (xn) ⊆ C(J,E1) is ≤-nondecreasing and convergent to x in C(J,E1), then

D(xn, x) = sup
t∈J

d∞(xn(t), x(t)) = sup
t∈J

sup
α∈[0,1]

dH([xn(t)]α, [x(t)]α) n→+∞−→ 0.

Hence, for every t ∈ J , (xn(t)) is a ≤-nondecreasing sequence in E1 and convergent to
x(t) ∈ E1. This proves that xn(t) ≤ x(t), for every n ∈ N and every t, hence xn ≤ x,
∀n ∈ N. We obtain the same conclusion for � and, similarly, for property (2).

To check that condition (1) is valid in (Em,�), take (xn)n∈N ⊆ Em a nondecreas-
ing sequence such that (xn)n∈N → x in Em. Then xn � xn+1 for every n ∈ N, that
is,

[xn]α ⊆ [xn+1]α, ∀n ∈ N, and α ∈ (0, 1].

Moreover
d∞(xn, x) = sup

α∈[0,1]

dH([xn]α, [x]α) n→+∞−→ 0.

Thus, for every α ∈ (0, 1], ([xn]α)n∈N is an expansive family of subsets of R
m which

is convergent. Moreover, it converges to
⋃

n∈N
[xn]α. The convergence of [xn]α to-

wards [x]α, for every α ∈ (0, 1] implies [xn]α ⊆ [x]α =
⋃

n∈N
[xn]α, ∀n ∈ N, ∀α ∈ (0, 1],

and xn � x, ∀n ∈ N.
To prove the validity of (2), if (xn)n∈N ⊆ Em is a nonincreasing and convergent

sequence, then, for every α ∈ (0, 1], ([xn]α)n∈N is a contractive family which is con-
vergent, therefore its limit is

⋂
n∈N

[xn]α, and (xn) → x produces [xn]α → [x]α, as
n → +∞, for every α ∈ (0, 1], thus [x]α =

⋂
n∈N

[xn]α ⊆ [xn]α, ∀n ∈ N, ∀α ∈ (0, 1],
which implies x � xn, ∀n ∈ N.

Now consider the space C(J,Em) = {x : J → Em : x is continuous } with the
partial ordering

x, y ∈ C(J,Em), x � y ⇐⇒ x(t) � y(t), ∀t ∈ J.

(C(J,Em), D) is a complete metric space with the metric given by

D(x, y) = sup
t∈J

d∞(x(t), y(t)), x, y ∈ C(J,Em).

In the partially ordered set (C(J,Em),�), conditions (1) and (2) hold, since they
are satisfied in Em and we proceed, for every t ∈ J , as in the one-dimensional case.

Concerning uniqueness of fixed point for a fuzzy mapping, condition (3) is valid
for (E1,≤), (Em,�), (m ≥ 1), (C(J,E1),≤), and (C(J,Em),�), (m ≥ 1), since, in
these spaces, any two elements have an upper bound.
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4. Fixed Point Results

Theorem 4.1 ([15]). Let F : E1 −→ E1 be monotone nondecreasing (or nonincreas-
ing and continuous). Suppose that there exists K ∈ [0, 1) such that

d∞(F (x), F (y)) ≤ Kd∞(x, y), ∀x ≥ y,

and that there exists x0 ∈ E1 with F (x0) ≥ x0 or F (x0) ≤ x0. Then there exists
exactly one solution for equation F (x) = x.

Remark 4.2. We are not imposing that F is a contraction, but F is ‘contractive for
any two comparable elements’ (see [20]).

Theorem 4.3. Let F : C(J,E1) −→ C(J,E1) be monotone nondecreasing (or non-
increasing and continuous). Suppose that there exists K ∈ [0, 1) such that

D(F (ϕ), F (ψ)) ≤ KD(ϕ,ψ), ∀ϕ ≥ ψ,

and that there exists ϕ0 ∈ C(J,E1) with either F (ϕ0) ≥ ϕ0 or F (ϕ0) ≤ ϕ0. Then
there exists exactly one solution for equation F (ϕ) = ϕ.

For the case of m-dimensional fuzzy sets, with m ≥ 1, we obtain

Theorem 4.4. Let F : Em −→ Em be monotone nondecreasing (or nonincreasing
and continuous). Suppose that there exists K ∈ [0, 1) such that

d∞(F (x), F (y)) ≤ Kd∞(x, y), ∀x � y,

and that there exists x0 ∈ Em with F (x0) � x0 or F (x0) � x0. Then there exists
exactly one solution for equation F (x) = x.

Theorem 4.5. Let F : C(J,Em) −→ C(J,Em) be monotone nondecreasing (or
nonincreasing and continuous). Suppose that there exists K ∈ [0, 1) such that

D(F (ϕ), F (ψ)) ≤ KD(ϕ,ψ), ∀ϕ � ψ,

and assume that there exists ϕ0 ∈ C(J,Em) with F (ϕ0) � ϕ0 or F (ϕ0) � ϕ0. Then
there exists exactly one solution for equation F (ϕ) = ϕ.

These theorems are consequence of Theorems 1.2–1.4.

Remark 4.6. If F is continuous and maps comparable elements into comparable ele-
ments, then the results in this section are valid.
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5. Examples

We adapt some examples of [16] to the case of fuzzy functions.

Example 5.1. Consider the complete metric space (E1, d∞) and define the partial
order

x ≤1 y ⇐⇒

⎧⎪⎨
⎪⎩
χ{n} < x ≤ y ≤ χ{n+1}, for some n ∈ Z,

or
x = y.

We show that ≤1 defines a partial ordering in E1.

• The reflexivity is obvious from the definition of ≤1.

• If x ≤1 y, y ≤1 x, then x = y, or

χ{n} < x ≤ y ≤ χ{n+1}, χ{p} < y ≤ x ≤ χ{p+1}, for some n, p ∈ Z,

thus the unique possibility is n = p and x = y.

• Let x ≤1 y, y ≤1 z and suppose that x 
= y, y 
= z. Then

χ{n} < x ≤ y ≤ χ{n+1}, χ{p} < y ≤ z ≤ χ{p+1}, for some n, p ∈ Z.

Since y 
∈ (χ{n+1}, χ{n+2}], then χ{n} < y ≤ z ≤ χ{n+1}, and therefore
χ{n} < x ≤ z ≤ χ{n+1}, obtaining x ≤1 z.

Consider the fuzzy function F : E1 → E1,

F (x) := χ{n
2 } +

1
2
x, if χ{n} < x ≤ χ{n+1}, n = 0, 1, 2, . . .

and F (x) := 1
2x, otherwise.

F is not continuous at χ{n}, for n = 0, 1, 2, . . ., since

F (χ{n}) = χ{n−1
2 } +

1
2
χ{n} = χ{n− 1

2},

the same as the limit of F (x) as x tends to χ{n}, with x ≤ χ{n}. However, if
χ{n} < x ≤ χ{n+1} , and x tends to χ{n}, then

F (x) = χ{n
2 } +

1
2
x→ χ{n

2 } + χ{n
2 } = χ{n}.

Moreover, if x tends to χ{n}, through x not comparable to χ{n}, then F (x) = 1
2x

tends to χ{n
2 }.

However, this function F is monotone nondecreasing. Indeed, take x ≤1 y.
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• If x = y, then F (x) = F (y), hence F (x) ≤1 F (y).

• If χ{n} < x ≤ y ≤ χ{n+1}, for some n = 0, 1, 2, . . ., then

χ{n} = χ{n
2 } + χ{n

2 } < χ{n
2 } +

1
2
x = F (x)

≤ F (y) = χ{n
2 } +

1
2
y ≤ χ{n

2 } + χ{n+1
2 } = χ{n+ 1

2} ≤ χ{n+1}.

• If χ{n} < x ≤ y ≤ χ{n+1}, for some n = −1,−2, . . ., then F (x) = 1
2x ≤ 1

2y =
F (y). Moreover,

χ{n
2 } <

1
2
x ≤ 1

2
y ≤ χ{n+1

2 },

which implies

χ{k} = χ{n
2 } <

1
2
x ≤ 1

2
y ≤ χ{n+1

2 } = χ{k+ 1
2} ≤ χ{k+1}, if n = 2k,

and

χ{k} < χ{k+ 1
2} = χ{ 2k+1

2 } <
1
2
x ≤ 1

2
y ≤ χ{ 2k+2

2 } = χ{k+1}, if n = 2k + 1.

This proves that F (x) ≤1 F (y).
Moreover, if x ≥1 y, we obtain

• If x = y, d∞(F (x), F (y)) ≤ 1
2d∞(x, y).

• If χ{n} < y ≤ x ≤ χ{n+1}, for some n = 0, 1, 2, . . ., then

d∞(F (x), F (y)) = d∞
(
χ{n

2 } +
1
2
x, χ{n

2 } +
1
2
y
)

= d∞
(1

2
x,

1
2
y
)

=
1
2
d∞(x, y).

• If χ{n} < y ≤ x ≤ χ{n+1}, for some negative n, then

d∞(F (x), F (y)) = d∞
(1

2
x,

1
2
y
)

=
1
2
d∞(x, y).

To the validity of (1), let (xn) be a nondecreasing sequence in E1 such that (xn) → x
in E1. Then one of the following assertions is valid:

• either xn = x, for every n, which implies that xn ≤1 x, for every n,

• or there are different terms in the sequence. In this case, there exists p ∈ Z such
that

χ{p} < xn ≤ xn+1 ≤ χ{p+1}, for every n ∈ N.
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By the properties of ≤, xn ≤ x for every n ∈ N and besides

χ{p} < xn ≤ x ≤ χ{p+1}, for every n ∈ N.

In consequence, xn ≤1 x, for every n ∈ N.

Finally,

χ{0} ≥ F (χ{− 1
2}) =

1
2
χ{− 1

2} = χ{− 1
4} ≥ χ{− 1

2} > χ{−1}

and, hence, F (χ{− 1
2}) ≥1 χ{− 1

2}.
By Theorem 1.2, there exists at least a fixed point of F in E1 (χ{0} is a fixed

point.) The uniqueness hypothesis (3) is not valid, since given χ{n}, χ{n+1}, there
exists neither upper nor lower bound. However, there is exactly one fixed point for F
in E1, since

• 1
2x = x is equivalent to x = χ{0}.

• For χ{n} < x ≤ χ{n+1}, n = 0, 1, 2, . . ., then χ{n
2 } + 1

2x = x, implies x = χ{n},
which is a contradiction.

Example 5.2. Consider the partial ordering

x ≤2 y ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

χ{0} ≤ x ≤ y ≤ χ{1},
or
χ{n} < x ≤ y ≤ χ{n+1}, for some n ∈ N,

or
x = y,

and define the fuzzy function F̃ : {x ∈ E1 : x ≥ χ{0} } −→ {x ∈ E1 : x ≥ χ{0} },

F̃ (x) :=

{
χ{n

2 } + 1
2x, if χ{n} < x ≤ χ{n+1}, n ∈ N,

1
2x, otherwise.

The uniqueness hypothesis is not valid but, in this case, χ{0} is the unique fixed point
of F̃ . In fact, if we consider the restriction of F̃ to [χ{0}, χ{1}]

F̃1 : [χ{0}, χ{1}] −→ [χ{0}, χ{1}],

then the uniqueness condition is valid for F̃1 and F̃1(x) = 1
2x.

For x 
∈ [χ{0}, χ{1}], we obtain

• either F̃ (x) = 1
2x, and the unique fixed point is χ{0}, which is different from x,
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• or F̃ (x) = χ{n
2 } + 1

2x (χ{n} < x ≤ χ{n+1}, n ∈ N), and F̃ (y) = y occurs only
for y = χ{n} 
∈ (χ{n}, χ{n+1}].

Example 5.3. In the complete metric space (E1, d∞) take the partial ordering

x ≤3 y ⇐⇒

⎧⎪⎨
⎪⎩
χ{n} ≤ x ≤ y < χ{n+1}, for some n = 0, 1, 2, . . . ,
or
x = y.

Indeed,

• ≤3 satisfies the reflexivity property.

• If x ≤3 y, y ≤3 x, then x = y or

χ{n} ≤ x ≤ y < χ{n+1}, χ{n} ≤ y ≤ x < χ{n+1}, for some n = 0, 1, . . . ,

hence x = y.

• Let x ≤3 y, y ≤3 z and suppose that x 
= y, y 
= z. Then

χ{n} ≤ x ≤ y < χ{n+1}, χ{n} ≤ y ≤ z < χ{n+1}, for some n = 0, 1, . . .

In consequence, χ{n} ≤ x ≤ z < χ{n+1}, and x ≤3 z.

We define F : {x ∈ E1 : x ≥ χ{0} } −→ {x ∈ E1 : x ≥ χ{0} }, by

F (x) :=

{
χ{n+1

2 } + 1
2x, if χ{n} ≤ x < χ{n+1}, n ∈ N,

1
2x, otherwise.

It is evident that F is not continuous at χ{n}, for n ∈ N. On the other hand, F is
monotone nondecreasing. Indeed, let x ≤3 y.

• For x = y, F (x) = F (y) and F (x) ≤3 F (y).

• Suppose that χ{n} ≤ x ≤ y < χ{n+1}, for some n = 0, 1, 2, . . .
If n = 0, then χ{0} ≤ F (x) = 1

2x ≤ 1
2y = F (y) < 1

2χ{1} < χ{1} and
F (x) ≤3 F (y). If n ∈ N,

χ{n} ≤ χ{n+ 1
2} = χ{n+1

2 } + χ{n
2 } ≤ χ{n+1

2 } +
1
2
x = F (x)

≤ F (y) = χ{n+1
2 } +

1
2
y < χ{n+1

2 } + χ{n+1
2 } = χ{n+1}.

Hence, F (x) ≤3 F (y).

If x ≥3 y, then
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• If x = y, d∞(F (x), F (y)) = 0 ≤ 1
2d∞(x, y).

• If χ{0} ≤ y ≤ x < χ{1},

d∞(F (x), F (y)) = d∞
(1

2
x,

1
2
y
)

=
1
2
d∞(x, y).

• If χ{n} ≤ y ≤ x < χ{n+1}, for some n = 1, 2, . . ., then

d∞(F (x), F (y)) = d∞
(
χ{n+1

2 } +
1
2
x, χ{n+1

2 } +
1
2
y
)

=
1
2
d∞(x, y).

This proves that the contractivity condition over comparable elements holds. The
uniqueness hypothesis (3) is not valid, since given χ{n}, χ{n+1}, there exists neither
upper nor lower bound. Condition (1) is not valid in the interval [χ{n}, χ{n+1}),
(n = 0, 1, 2, . . .). F has the unique fixed point χ{0}, since, for x 
∈ [χ{0}, χ{1}],
1
2x 
= x, and for x ∈ [χ{n}, χ{n+1}), with n ∈ N, F (x) = χ{n+1

2 } + 1
2x 
= x.

Example 5.4. Consider the complete metric space (E1, d∞) and the partial order

x �1 y ⇐⇒

⎧⎪⎨
⎪⎩
x � y � χ[n,n+1], for some n ∈ Z, with x 
= χ{n},
or
x = y.

The relation �1 defines a partial ordering in E1:

• The reflexivity is obvious from the definition of �1.

• If x �1 y, y �1 x, then x = y or

x � y � χ[n,n+1], y � x � χ[p,p+1], for some n, p ∈ Z,

then n = p and x = y.

• Let x �1 y, y �1 z and suppose that x 
= y, y 
= z. Then x � y � χ[n,n+1] and
y � z � χ[n,n+1], for some n ∈ Z, with x, y 
= χ{n}. Then

χ{n} 
= x � z � χ[n,n+1],

and x �1 z.

Define F : E1 → E1 by

F (x) := χ{n
2 } +

1
2
x, if x � χ[n,n+1], x 
= χ{n}, n = 0, 1, 2, . . .
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and F (x) := 1
2x, otherwise. F is not continuous at χ{n}, for n = 1, 2, . . ., since for

x→ χ{n}, with x � χ[n,n+1], we obtain

F (x) = χ{n
2 } +

1
2
x→ χ{n

2 } + χ{n
2 } = χ{n},

but for x→ χ{n}, with x � χ[n−1,n], we get

F (x) = χ{n−1
2 } +

1
2
x→ χ{n−1

2 } + χ{n
2 } = χ{n− 1

2}.

Besides, F is monotone nondecreasing. Let x �1 y. If x = y, then F (x) = F (y), and
F (x) �1 F (y). If χ{n} 
= x � y � χ[n,n+1], for some n = 0, 1, 2, . . ., then

χ{n} = χ{n
2 } + χ{n

2 } 
= χ{n
2 } +

1
2
x = F (x) � F (y) = χ{n

2 } +
1
2
y

� χ{n
2 } +

1
2
χ[n,n+1] = χ{n

2 } + χ[ n
2 , n+1

2 ] = χ[n,n+ 1
2 ] � χ[n,n+1].

If χ{n} 
= x � y � χ[n,n+1], for some n = −1,−2, . . ., then

F (x) =
1
2
x � 1

2
y = F (y) � 1

2
χ[n,n+1] = χ[ n

2 , n
2 + 1

2 ].

Now, we distinguish two cases:

• If n = 2k, then
χ[ n

2 , n
2 + 1

2 ] = χ[k,k+ 1
2 ] � χ[k,k+1].

Since x 
= χ{n}, then F (x) = 1
2x 
= χ{n

2 } = χ{k}.

• If n = 2k + 1, then

χ[ n
2 , n

2 + 1
2 ] = χ[k+ 1

2 ,k+1] � χ[k,k+1].

If F (x) = 1
2x = χ{k}, then x = χ{2k} and 2k < n, contradicting x � χ[n,n+1].

This proves that F (x) �1 F (y).
With respect to the contractivity condition over comparable elements, take x �1 y,

• If x = y, d∞(F (x), F (y)) = 0 ≤ 1
2d∞(x, y).

• If χ{n} 
= y � x � χ[n,n+1], for some n = 0, 1, 2, . . ., then

d∞(F (x), F (y)) = d∞
(
χ{n

2 } +
1
2
x, χ{n

2 } +
1
2
y
)

=
1
2
d∞(x, y).
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• If χ{n} 
= y � x � χ[n,n+1], for some negative n, then

d∞(F (x), F (y)) = d∞
(1

2
x,

1
2
y
)

=
1
2
d∞(x, y).

Note that χ{0} �1 F (χ{0}).
Finally, concerning condition (1), take (xn) a nondecreasing sequence in E1 such

that (xn) → x in E1, then one of the following assertions is valid:

• xn = x, for every n ∈ N, which implies that xn �1 x, for every n ∈ N.

• There exists p ∈ Z such that

χ{p} 
= x1 � x2 � · · · � xn � xn+1 � · · · � χ[p,p+1].

In consequence, χ{p} 
= xn � x � χ[p,p+1], for every n ∈ N, and xn �1 x, for
every n ∈ N.

Then F has at least one fixed point in E1. (Note that χ{0} is a fixed point of F , in
fact, it is the unique fixed point of F .)

6. Fuzzy initial value problems

In this section, we obtain new results on existence of a unique solution for a fuzzy dif-
ferential equation with initial value conditions by applying the previous methodology.
Consider the fuzzy equation{

u′(t) = f(t, u(t)), t ∈ J = [0, T ],
u(0) = u0,

(5)

where T > 0, u0 ∈ E1, and f : J × E1 −→ E1 is a continuous function. This
initial value problem has been considered in the literature by several authors. For
example, Kaleva [9] proved that Picard’s Theorem is valid for (5), i.e., when f is
Lipschitz continuous, then (5) has a unique (local) solution. If f is just continuous,
the situation is totally different and some conditions are necessary to guarantee the
existence of solution [1,2,4,6,8–10,13,14,19,21,23,24]. Also, new phenomena appear
in the fuzzy case [4, 5, 8, 17].

Let the space C1(J,E1) = {x : J −→ E1 : x, x′ are continuous }, where the
derivative x′ of x is considered in the sense of Hukuhara.

Definition 6.1. A solution to (5) is a function u ∈ C1(J,E1) satisfying (5).

Definition 6.2. A lower solution for (5) is a function μ ∈ C1(J,E1) such that

μ′(t) ≤ f(t, μ(t)), t ∈ J, μ(0) ≤ u0.

An upper solution for (5) satisfies the reversed inequalities.
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For the case of real functions, the basic reference concerning the method of upper
and lower solutions is [11], which shows how the existence of a lower solution μ and
an upper solution ν with μ ≤ ν implies the existence of a solution of (5) between μ
and ν.

In the following, we study the fuzzy case and find sufficient conditions for the
existence of a unique solution to the first-order initial value problem (5) in the presence
of just a lower solution (respectively, an upper solution). We follow the ideas of [16]
and [18], where we showed that, under the appropriate conditions, the existence of
just a lower solution is enough to prove the existence of a unique solution for the
following (nonfuzzy) periodic boundary value problem:{

u′(t) = f(t, u(t)), t ∈ J = [0, T ],
u(0) = u(T ),

where T > 0, and f : J × R −→ R.

Theorem 6.3. Suppose that there exists μ ∈ C1(J,E1) a lower solution for prob-
lem (5). Let f : J × E1 −→ E1 continuous be such that f is nondecreasing in the
second variable

f(t, x) ≥ f(t, y), if t ∈ J, x ≥ y,

and there exists k ≥ 0 such that

d∞(f(t, x), f(t, y)) ≤ k d∞(x, y), x ≥ y.

Then problem (5) has a unique solution.

Proof. Problem (5) is written, equivalently [5, 12,17], as the integral equation

u(t) = u0 +
∫ t

0

f(s, u(s)) ds, t ∈ J.

We define the operator A : C(J,E1) −→ C(J,E1) by

[Au](t) = u0 +
∫ t

0

f(s, u(s)) ds, t ∈ J.

If u ∈ C(J,E1) is a fixed point of A, then u ∈ C1(J,E1) is a solution of (5) and
conversely. In C(J,E1), for ρ > 0, consider the complete metric

Dρ(u, v) = sup
t∈J

{d∞(u(t), v(t)) · e−ρt}, u, v ∈ C(J,E1).

This metric is equivalent to D. Here ρ > 0 is chosen large enough so that

k
1 − e−ρT

ρ
< 1. (6)
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Hypotheses in Theorem 1.2 and condition (3) are satisfied. Indeed, condition (1) is
valid. The operator A is nondecreasing since, for u ≥ v,

[Au](t) = u0 +
∫ t

0

f(s, u(s)) ds ≥ u0 +
∫ t

0

f(s, v(s)) ds = [Av](t), t ∈ J.

Besides, for u ≥ v,

Dρ(Au,Av) = sup
t∈J

{d∞([Au](t), [Av](t)) e−ρt}

= sup
t∈J

{
d∞

(
u0 +

∫ t

0

f(s, u(s)) ds, u0 +
∫ t

0

f(s, v(s)) ds
)
e−ρt

}

= sup
t∈J

{
d∞

(∫ t

0

f(s, u(s)) ds,
∫ t

0

f(s, v(s)) ds
)
e−ρt

}

≤ sup
t∈J

{∫ t

0

d∞(f(s, u(s)), f(s, v(s))) ds e−ρt
}

≤ sup
t∈J

{∫ t

0

k d∞(u(s), v(s)) ds e−ρt
}
≤ Dρ(u, v) k sup

t∈J

{eρt − 1
ρ

e−ρt
}

= Dρ(u, v) k sup
t∈J

1 − e−ρt

ρ
= Dρ(u, v) k

1 − e−ρT

ρ
,

and the contractivity condition in Theorem 1.2 is satisfied since (6) holds.
Finally, we check that μ is such that μ ≤ Aμ. Indeed,

μ(t) = μ(0) +
∫ t

0

μ′(s) ds ≤ u0 +
∫ t

0

f(s, μ(s)) ds = [Aμ](t), t ∈ J.

In consequence, A has a fixed point in C(J,E1). The uniqueness comes from the
validity of (3).

Remark 6.4. The unique solution of (5) given by Theorem 6.3 can be obtained as
limn→+∞ An(u), for any u ∈ C(J,E1). Taking u = μ, then (An(μ))n is a monotone
nondecreasing sequence converging in C(J,E1) to the unique solution of (5).

Theorem 6.5. Replacing the existence of a lower solution to (5) by the existence of
an upper solution to problem (5), the conclusion of Theorem 6.3 is still valid.

Proof. If ν is an upper solution for (5), we check that

ν(t) = ν(0) +
∫ t

0

ν′(s) ds ≥ u0 +
∫ t

0

f(s, ν(s)) ds = [Aν](t), t ∈ J.

The existence of a unique solution for (5) is derived from Theorem 1.3, since (2) is
valid.
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For the case of m-dimensional fuzzy functions f : J × Em −→ Em, (m ≥ 1), we
obtain similar results, considering the partial ordering �. Let the fuzzy equation{

u′(t) = f(t, u(t)), t ∈ J = [0, T ],
u(0) = u0,

(7)

where T > 0, u0 ∈ Em, and f : J × Em −→ Em is continuous. Take

C1(J,Em) = {x : J −→ Em : x, x′ continuous }.
Definition 6.6. A solution to (7) is a function u ∈ C1(J,Em) satisfying conditions
in (7).

Definition 6.7. A lower solution for (7) is a function μ ∈ C1(J,Em) such that

μ′(t) � f(t, μ(t)), t ∈ J, μ(0) � u0.

An upper solution for (7) is a function satisfying the reversed inequalities.

Theorem 6.8. Suppose that there exists μ ∈ C1(J,Em) a lower solution for prob-
lem (7). Let f : J × Em −→ Em continuous be such that f is nondecreasing in the
second variable f(t, x) � f(t, y), if t ∈ J , x � y, and there exists k ≥ 0 such that

d∞(f(t, x), f(t, y)) ≤ k d∞(x, y), x � y.

Then problem (7) has a unique solution.

Proof. Analogous to the proof of Theorem 6.3.

Remark 6.9. The unique solution of (7) given by Theorem 6.8 can be obtained as
limn→+∞ An(u), for any u ∈ C(J,Em). If we take u = μ, then (An(μ))n is a monotone
nondecreasing sequence converging in C(J,Em) to the unique solution of (7).

Theorem 6.10. Replacing the existence of a lower solution to (7) by the existence
of an upper solution to problem (7), the conclusion of Theorem 6.8 is still valid.

Proof. Similar to the proof of Theorem 6.5.

7. Fuzzy functional problems

For a given τ > 0, we denote C0 = C([−τ, 0], Em). For elements ϕ,ψ ∈ C0, we define

H(ϕ,ψ) = max
−τ≤s≤0

d∞(ϕ(s), ψ(s)).

Suppose that u ∈ C(J0, E
m), where J0 = [−τ, T ], T > 0. For t ≥ 0, t ∈ J0, denote

by ut the translation to [−τ, 0] of the restriction of u to the interval [t− τ, t], that is,
ut ∈ C0, ut(s) = u(t+ s), −τ ≤ s ≤ 0.
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We consider the fuzzy differential equation with finite delay{
u′(t) = f(t, ut), t ∈ J = [0, T ],
u0 = ϕ ∈ C0,

(8)

where f ∈ C(J × C0, E
m).

In [12], it is proved the following result.

Theorem 7.1. Assume that there exists k > 0 such that

d∞(f(t, ϕ), f(t, ψ)) ≤ kH(ϕ,ψ), for t ∈ J = [0, T ] and ϕ, ψ ∈ C0.

Then the initial value problem (8) possesses a unique solution u(t) on J0.

In this section, we relax the hypothesis of contractivity affecting only to compara-
ble elements, and still we obtain the existence of a unique solution. To this purpose,
we define the concepts of upper solution and lower solution for (8).

Definition 7.2. A solution to (8) is a function u ∈ C(J0, E
m) ∩ C1(J,Em) satisfy-

ing (8).

Definition 7.3. A lower solution for (8) is a function μ ∈ C(J0, E
m) ∩ C1(J,Em)

such that
μ′(t) � f(t, μt), t ∈ J, μ0 � ϕ.

(Also μ′(t) ≤ f(t, μt), t ∈ J , μ0 ≤ ϕ, if m = 1.) An upper solution for (8) satisfies
the reversed inequalities.

Theorem 7.4. Suppose that there exists μ ∈ C(J0, E
m)∩C1(J,Em) a lower solution

for problem (8). Let f : J × C0 −→ Em be continuous such that f is nondecreasing
in the second variable

f(t, ϕ) � f(t, ψ), if t ∈ J, ϕ � ψ,

and there exists k ≥ 0 such that

d∞(f(t, ϕ), f(t, ψ)) ≤ kH(ϕ,ψ), t ∈ J, ϕ � ψ.

Then problem (8) has a unique solution.

Proof. Consider the space C(J0, E
m) equipped with the complete metric

Dρ(u, v) = sup
t∈[−τ,T ]

{d∞(u(t), v(t)) · e−ρt}, u, v ∈ C(J0, E
m),

for ρ > 0.
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We define the operator A : C(J0, E
m) −→ C(J0, E

m) by

[Au](t) =

{
ϕ(t), t ∈ [−τ, 0],
ϕ(0) +

∫ t

0
f(s, us) ds, t ∈ J.

If u ∈ C(J0, E
m) is a fixed point of A, then u ∈ C1(J,Em) is a solution of (8) and

conversely. We check that conditions in Theorem 1.2 and condition (3) are satisfied.
The mapping A is nondecreasing. Indeed, take u � v on J0 (us � vs, ∀s ∈ J) and
t ∈ [−τ, 0], then (Au)(t) = ϕ(t) = (Av)(t), and, for t ∈ J ,

[Au](t) = ϕ(0) +
∫ t

0

f(s, us) ds � ϕ(0) +
∫ t

0

f(s, vs) ds = [Av](t).

For u � v, if t ∈ [−τ, 0], d∞([Au](t), [Av](t)) = d∞(ϕ(t), ϕ(t)) = 0, and if t ∈ [0, T ],

d∞([Au](t), [Av](t)) = d∞
(
ϕ(0) +

∫ t

0

f(s, us) ds, ϕ(0) +
∫ t

0

f(s, vs) ds
)

≤
∫ t

0

d∞(f(s, us), f(s, vs)) ds

≤
∫ t

0

kH(us, vs) ds = k

∫ t

0

max
−τ≤r≤0

d∞(us(r), vs(r)) ds,

then

Dρ(Au,Av) = sup
t∈[−τ,T ]

{d∞([Au](t), [Av](t)) e−ρt}

≤ sup
t∈J

{
k

∫ t

0

max
−τ≤r≤0

d∞(us(r), vs(r)) ds e−ρt
}

≤ sup
t∈J

{
k

∫ t

0

max
−τ≤r≤0

eρ(s+r) ds e−ρt
}
Dρ(u, v)

≤ sup
t∈J

{
k

∫ t

0

eρs ds e−ρt
}
Dρ(u, v)

= kDρ(u, v) sup
t∈J

1 − e−ρt

ρ
= k

1 − e−ρT

ρ
Dρ(u, v).

Note that k = 0 is a trivial case. If we take ρ = 2k (for k > 0), the contractivity
condition in Theorem 1.2 holds.

Finally, we check that μ is such that μ � Aμ. Indeed, μ0 � ϕ, thus μ(t) � ϕ(t) =
[Aμ](t), for t ∈ [−τ, 0], and for t ∈ J ,

μ(t) = μ(0) +
∫ t

0

μ′(s) ds � ϕ(0) +
∫ t

0

f(s, μs) ds = [Aμ](t).
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Since every pair of functions in C(J0, E
m) has an upper bound, the mapping A has

a unique fixed point u ∈ C(J0, E
m) and u is the unique solution to the initial value

problem (8) in J0.

Theorem 7.5. Replacing the existence of a lower solution for (8) by the existence of
an upper solution for problem (8), the conclusion of Theorem 7.4 is still valid.

Proof. If ν is an upper solution for (8), we check that

ν(t) � ϕ(t) = [Aν](t), t ∈ [−τ, 0],

ν(t) = ν(0) +
∫ t

0

ν′(s) ds � ϕ(0) +
∫ t

0

f(s, νs) ds = [Aν](t), t ∈ J.

The existence of a unique solution for (8) comes from Theorem 1.3, since (2) is
valid.

Remark 7.6. Under the hypotheses of the previous results, the unique solution of (8)
is obtained as limn→+∞ An(u), for any u ∈ C(J0, E

m). If we take u = μ, a lower
solution for (8), then (An(μ))n is a monotone nondecreasing sequence converging in
C(J0, E

m) to the unique solution of (8) and if u = ν, an upper solution for (8), then
(An(ν))n is a monotone nonincreasing sequence which is convergent to the unique
solution of (8).

The results in this section are valid for E1 with the partial ordering ≤.

Theorem 7.7. Suppose that there exists μ ∈ C(J0, E
1) ∩ C1(J,E1) a lower solution

for problem (8). Let f : J ×C0 −→ E1 continuous be such that f is nondecreasing in
the second variable

f(t, ϕ) ≥ f(t, ψ), if t ∈ J, ϕ ≥ ψ,

and there exists k ≥ 0 such that

d∞(f(t, ϕ), f(t, ψ)) ≤ kH(ϕ,ψ), t ∈ J, ϕ ≥ ψ.

Then problem (8) has a unique solution.

Theorem 7.8. Replacing the existence of a lower solution for (8) by the existence of
an upper solution for problem (8), the conclusion of Theorem 7.7 is still valid.

Remark 7.9. The validity of (1) and (2) in fuzzy spaces allows to consider fuzzy
differential equations with discontinuous nonlinearities.
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