Fundamental Groups of Some Special Quadric Arrangements

Meirav Amram ${ }^{1}$ and Mina Teicher
Einstein Mathematics Institute
Department of Mathematics
The Hebrew University
Jerusalem - Israel
ameirav@math.huji.ac.il
Bar-Ilan University
Ramat-Gan - Israel
teicher@macs.biu.ac.il

Received: June 2, 1005
Accepted: January 1, 2006

Abstract

Continuing our work on the fundamental groups of conic-line arrangements [3], we obtain presentations of fundamental groups of the complements of three families of quadric arrangements in \mathbb{P}^{2}. The first arrangement is a union of n conics, which are tangent to each other at two common points. The second arrangement is composed of n quadrics which are tangent to each other at one common point. The third arrangement is composed of n quadrics, $n-1$ of them are tangent to the nth one and each one of the $n-1$ quadrics is transversal to the other $n-2$ ones.

Key words: fundamental groups, complement of curve, conic arrangement.
2000 Mathematics Subject Classification: 14H20, 14H30, 14Q05.

Introduction

The aim of the present article is the computation of the fundamental groups to complements of some quadric arrangements in \mathbb{P}^{2}. Recall that given a quadric-line arrangement in \mathbb{P}^{2}, we are interested in computing the fundamental group of its complement. In [3], general presentations for some families of quadric-line arrangement

[^0]

Figure 1: The arrangement \mathcal{A}_{3}
were computed. The present paper is devoted to the computation of the fundamental groups related to three infinite families of quadric arrangements. The three types of interesting families of quadric curves in this paper are as follows. The first arrangement is a union of n quadrics, which are tangent to each other at two common points (figure 2). The second arrangement is composed of n quadrics which are tangent to each other at one common point (figure 3). The third arrangement is composed again of n quadrics, $n-1$ of them are tangent to the nth one and each one of the $n-1$ quadrics is transversal to the other $n-2$ ones (figure 4).

Some work has been done concerning line arrangements (see e.g. [7, 11, 12]), and other progress has been done also concerning quadric-line arrangements (see [1-4]).

Let $C \subset \mathbb{P}^{2}$ be a plane curve and $* \in \mathbb{P}^{2} \backslash C$ a base point. By abuse of notation, we will call the group $\pi_{1}\left(\mathbb{P}^{2} \backslash C, *\right)$ the fundamental group of C, and we shall frequently omit base points and write $\pi_{1}\left(\mathbb{P}^{2} \backslash C\right)$. One is interested in the group $\pi_{1}\left(\mathbb{P}^{2} \backslash C\right)$ mainly for two reasons. First, when the curve appears to be a branch curve, then $\pi_{1}\left(\mathbb{P}^{2} \backslash C\right)$ is an important invariant, concerning either the branch curve or the surface itself. Secondly, it contributes to the study of the Galois coverings $X \rightarrow \mathbb{P}^{2}$ branched along C. Many interesting surfaces have been constructed as branched Galois coverings of the plane. An example has been already given in [3]. It involves the arrangement \mathcal{A}_{3} (shown in figure 1 above), which has Galois coverings $X \rightarrow \mathbb{P}^{2}$ branched along it, $X \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}$, or X is either an abelian surface, a $K 3$ surface, or a quotient of the two-ball \mathbb{B}_{2} (see $[8,14,16]$). Moreover, some line arrangements defined by unitary reflection groups studied in [10] are related to \mathcal{A}_{3} via orbifold coverings. For example, if \mathcal{L} is the line arrangement given by the equation

$$
x y z(x+y+z)(x+y-z)(x-y+z)(x-y-z)=0,
$$

then the image of \mathcal{L} under the branched covering map

$$
[x: y: z] \in \mathbb{P}^{2} \rightarrow\left[x^{2}: y^{2}: z^{2}\right] \in \mathbb{P}^{2}
$$

is the arrangement \mathcal{A}_{3}, see [14] for details.

The standard tool for fundamental group computations is the Zariski-van Kampen algorithm $[15,17]$ (see [5] for a modern approach and [3] for a detailed explanation). We use a variation of this algorithm developed in [13] for computing the fundamental groups of quadrics arrangements and avoid lengthy monodromy computations. This approach has the advantage that it permits to capture the local fundamental groups around special and complicated singularities of these arrangements. The local fundamental groups are needed for the study of the singularities of \mathbb{P}^{2} branched along these arrangements.

This paper is divided into four parts. In section 1, we quote basic definitions and an alternative way for computing quadric arrangements, by defining them as birational to line arrangements or as their coverings. In section 2, we quote the results of this work (Theorems 2.2, 2.5, 2.8), using the techniques from [3] and [13]. In sections 3, 4 , and 5 , we prove these theorems.

1. Quadric arrangements related to line arrangements

1.1. Meridians

Let $C \subset X$ be a curve in a smooth complex surface X and $p \in C$. A meridian μ of C at p, based on a point $* \in \mathbb{P}^{2} \backslash C$ is a loop in $\mathbb{P}^{2} \backslash C$ obtained by following a path ω with $\omega(0)=*$ and $\omega(1)$ belonging to a small neighborhood of p, turning around C in the positive sense along the boundary of a small disc Δ, having with C a single intersection at p, and then turning back to $*$ along ω. If $B \subset C$ is an irreducible component, a meridian μ_{p} of C at a point $p \in B \backslash \operatorname{Sing}(C)$ will be called a meridian of B. It is well-known that (homotopy classes of) any two meridians of B are conjugate elements in $\pi_{1}(X \backslash C, *)$ (see e.g. [9, section 7.5]). When p is a singular point of C, we have the following result.

Lemma 1.1. Let $p \in C$ be a singular point, μ_{p} a meridian of C at p, and let $\sigma: Y \rightarrow \mathbb{P}^{2}$ be the blow-up of X at p. Denote by C the proper transform of C and by P the exceptional divisor. Then $\sigma\left(\mu_{p}\right)$ is a meridian of P. In particular, any two meridians of C at p are conjugate elements of $\pi_{1}(X \backslash C) \simeq \pi_{1}(Y \backslash(C \cup P))$.

Proof. The spaces $Y \backslash(C \cup P)$ and $X \backslash C$ are homeomorphic. By definition, $\mu_{p}=$ $\omega \cdot \partial \Delta \cdot \omega^{-1}$, where Δ is a disc, having an intersection with C at p, implying that the $\operatorname{disc} \sigma(\Delta)$ intersects P transversally and away from C. In other words, the loop $\sigma(\mu)$ is a meridian of P.

The group $\pi_{1}(X \backslash C)$ is an invariant of the pair $\left(\mathbb{P}^{2}, C\right)$. Since meridians are welldefined up to a conjugacy class, they can be considered as supplementary invariants of $\pi_{1}(X \backslash C)$. What follows is a description of how to capture the meridians at singular points of C, during the computation of the group $\pi_{1}(X \backslash C)$ by Zariski-van Kampen.
Lemma 1.2. Let $C \subset \mathbb{P}^{2}$ be a curve, L_{0} a line in general position with respect to C and let $* \in L_{0} \backslash C$ be a base point. Let p be a singular point of C. We assume that
L_{0} passes through a sufficiently small ball V around p, so that the disc $\Delta:=L_{0} \cap V$ meets all branches of C meeting at p. Take a path ω in L_{0} connecting $*$ to a boundary point q of Δ. Then $\mu_{0}:=\omega \cdot \partial \Delta \cdot \omega^{-1}$ is a homotopic to a meridian of C at p.
Proof. Let L_{1} be the line through $*$ and p. Consider the projection $\phi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$ from the point $*$ and with $\phi\left(L_{0}\right)=a, \phi\left(L_{1}\right)=b$ and take a path $\gamma \subset \phi(V)$ with $\gamma(0)=a$ and $\gamma(1)=b$. Put L_{t} for the fiber above $\gamma(t)$. Let $\sigma \subset \partial V$ be a lift of the path γ with $\sigma(0)=q$. Assume that σ_{τ} is the loop σ until τ, i.e. with $\sigma_{\tau}(t):=\sigma(\tau t)$ $(t \in[0,1])$. Put $\omega_{\tau}:=\sigma_{\tau} \cdot \omega$ and define $\mu_{\tau}:=\omega_{\tau} \cdot \partial \Delta_{\tau} \cdot \omega_{\tau}^{-1}$, where $\Delta_{\tau}:=L_{\tau} \cap V$. Then $M(t, \tau):=\mu_{\tau}(t)$ gives a homotopy between μ_{0} and μ_{1}, and this latter loop is obviously a meridian of C at p.

1.2. Quadric arrangements birational to line arrangements

Assume that \mathcal{A} is a line arrangement, and let ψ be the involution

$$
\psi:[x: y: z] \in \mathbb{P}^{2} \rightarrow[1 / x: 1 / y: 1 / z] \in \mathbb{P}^{2} .
$$

Suppose that the lines X, Y, Z are respectively given by the equations $x=0, y=0$, and $z=0$. If \mathcal{A} is in general position with respect to $X \cup Y \cup Z$, then $\psi(\mathcal{A})$ is an arrangement of smooth quadrics. In addition to those of \mathcal{A}, this arrangement has three more singular points where all the irreducible components of $\psi(\mathcal{A})$ meet transversally.

In this case, the group $\pi_{1}\left(\mathbb{P}^{2} \backslash \psi(\mathcal{A})\right)$ can easily be found in terms of $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}\right)$ as follows: Assuming $\mathcal{A}=\cup_{i=1}^{n} L_{i}$, let

$$
\begin{equation*}
\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}\right) \simeq\left\langle\mu_{1}, \ldots, \mu_{n} \mid w_{1}=\cdots=w_{m}=\mu_{1} \cdots \mu_{n}=1\right\rangle \tag{1}
\end{equation*}
$$

be a presentation obtained by an application of Zariski-van Kampen, where μ_{i} is a meridian of L_{i}. Put $\mathcal{A}^{\prime}:=\mathcal{A} \cup X \cup Y \cup Z$. Since \mathcal{A} is in general position with respect to $X \cup Y \cup Z$, one has by [7]

$$
\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}^{\prime}\right) \simeq\left\langle\begin{array}{l|l}
\mu_{1}, \ldots, \mu_{n}, & {\left[\mu_{i}, \sigma_{j}\right]=\left[\sigma_{j}, \sigma_{k}\right]=1 \quad(i \in[1, n], j, k \in[1,3])} \tag{2}\\
\sigma_{1}, \sigma_{2}, \sigma_{3} & w_{1}=\cdots=w_{m}=\mu_{1} \cdots \mu_{n} \sigma_{1} \sigma_{2} \sigma_{3}=1
\end{array}\right\rangle
$$

where $\sigma_{1}, \sigma_{2}, \sigma_{3}$ are, respectively, meridians of X, Y, and Z. Let $p:=X \cap Y$, $q=Y \cap Z$, and $r:=Z \cap X$. Then $\sigma_{1} \sigma_{2}$ (respectively, $\sigma_{2} \sigma_{3}, \sigma_{3} \sigma_{1}$) is a meridian of \mathcal{A}^{\prime} at p (respectively, q, r). Hence, the group $\pi_{1}\left(\mathbb{P}^{2} \backslash \psi(\mathcal{A})\right)$ can be obtained by setting $\sigma_{1} \sigma_{2}=\sigma_{2} \sigma_{3}=\sigma_{3} \sigma_{1}=1$ in the presentation of $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}\right)$. But these relations imply $\sigma:=\sigma_{1}=\sigma_{2}=\sigma_{3}$ and $\sigma^{2}=1$ and since by the projective relation one has $\mu_{1} \ldots \mu_{n} \sigma_{1} \sigma_{2} \sigma_{3}=1$, it suffices to replace this latter relation by $\left(\mu_{1} \ldots \mu_{n}\right)^{2}=1$. Hence

$$
\pi_{1}\left(\mathbb{P}^{2} \backslash \psi(\mathcal{A})\right) \simeq\left\langle\mu_{1}, \ldots, \mu_{n} \left\lvert\, \begin{array}{l}
{\left[\mu_{i}, \mu_{1} \cdots \mu_{n}\right]=1 \quad(i \in[1, n]),} \\
w_{1}=\cdots=w_{m}=\left(\mu_{1} \cdots \mu_{n}\right)^{2}=1
\end{array}\right.\right\rangle
$$

Since σ is a central element of this group, this proves the following result.

Theorem 1.3. For any arrangement of n lines \mathcal{A}, there is an arrangement of n smooth quadrics \mathcal{B} with a central extension

$$
0 \rightarrow \mathbb{Z} /(2) \rightarrow \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}\right) \rightarrow \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}\right) \rightarrow 0
$$

1.3. Quadric arrangements as coverings of line arrangements

Assume that \mathcal{A} is a line arrangement, and let ϕ be the branched covering

$$
\phi:[x: y: z] \in \mathbb{P}^{2} \rightarrow\left[x^{2}: y^{2}: z^{2}\right] \in \mathbb{P}^{2} .
$$

Suppose that the lines X, Y, Z, are respectively given by the equations $x=0, y=0$, and $z=0$. If \mathcal{A} is in general position to $X \cup Y \cup Z$, then $\phi^{-1}(\mathcal{A})$ is an arrangement of smooth quadrics. Above any singular point of \mathcal{A} lie four singular points of $\phi^{-1}(\mathcal{A})$ of the same type. In this case, the group $\pi_{1}\left(\mathbb{P}^{2} \backslash \phi^{-1}(\mathcal{A})\right)$ can easily be found in terms of $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}\right)$ as follows: Assuming $\mathcal{A}=\bigcup_{i=1}^{n} L_{i}$, one has a presentation (1). For the arrangement $\mathcal{A}^{\prime}:=\mathcal{A} \cup X \cup Y \cup Z$, the presentation (2) is valid. There is an exact sequence

$$
0 \rightarrow \pi_{1}\left(\mathbb{P}^{2} \backslash \phi^{-1}\left(\mathcal{A}^{\prime}\right)\right) \rightarrow \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}^{\prime}\right) \rightarrow \mathbb{Z} /(2) \oplus \mathbb{Z} /(2) \rightarrow 0
$$

The group $\pi_{1}\left(\mathbb{P}^{2} \backslash \phi^{-1}(\mathcal{A})\right)$ is the quotient $\pi_{1}\left(\mathbb{P}^{2} \backslash \phi^{-1}\left(\mathcal{A}^{\prime}\right)\right)$ by the subgroup generated by the meridians of $\phi^{-1}(X), \phi^{-1}(Y)$ and $\phi^{-1}(Z)$.

2. Statements of results

In this section we give in Theorems 2.2, 2.5, and 2.8 the presentations of the fundamental groups of the three quadric arrangements in \mathbb{P}^{2}. We prove them in the forthcoming sections. For our computations, we need the following definition.

Definition 2.1. A group G is said to be big if it contains a non-abelian free subgroup, and small if G is almost solvable.

2.1. The quadric arrangement \mathcal{A}_{n}

Let $\mathcal{A}_{n}:=Q_{1} \cup \cdots \cup Q_{n}$ be a quadric arrangement, which is a union of n quadrics tangent to each other at two common points, see figure 2.
Theorem 2.2. The fundamental group $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}_{n}\right)$ of \mathcal{A}_{n} in \mathbb{P}^{2} admits the presentation

$$
\begin{align*}
& \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}_{n}\right) \\
\simeq & \left\langle\begin{array}{l|l}
a_{1}, a_{2}, \ldots, a_{n} & \begin{array}{l}
\left(a_{n} \cdots a_{2} a_{1}\right)^{2}=\left(a_{1} a_{n} \cdots a_{2}\right)^{2}=\cdots=\left(a_{n-1} a_{n-2} \cdots a_{n}\right)^{2} \\
a_{n} a_{n-1} \cdots a_{2} a_{1}^{2} a_{2} \cdots a_{n-1} a_{n}=e
\end{array}
\end{array}\right\rangle, \tag{3}
\end{align*}
$$

where a_{1}, \ldots, a_{n} are meridians of Q_{1}, \ldots, Q_{n}, respectively.

Figure 2: The arrangement \mathcal{A}_{n}

Proposition 2.3.

$$
\begin{align*}
& \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}_{1}\right)=\mathbb{Z}_{2}, \tag{4}\\
& \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}_{2}\right) \simeq\left\langle a, b \left\lvert\, \begin{array}{l}
(a b)^{2}=(b a)^{2} \\
b^{2} a^{2}=1
\end{array}\right.\right\rangle \text { is infinite and solvable, } \tag{5}\\
& \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}_{3}\right) \simeq\left\langle a, b, c \left\lvert\, \begin{array}{l}
(c b a)^{2}=(a c b)^{2}=(b a c)^{2} \\
c b a^{2} b c=1
\end{array}\right.\right\rangle \text { is big. } \tag{6}
\end{align*}
$$

Corollary 2.4. The group $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}_{n}\right)$ is big for $n \geq 3$.

2.2. The quadric arrangement \mathcal{B}_{n}

Let $\mathcal{B}_{n}:=Q_{1} \cup \cdots \cup Q_{n}$ be a quadric arrangement, composed of n quadrics tangent to each other at one common point, see Figure 3.

Theorem 2.5. The group $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}_{n}\right)$ admits the presentation

$$
\begin{align*}
& \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}_{n}\right) \\
& \quad \simeq\left\langle\begin{array}{l|l}
a_{1}, a_{2}, \ldots, a_{n} & \begin{array}{l}
\left(a_{1} \cdots a_{n}\right)^{4}=\left(a_{n} a_{1} \cdots a_{n-1}\right)^{4}=\cdots=\left(a_{2} \cdots a_{n} a_{1}\right)^{4} \\
a_{n}^{2} \cdots a_{1}^{2}=1
\end{array}
\end{array}\right\rangle \tag{7}
\end{align*}
$$

where a_{1}, \ldots, a_{n} are meridians of Q_{1}, \ldots, Q_{n}, respectively.

Figure 3: The arrangement \mathcal{B}_{n}

Proposition 2.6.

$$
\begin{align*}
& \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}_{1}\right)=\mathbb{Z}_{2}, \tag{8}\\
& \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}_{2}\right) \simeq\left\langle a, b \left\lvert\, \begin{array}{l}
(a b)^{4}=(b a)^{4} \\
b^{2} a^{2}=1
\end{array}\right.\right\rangle \text { is infinite and solvable, } \tag{9}\\
& \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}_{3}\right) \simeq\left\langle a, b, c \left\lvert\, \begin{array}{l}
(c b a)^{4}=(a c b)^{4}=(b a c)^{4} \\
c^{2} b^{2} a^{2}=1
\end{array}\right.\right\rangle \text { is big. } \tag{10}
\end{align*}
$$

Corollary 2.7. The group $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}_{n}\right)$ is big for $n \geq 3$.

2.3. The quadric arrangement $\mathcal{C}_{\boldsymbol{n}}$

Let $\mathcal{C}_{n}:=Q_{1} \cup \cdots \cup Q_{n}$ be a quadric arrangement, which is a union of n quadrics, $n-1$ of them are tangent to the nth one and each one of these $n-1$ quadrics is transversal to the other $n-2$, see figure 4 .

Theorem 2.8. The group $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{n}\right)$ admits the presentation

$$
\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{n}\right) \simeq\left\{\begin{array}{l|l}
a_{1}, \ldots, a_{n} & \begin{array}{ll}
{\left[a_{i}, a_{j}\right]=1,} & 2 \leq i, j \leq n, \quad i \neq j \\
\left(a_{1} a_{k}\right)^{4}=\left(a_{k} a_{1}\right)^{4}, & 2 \leq k \leq n \\
a_{n}^{2} \cdots a_{1}^{2}=1
\end{array} \tag{11}
\end{array}\right\rangle
$$

where a_{1}, \ldots, a_{n} are meridians of Q_{1}, \ldots, Q_{n}, respectively.

Figure 4: The arrangement \mathcal{C}_{n}

Proposition 2.9.

$$
\begin{align*}
& \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{1}\right)=\mathbb{Z}_{2}, \tag{12}\\
& \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{2}\right) \simeq\left\langle\begin{array}{l|l}
a_{1}, a_{2} & \left.\begin{array}{l}
\left(a_{1} a_{2}\right)^{4}=\left(a_{2} a_{1}\right)^{4} \\
a_{2}^{2} a_{1}^{2}=1
\end{array}\right\rangle \text { is infinite and solvable, } \\
\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{3}\right) \simeq\left\langle\begin{array}{l}
{\left[a_{2}, a_{3}\right]=1} \\
\left(a_{1} a_{2}\right)^{4}=\left(a_{2} a_{1}\right)^{4} \\
\left(a_{1} a_{3}\right)^{4}=\left(a_{3} a_{1}\right)^{4} \\
a_{3}^{2} a_{2}^{2} a_{1}^{2}=1
\end{array}\right\rangle .
\end{array}\right. \tag{13}
\end{align*}
$$

3. Proof of Theorem 2.2

Take the following affine quadric arrangement \mathcal{A}_{n}, which is composed of n quadrics tangent to each other at two points, see figure 2. Say that these points are $(1,0)$ and $(-1,0)$. Let $p_{1}: \mathbb{C}^{2} \backslash \mathcal{A}_{n} \rightarrow \mathbb{C}$ be the first projection. The base of this projection will be denoted by B. Identify the base B of the projection p_{1} with the line $y=-2 \subset \mathbb{C}^{2}$. The projections of $(1,0)$ and $(-1,0)$ are $(1,-2)$ and $(-1,-2)$, respectively. Take * $:=(M,-2)$ to be the base point. Put $F_{x}:=p_{1}^{-1}(x)$, and denote by S the set of singular fibers of p_{1}. It is clear that if $F_{x} \in S$, then $x \in[-1,1]$. Therefore, the only singular fibers are F_{1} and F_{-1}, both corresponding to $(1,0)$ and $(-1,0)$.

In order to compute the fundamental group $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}_{n}\right)$, we have to study first the

Figure 5: A tangency of n quadrics
local monodromy around the points $(1,0)$ and $(-1,0)$. This is done in the following proposition.

Proposition 3.1. Let 0 be a point (figure 5) which is a tangency of n quadrics defined locally by

$$
\left(y-x^{2}\right)\left(y-2 x^{2}\right)\left(y-3 x^{2}\right) \cdots\left(y-n x^{2}\right) .
$$

Then the local monodromy around 0 is a fulltwist H^{2} of the n points (H is a counterclockwise halftwist).

Proof. Take a loop $x=e^{2 \pi i t}$ in $y=0$, starting (and ending) at the point $*$ and encircling the point $0,0 \leq t \leq 1$. Take a typical fiber F_{*} next to the fiber F_{0}. We have n points on F_{*}, say $1,2, \ldots, n$ (the intersection points of the arrangement with the fiber).

When $t=0$, the points $1,2, \ldots, n$ are still in their initial positions. When t is proceeding from 0 to 1 , there is an induced motion of the points. The point 1 is rotating around the other points with a fulltwist $e^{2 \pi i}$, the point 2 is rotating along a closed curve which bounds a disk, containing the trajectory of the point 1 , and so on. This gives the required monodromy.

Proof of Theorem 2.2. Let us denote the loops around the points $1, \ldots, n$ in Proposition 3.1 as a_{1}, \ldots, a_{n}, respectively. These loops get the forms $\tilde{a_{1}}, \ldots, \tilde{a_{n}}$, as depicted in figure 6 .

By the Zariski Theorem [17],

$$
\begin{aligned}
\tilde{a_{1}} & =a_{n} \cdots a_{2} a_{1} a_{n} \cdots a_{2} a_{1} a_{2}^{-1} \cdots a_{n}^{-1} a_{1}^{-1} a_{2}^{-1} \cdots a_{n}^{-1} \\
\tilde{a_{2}} & =a_{n} \cdots a_{2} a_{1} a_{n} \cdots a_{2} a_{1} a_{2} a_{1}^{-1} a_{2}^{-1} \cdots a_{n}^{-1} a_{1}^{-1} a_{2}^{-1} \cdots a_{n}^{-1} \\
& \vdots \\
\tilde{a_{n}} & =a_{n} \cdots a_{1} a_{n} \cdots a_{1} a_{n} a_{1}^{-1} \cdots a_{n}^{-1} a_{1}^{-1} \cdots a_{n}^{-1} .
\end{aligned}
$$

Figure 6: The resulting loops

These relations get the forms

$$
\begin{aligned}
\left(a_{n} \cdots a_{1}\right)^{2} & =\left(a_{1} a_{n} \cdots a_{2}\right)^{2} \\
\left(a_{n} \cdots a_{1}\right)^{2} & =\left(a_{2} a_{1} a_{n} \cdots a_{3}\right)^{2} \\
& \vdots \\
\left(a_{n} \cdots a_{1}\right)^{2} & =\left(a_{n-1} a_{n-2} \cdots a_{1} a_{n}\right)^{2} .
\end{aligned}
$$

Since the points $(1,0)$ and $(-1,0)$ are intersections of branch points, we have

$$
a_{i}=a_{i}^{\prime} \quad \text { for } 1=1, \ldots, n .
$$

The projective relation

$$
a_{1}^{\prime} a_{2}^{\prime} \cdots a_{n}^{\prime} a_{n} \cdots a_{2} a_{1}=1
$$

gets the form

$$
a_{1} a_{2} \cdots a_{n}{ }^{2} \cdots a_{2} a_{1}=1
$$

Therefore, the group $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}_{n}\right)$ admits (3).
Proof of Proposition 2.3. It is easy to see that the arrangement \mathcal{A}_{1} consists of a smooth quadric, and the group is \mathbb{Z}_{2}, see (4).

For the case $n=2$, we depict figure 7 . We substitute $n=2$ in (3) and get the presentation (5). Now we prove that $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}_{2}\right)$ is an infinite solvable group. Apply

Figure 7: The arrangement A_{2}
a change of generators in (5): $\alpha:=b a, \beta:=b$, and get

$$
\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}_{2}\right) \simeq\left\langle\begin{array}{l|l}
\alpha, \beta & \begin{array}{l}
\beta \alpha^{2} \beta^{-1}=\alpha^{2} \\
\alpha^{-1} \beta=\beta \alpha
\end{array}
\end{array}\right\rangle
$$

The first relation gets the form (by the second one) $\alpha^{-1} \beta \alpha \beta^{-1}=\alpha^{2}$. This yields $\beta \alpha \beta^{-1}=\alpha^{3}$. We repeat this procedure and obtain $\alpha^{4}=1$. Therefore the subgroup generated by α is a finite one. Since $\beta \alpha \beta^{-1}=\alpha^{3}, \beta \alpha^{3} \beta^{-1}=\alpha$, and $\beta \alpha^{2} \beta^{-1}=\alpha^{2}$, this subgroup is normal. Sending $\alpha \rightarrow 1$, the image is generated by β and no relations remain. Thus $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}_{2}\right)$ is an extension of \mathbb{Z}_{4} by \mathbb{Z}, and in particular an infinite solvable one.

Now, when we substitute $n=3$ in (3) we get (6). We prove that $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}_{3}\right)$ is big. We apply a change of generators in (6), $\alpha:=c b a, \beta:=c b, \gamma:=b$, which gives

$$
\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}_{3}\right) \simeq\left\langle\alpha, \beta, \gamma \left\lvert\, \begin{array}{l}
{\left[\alpha^{2}, \beta\right]=\left[\alpha^{2}, \gamma\right]=1} \\
\gamma \beta \gamma^{-1}=\alpha^{-1} \beta \alpha^{-1}
\end{array}\right.\right\rangle
$$

There is a surjection of $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}_{3}\right)$ onto its quotient, by adding $\alpha^{2}=1$

$$
\left\langle\begin{array}{l|l}
\alpha, \beta, \gamma & \begin{array}{l}
\alpha^{2}=1 \\
\alpha \gamma \beta=\beta \alpha \gamma
\end{array} \tag{15}
\end{array}\right\rangle .
$$

An isomorphism $\alpha, \beta, \gamma \rightarrow \alpha, \beta, \alpha^{-1} \gamma$, respectively, gives

$$
\left\langle\begin{array}{l|l}
\alpha, \beta, \gamma & \begin{array}{l}
\alpha^{2}=1 \\
\gamma \beta=\beta \gamma
\end{array}
\end{array}\right\rangle .
$$

Mapping $\beta \rightarrow 1$ and fixing $\gamma^{3}=1$, we get $\mathbb{Z}_{2} * \mathbb{Z}_{3}$. This group has a free subgroup [6], therefore $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}_{3}\right)$ is big.

Proof of Corollary 2.4. $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}_{3}\right)$ is a quotient group of $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}_{n}\right)(n \geq 3)$, and $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}_{3}\right)$ is big, therefore $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}_{n}\right)$ is a big group.

4. Proof of Theorem 2.5

The arrangement \mathcal{B}_{n} is defined by

$$
\left(x^{2}+y^{2}-1\right)\left(\left(x-\frac{1}{2}\right)^{2}+y^{2}-\frac{1}{4}\right)\left(\left(x-\frac{3}{4}\right)^{2}+y^{2}-\frac{1}{16}\right) \cdots .
$$

The quadrics Q_{1}, \ldots, Q_{n} are tangent to each other at one common tangency $(1,0)$, see figure 3. As in the case of the arrangement \mathcal{A}_{n}, it is readily seen that arrangements of type \mathcal{B}_{n} are all isotopic to each other for fixed n.

The projection to the line $y=-2$ has two types of singular fibers:
(i) the fibers $F_{-1}, F_{0}, F_{\frac{1}{2}}, \ldots$ corresponding to branch points of the n quadrics,
(ii) the fiber F_{1} corresponding to the tangency $(1,0)$.

In order to find the group $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}_{n}\right)$, we shall apply the same procedure as in section 3. Let $*$ be the base point and F_{*} a typical fiber. Denote the branch points of the quadrics as s_{1}, \ldots, s_{n} and $(1,0)$ as s_{n+1}. Say that the typical fiber intersects Q_{1} at $a_{1}, a_{1}^{\prime}, Q_{2}$ at a_{2}, a_{2}^{\prime}, and so on.

First we study the local monodromy around the point s_{n+1}.
Proposition 4.1. Define the unique tangency of n quadrics (e.g. figure 5) locally by

$$
\left(y-x^{4}\right)\left(y-2 x^{4}\right)\left(y-3 x^{4}\right) \cdots\left(y-n x^{4}\right) .
$$

Let a_{1}, \ldots, a_{n} be the intersection points of the quadrics with a typical fiber. Then the local monodromy around this tangency is a double fulltwist H^{4} of the points a_{1}, \ldots, a_{n}.

Proof. Take a loop $x=e^{2 \pi i t}$ in $y=0$, starting (and ending) at the point $*$ and encircling the point $0,0 \leq t \leq 1$.

When $t=\frac{1}{2}$, the resulting motion of the points is: the point a_{1} is turning around all the points in a twist of $e^{4 \pi i}$, the point a_{2} is turning around in a bigger twist of $2 e^{4 \pi i}$, and so on.

Figure 8: The arrangement \mathcal{B}_{2}

Proof of Theorem 2.5. We compute the group $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}_{n}\right)$. Take a g-base a_{1}, \ldots, a_{n} for $F_{*} \backslash\left\{a_{1}, \ldots, a_{n}\right\}$.

By Proposition 4.1, for $t=1$ the motion of the n points is a $e^{8 \pi i}$ twist. The branch points s_{1}, \ldots, s_{n} contribute $a_{i}=a_{i}^{\prime}$ for $i=1, \ldots, n$, and together with the projective relation, lengthy computations yield the presentation (7).

Proof of Proposition 2.6. It is easy to see that the arrangement \mathcal{B}_{1} consists of a smooth quadric, and the group is \mathbb{Z}_{2}, see (8).

The arrangement \mathcal{B}_{2} is shown in figure 8. Substituting $n=2$ in (7) yields (9).
Now we show another way to find $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}_{2}\right)$. We understand first the local monodromy around the point (1,0). A tangency of two quadrics is homotopic equivalent to a tangency of a line with a quadric. Therefore, we can use figure 9 as a local model defined by $y\left(y-x^{4}\right)=0$.

Lemma 4.2. The local monodromy around the point 0 is a twist H^{4} of b around a.
Proof. Since we explained already the construction of a g-base for a fundamental group in [3], we can directly compute the local monodromy around the point 0 . Take

Figure 9: The local model
a loop $x=e^{2 \pi i t}$ in $y=0$, starting (and ending) at the point $*$ and encircling the point $0,0 \leq t \leq 1$. Take, for example, the fiber F_{1} in figure 9 . The points on this fiber are $a=(1,0)$ and $b=(1,1)$. They are encircled by the loops (liftings of $x=e^{2 \pi i t}$) a and b of $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}_{2}\right)$. It is easy to see that when $t=\frac{1}{2}$, the induced motion is a double fulltwist of b around a.

When $t=1$, the point $y=0$ is left in its place, while the second point is now $y=e^{8 \pi i}$. That means that the second point was encircling 0 in four counterclockwise fulltwists. The resulting loops \tilde{a} and \tilde{b} are shown in figure 10 and formulated as follows:

$$
\begin{gathered}
\tilde{a}=b a b a b a b a b^{-1} a^{-1} b^{-1} a^{-1} b^{-1} a^{-1} b^{-1} \\
\tilde{b}=b a b a b a b a b a^{-1} b^{-1} a^{-1} b^{-1} a^{-1} b^{-1} a^{-1} b^{-1} .
\end{gathered}
$$

These relations get the form

$$
(a b)^{4}=(b a)^{4} .
$$

s_{1} and s_{2} are branch points (figure 8), therefore $a_{1}=b_{1}$ and $a_{2}=b_{2}$. The projective relation

$$
b_{1} b_{2} a_{2} a_{1}=1
$$

is transformed to

$$
b^{2} a^{2}=1
$$

Therefore we obtain (9).
We prove that $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}_{2}\right)$ is an infinite solvable group. Apply a change of generators in (9), $\alpha:=b a, \beta:=b$, and get

$$
\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}_{2}\right) \simeq\left\langle\left\langle, \beta \left\lvert\, \begin{array}{l}
\beta \alpha^{4} \beta^{-1}=\alpha^{4} \\
\beta \alpha \beta^{-1}=\alpha^{-1}
\end{array}\right.\right\rangle\right.
$$

Figure 10: Resulting generators \tilde{a}, \tilde{b} in $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}_{2}\right)$

The first relation is transformed by the second relation to $\alpha^{-1} \beta \alpha^{3} \beta^{-1}=\alpha^{4}$. This yields $\beta \alpha^{3} \beta^{-1}=\alpha^{5}$. We repeat this procedure and obtain $\alpha^{8}=1$. Therefore the subgroup generated by α is a finite one. One can prove that it is also normal. Mapping $\alpha \rightarrow 1$, the image is generated by β and no relations remain. Thus $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}_{2}\right)$ is an extension of \mathbb{Z}_{8} by \mathbb{Z}, and in particular infinite and solvable.

Now, substituting $n=3$ in (7), we obtain (10). We prove that it is a big group. By a change of generators $\kappa:=c b a, \tau:=c b, m:=c$ in (10), we obtain

$$
\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}_{3}\right) \simeq\left\langle\kappa, \tau, m \left\lvert\, \begin{array}{l}
{\left[\kappa^{4}, \tau\right]=\left[\kappa^{4}, m\right]=1} \\
\kappa m \tau=\tau \kappa^{-1} m
\end{array}\right.\right\rangle
$$

Adding the relation $\kappa^{2}=1$, we have a surjection of $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}_{3}\right)$ onto

$$
\left\langle\begin{array}{l|l}
\kappa, \tau, m & \begin{array}{l}
{[\kappa m, \tau]=1} \\
\kappa^{2}=1
\end{array}
\end{array}\right\rangle,
$$

which is equal to (15). At this point, we have to repeat the proof which we did for $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{A}_{3}\right)$, and then we get $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}_{3}\right)$ is also big.

Proof of Corollary 2.7. The group $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}_{3}\right)$ is a quotient of $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}_{n}\right)(n \geq 3)$, and $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}_{3}\right)$ is big, therefore $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}_{n}\right)$ is big.

5. Proof of Theorem 2.8

Let \mathcal{C}_{n} be a quadric arrangement, composed of n quadrics as shown in Figure 4. Each one of the quadrics Q_{2}, \ldots, Q_{n} is tangent to the quadric Q_{1} in one tangency and intersects each one of the other quadrics at two points.

The projection to the line $y=-2$ has three types of singular fibers:
(i) the fibers $F_{s_{i}}$, where s_{i} is a branch point of a quadric $Q_{i}, 1 \leq i \leq n$,
(ii) the fibers $F_{x_{i}}$ corresponding to the nodes,
(iii) the fibers $F_{t_{i}}$ corresponding to the $n-1$ tangencies.

In order to find the group $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{n}\right)$, take $* \in \mathbb{R}$ a base point and F_{*} a typical fiber. Next to each branch point one can find a fiber which intersects the same quadric in two real points. Denote this pair of points as a_{i}, b_{i} for $1 \leq i \leq n$.

Proof of Theorem 2.8. Since we are familiar with the types of the singularities, we can compute easily the group $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{n}\right)$. The nodes and tangencies give $\left[a_{i}, a_{j}\right]=1$ for $i \neq j, 2 \leq i, j \leq n$, and $\left(a_{1} a_{k}\right)^{4}=\left(a_{k} a_{1}\right)^{4}$ for $2 \leq k \leq n$. The branch points s_{1}, \ldots, s_{n} give $a_{i}=b_{i}$. The projective relation is ${a_{n}}^{2} \cdots a_{1}{ }^{2}=1$. Therefore we get 2.8.

Proof of Proposition 2.9. The group $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{1}\right)$ is again \mathbb{Z}_{2}, see (12).
The group $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{2}\right)$ admits the presentation (13), hence is isomorphic to the group $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{B}_{2}\right)$. Therefore it is an infinite solvable group.

The group $\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{3}\right)$ admits (14). We apply a change of generators in (14), $\kappa:=a_{2} a_{1}, \tau:=a_{2}, m:=a_{3}$, which yields a better look at the group:

$$
\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{3}\right) \simeq\left\{\begin{array}{l|l}
\kappa, \tau, m & \begin{array}{l}
{[m, \tau]=1} \\
{\left[\kappa^{4}, \tau\right]=1} \\
\left(\tau^{-1} \kappa m\right)^{4}=\left(m \tau^{-1} \kappa\right)^{4} \\
\tau \kappa \tau^{-1} \kappa m^{2}=1
\end{array}
\end{array}\right\rangle
$$

Acknowledgements. The first author thanks the Einstein Institute, Jerusalem, and especially Professor Ruth Lawrence-Neumark for her hospitality. This work began while the first author was at the Mathematics Institute, Erlangen-Nürnberg University, Germany, and the assistance of Professor Wolf Barth is gratefully acknowledged.

The authors are grateful to Muhammed Uludağ for his ideas and suggestions concerning the types of the arrangements studied in this paper.

References

[1] M. Amram, Braid group and braid monodromy, M. Sc. Thesis, Bar-Ilan University, 1995.
[2] M. Amram and M. Teicher, Braid monodromy of special curves, J. Knot Theory Ramifications 10 (2001), no. 2, 171-212.
[3] M. Amram, M. Teicher, and A. M. Uludag, Fundamental groups of some quadric-line arrangements, Topology Appl. 130 (2003), no. 2, 159-173.
[4] M. Amram, D. Garber, and M. Teicher, Fundamental groups of tangented conic-line arrangements with singularities up to order 6 , Math. Z., to appear.
[5] D. Chéniot, Topologie du complémentaire d'un ensemble algébrique projectif, Enseign. Math. (2) 37 (1991), no. 3-4, 293-402.
[6] A. Dimca, Singularities and topology of hypersurfaces, Universitext, Springer-Verlag, New York, 1992.
[7] D. Garber and M. Teicher, The fundamental group's structure of the complement of some configurations of real line arrangements, Complex analysis and algebraic geometry, A volume in memory of Michael Schneider, de Gruyter, Berlin, 2000, pp. 173-223.
[8] R.-P. Holzapfel and N. Vladov, Quadric-line configurations degenerating plane Picard Einstein metrics. I, II, Sitzungsberichte der Berliner Mathematischen Gesellschaft, Berliner Math. Gesellschaft, Berlin, 2001, pp. 79-141.
[9] K. Lamotke, The topology of complex projective varieties after S. Lefschetz, Topology 20 (1981), no. 1, 15-51.
[10] P. Orlik and L. Solomon, Arrangements defined by unitary reflection groups, Math. Ann. 261 (1982), no. 3, 339-357.
[11] P. Orlik and H. Terao, Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, vol. 300, Springer-Verlag, Berlin, 1992.
[12] A. I. Suciu, Fundamental groups of line arrangements: enumerative aspects, Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), Contemp. Math., vol. 276, Amer. Math. Soc., Providence, RI, 2001, pp. 43-79.
[13] A. M. Uludag, On finite smooth uniformizations of the plane along line arrangements, in preparation.
[14] 523.
[15] E. R. van Kampen, On the fundamental group of an algebraic curve, Amer. J. Math. 55 (1933), no. 1-4, 255-267.
[16] J. Kaneko, S. Tokunaga, and M. Yoshida, Complex crystallographic groups. II, J. Math. Soc. Japan 34 (1982), no. 4, 595-605.
[17] O. Zariski, On the Poincaré group of rational plane curves, Amer. J. Math. 58 (1936), no. 3, 607-619.

[^0]: ${ }^{1}$ Partially supported by EU-network HPRN-CT-2009-00099 (EAGER), the Emmy Noether Research Institute for Mathematics, the Israel Science Foundation grant \#8008/02-3 (Excellency Center "Group Theoretic Methods in the Study of Algebraic Varieties"), the Edmund Landau Center for Research in Mathematical Analysis and Related Areas, sponsored by the Minerva Foundation (Germany).

