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ABSTRACT

Continuing our work on the fundamental groups of conic-line arrangements [3],
we obtain presentations of fundamental groups of the complements of three
families of quadric arrangements in P

2. The first arrangement is a union of n
conics, which are tangent to each other at two common points. The second
arrangement is composed of n quadrics which are tangent to each other at one
common point. The third arrangement is composed of n quadrics, n−1 of them
are tangent to the nth one and each one of the n − 1 quadrics is transversal to
the other n − 2 ones.
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Introduction

The aim of the present article is the computation of the fundamental groups to com-
plements of some quadric arrangements in P

2. Recall that given a quadric-line ar-
rangement in P

2, we are interested in computing the fundamental group of its com-
plement. In [3], general presentations for some families of quadric-line arrangement
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Figure 1: The arrangement A3

were computed. The present paper is devoted to the computation of the fundamental
groups related to three infinite families of quadric arrangements. The three types of
interesting families of quadric curves in this paper are as follows. The first arrange-
ment is a union of n quadrics, which are tangent to each other at two common points
(figure 2). The second arrangement is composed of n quadrics which are tangent to
each other at one common point (figure 3). The third arrangement is composed again
of n quadrics, n − 1 of them are tangent to the nth one and each one of the n − 1
quadrics is transversal to the other n− 2 ones (figure 4).

Some work has been done concerning line arrangements (see e.g. [7, 11, 12]), and
other progress has been done also concerning quadric-line arrangements (see [1–4]).

Let C ⊂ P
2 be a plane curve and ∗ ∈ P

2 \C a base point. By abuse of notation, we
will call the group π1(P2 \ C, ∗) the fundamental group of C, and we shall frequently
omit base points and write π1(P2 \ C). One is interested in the group π1(P2 \ C)
mainly for two reasons. First, when the curve appears to be a branch curve, then
π1(P2 \ C) is an important invariant, concerning either the branch curve or the sur-
face itself. Secondly, it contributes to the study of the Galois coverings X → P

2

branched along C. Many interesting surfaces have been constructed as branched Ga-
lois coverings of the plane. An example has been already given in [3]. It involves
the arrangement A3 (shown in figure 1 above), which has Galois coverings X → P

2

branched along it, X � P
1 × P

1, or X is either an abelian surface, a K3 surface, or a
quotient of the two-ball B2 (see [8,14,16]). Moreover, some line arrangements defined
by unitary reflection groups studied in [10] are related to A3 via orbifold coverings.
For example, if L is the line arrangement given by the equation

xyz(x+ y + z)(x+ y − z)(x− y + z)(x− y − z) = 0,

then the image of L under the branched covering map

[x : y : z] ∈ P
2 → [x2 : y2 : z2] ∈ P

2

is the arrangement A3, see [14] for details.
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The standard tool for fundamental group computations is the Zariski-van Kampen
algorithm [15, 17] (see [5] for a modern approach and [3] for a detailed explanation).
We use a variation of this algorithm developed in [13] for computing the fundamental
groups of quadrics arrangements and avoid lengthy monodromy computations. This
approach has the advantage that it permits to capture the local fundamental groups
around special and complicated singularities of these arrangements. The local fun-
damental groups are needed for the study of the singularities of P

2 branched along
these arrangements.

This paper is divided into four parts. In section 1, we quote basic definitions and an
alternative way for computing quadric arrangements, by defining them as birational
to line arrangements or as their coverings. In section 2, we quote the results of this
work (Theorems 2.2, 2.5, 2.8), using the techniques from [3] and [13]. In sections 3,
4, and 5, we prove these theorems.

1. Quadric arrangements related to line arrangements

1.1. Meridians

Let C ⊂ X be a curve in a smooth complex surface X and p ∈ C. A meridian μ
of C at p, based on a point ∗ ∈ P

2 \ C is a loop in P
2 \ C obtained by following

a path ω with ω(0) = ∗ and ω(1) belonging to a small neighborhood of p, turning
around C in the positive sense along the boundary of a small disc Δ, having with
C a single intersection at p, and then turning back to ∗ along ω. If B ⊂ C is an
irreducible component, a meridian μp of C at a point p ∈ B \Sing(C) will be called a
meridian of B. It is well-known that (homotopy classes of) any two meridians of B
are conjugate elements in π1(X \C, ∗) (see e.g. [9, section 7.5]). When p is a singular
point of C, we have the following result.

Lemma 1.1. Let p ∈ C be a singular point, μp a meridian of C at p, and let
σ : Y → P

2 be the blow-up of X at p. Denote by C the proper transform of C and
by P the exceptional divisor. Then σ(μp) is a meridian of P . In particular, any two
meridians of C at p are conjugate elements of π1(X \ C) � π1(Y \ (C ∪ P )).

Proof. The spaces Y \ (C ∪ P ) and X \ C are homeomorphic. By definition, μp =
ω · ∂Δ ·ω−1, where Δ is a disc, having an intersection with C at p, implying that the
disc σ(Δ) intersects P transversally and away from C. In other words, the loop σ(μ)
is a meridian of P .

The group π1(X \C) is an invariant of the pair (P2, C). Since meridians are well-
defined up to a conjugacy class, they can be considered as supplementary invariants of
π1(X \C). What follows is a description of how to capture the meridians at singular
points of C, during the computation of the group π1(X \C) by Zariski-van Kampen.

Lemma 1.2. Let C ⊂ P
2 be a curve, L0 a line in general position with respect to C

and let ∗ ∈ L0 \ C be a base point. Let p be a singular point of C. We assume that
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L0 passes through a sufficiently small ball V around p, so that the disc Δ := L0 ∩ V
meets all branches of C meeting at p. Take a path ω in L0 connecting ∗ to a boundary
point q of Δ. Then μ0 := ω · ∂Δ · ω−1 is a homotopic to a meridian of C at p.

Proof. Let L1 be the line through ∗ and p. Consider the projection φ : P
2 → P

1

from the point ∗ and with φ(L0) = a, φ(L1) = b and take a path γ ⊂ φ(V ) with
γ(0) = a and γ(1) = b. Put Lt for the fiber above γ(t). Let σ ⊂ ∂V be a lift of the
path γ with σ(0) = q. Assume that στ is the loop σ until τ , i.e. with στ (t) := σ(τt)
(t ∈ [0, 1]). Put ωτ := στ · ω and define μτ := ωτ · ∂Δτ · ω−1

τ , where Δτ := Lτ ∩ V .
Then M(t, τ) := μτ (t) gives a homotopy between μ0 and μ1, and this latter loop is
obviously a meridian of C at p.

1.2. Quadric arrangements birational to line arrangements

Assume that A is a line arrangement, and let ψ be the involution

ψ : [x : y : z] ∈ P
2 → [1/x : 1/y : 1/z] ∈ P

2.

Suppose that the lines X, Y , Z are respectively given by the equations x = 0, y = 0,
and z = 0. If A is in general position with respect to X ∪ Y ∪ Z, then ψ(A) is
an arrangement of smooth quadrics. In addition to those of A, this arrangement
has three more singular points where all the irreducible components of ψ(A) meet
transversally.

In this case, the group π1(P2 \ ψ(A)) can easily be found in terms of π1(P2 \ A)
as follows: Assuming A = ∪n

i=1Li, let

π1(P2 \ A) � 〈μ1, . . . , μn | w1 = · · · = wm = μ1 · · ·μn = 1 〉 (1)

be a presentation obtained by an application of Zariski-van Kampen, where μi is a
meridian of Li. Put A′ := A∪X ∪Y ∪Z. Since A is in general position with respect
to X ∪ Y ∪ Z, one has by [7]

π1(P2 \ A′) �
�
μ1, . . . , μn,

σ1, σ2, σ3

����� [μi, σj ] = [σj , σk] = 1 (i ∈ [1, n], j, k ∈ [1, 3])
w1 = · · · = wm = μ1 · · ·μnσ1σ2σ3 = 1

�
(2)

where σ1, σ2, σ3 are, respectively, meridians of X, Y , and Z. Let p := X ∩ Y ,
q = Y ∩ Z, and r := Z ∩ X. Then σ1σ2 (respectively, σ2σ3, σ3σ1) is a meridian
of A′ at p (respectively, q, r). Hence, the group π1(P2 \ ψ(A)) can be obtained by
setting σ1σ2 = σ2σ3 = σ3σ1 = 1 in the presentation of π1(P2 \A). But these relations
imply σ := σ1 = σ2 = σ3 and σ2 = 1 and since by the projective relation one has
μ1 . . . μnσ1σ2σ3 = 1, it suffices to replace this latter relation by (μ1 . . . μn)2 = 1.
Hence

π1(P2 \ ψ(A)) �
�
μ1, . . . , μn

����� [μi, μ1 . . . μn] = 1 (i ∈ [1, n]),

w1 = · · · = wm = (μ1 · · ·μn)2 = 1

�
.

Since σ is a central element of this group, this proves the following result.
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Theorem 1.3. For any arrangement of n lines A, there is an arrangement of n
smooth quadrics B with a central extension

0 → Z/(2) → π1(P2 \ B) → π1(P2 \ A) → 0.

1.3. Quadric arrangements as coverings of line arrangements

Assume that A is a line arrangement, and let φ be the branched covering

φ : [x : y : z] ∈ P
2 → [x2 : y2 : z2] ∈ P

2.

Suppose that the lines X, Y , Z, are respectively given by the equations x = 0, y = 0,
and z = 0. If A is in general position to X ∪Y ∪Z, then φ−1(A) is an arrangement of
smooth quadrics. Above any singular point of A lie four singular points of φ−1(A) of
the same type. In this case, the group π1(P2 \ φ−1(A)) can easily be found in terms
of π1(P2 \ A) as follows: Assuming A =

�n
i=1 Li, one has a presentation (1). For the

arrangement A′ := A ∪ X ∪ Y ∪ Z, the presentation (2) is valid. There is an exact
sequence

0 → π1(P2 \ φ−1(A′)) → π1(P2 \ A′) → Z/(2) ⊕ Z/(2) → 0.

The group π1(P2 \ φ−1(A)) is the quotient π1(P2 \ φ−1(A′)) by the subgroup
generated by the meridians of φ−1(X), φ−1(Y ) and φ−1(Z).

2. Statements of results

In this section we give in Theorems 2.2, 2.5, and 2.8 the presentations of the fun-
damental groups of the three quadric arrangements in P

2. We prove them in the
forthcoming sections. For our computations, we need the following definition.

Definition 2.1. A group G is said to be big if it contains a non-abelian free subgroup,
and small if G is almost solvable.

2.1. The quadric arrangement An

Let An := Q1 ∪ · · · ∪ Qn be a quadric arrangement, which is a union of n quadrics
tangent to each other at two common points, see figure 2.

Theorem 2.2. The fundamental group π1(P2 \ An) of An in P
2 admits the presen-

tation

π1(P2 \ An)

�
�
a1, a2, . . . , an

����� (an · · · a2a1)2 = (a1an · · · a2)2 = · · · = (an−1an−2 · · · an)2

anan−1 · · · a2a
2
1a2 · · · an−1an = e

�
, (3)

where a1, . . . , an are meridians of Q1, . . . , Qn, respectively.
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fiber
singularfiber

projection

fibersingular

Figure 2: The arrangement An

Proposition 2.3.

π1(P2 \ A1) = Z2, (4)

π1(P2 \ A2) �
�
a, b

����� (ab)2 = (ba)2

b2a2 = 1

�
is infinite and solvable, (5)

π1(P2 \ A3) �
�
a, b, c

����� (cba)2 = (acb)2 = (bac)2

cba2bc = 1

�
is big. (6)

Corollary 2.4. The group π1(P2 \ An) is big for n ≥ 3.

2.2. The quadric arrangement Bn

Let Bn := Q1 ∪ · · · ∪Qn be a quadric arrangement, composed of n quadrics tangent
to each other at one common point, see Figure 3.

Theorem 2.5. The group π1(P2 \ Bn) admits the presentation

π1(P2 \ Bn)

�
�
a1, a2, . . . , an

����� (a1 · · · an)4 = (ana1 · · · an−1)4 = · · · = (a2 · · · ana1)4

a2
n · · · a2

1 = 1

�
, (7)

where a1, . . . , an are meridians of Q1, . . . , Qn, respectively.
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3 s4 sn+1

Q 21 Q Q3 Q4

2 ss1s

singular fiber

Figure 3: The arrangement Bn

Proposition 2.6.

π1(P2 \ B1) = Z2, (8)

π1(P2 \ B2) �
�
a, b

����� (ab)4 = (ba)4

b2a2 = 1

�
is infinite and solvable, (9)

π1(P2 \ B3) �
�
a, b, c

����� (cba)4 = (acb)4 = (bac)4

c2b2a2 = 1

�
is big. (10)

Corollary 2.7. The group π1(P2 \ Bn) is big for n ≥ 3.

2.3. The quadric arrangement Cn

Let Cn := Q1 ∪ · · · ∪ Qn be a quadric arrangement, which is a union of n quadrics,
n − 1 of them are tangent to the nth one and each one of these n − 1 quadrics is
transversal to the other n− 2, see figure 4.

Theorem 2.8. The group π1(P2 \ Cn) admits the presentation

π1(P2 \ Cn) �

�
a1, . . . , an

�������
[ai, aj ] = 1, 2 ≤ i, j ≤ n, i �= j

(a1ak)4 = (aka1)4, 2 ≤ k ≤ n

a2
n · · · a2

1 = 1

�
, (11)

where a1, . . . , an are meridians of Q1, . . . , Qn, respectively.

265 Revista Matemática Complutense
2006: vol. 19, num. 2, pags. 259–276



M. Amram/M. Teicher Fundamental groups of some special quadric arrangements

it

i

ix

s

node

branch point

tangency

Figure 4: The arrangement Cn

Proposition 2.9.

π1(P2 \ C1) = Z2, (12)

π1(P2 \ C2) �
�
a1, a2

����� (a1a2)4 = (a2a1)4

a2
2a

2
1 = 1

�
is infinite and solvable, (13)

π1(P2 \ C3) �

�
a1, a2, a3

����������
[a2, a3] = 1

(a1a2)4 = (a2a1)4

(a1a3)4 = (a3a1)4

a2
3a

2
2a

2
1 = 1

�
. (14)

3. Proof of Theorem 2.2

Take the following affine quadric arrangement An, which is composed of n quadrics
tangent to each other at two points, see figure 2. Say that these points are (1, 0) and
(−1, 0). Let p1 : C

2 \An → C be the first projection. The base of this projection will
be denoted by B. Identify the base B of the projection p1 with the line y = −2 ⊂ C

2.
The projections of (1, 0) and (−1, 0) are (1,−2) and (−1,−2), respectively. Take
∗ := (M,−2) to be the base point. Put Fx := p−1

1 (x), and denote by S the set of
singular fibers of p1. It is clear that if Fx ∈ S, then x ∈ [−1, 1]. Therefore, the only
singular fibers are F1 and F−1, both corresponding to (1, 0) and (−1, 0).

In order to compute the fundamental group π1(P2 \An), we have to study first the
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0

Figure 5: A tangency of n quadrics

local monodromy around the points (1, 0) and (−1, 0). This is done in the following
proposition.

Proposition 3.1. Let 0 be a point (figure 5) which is a tangency of n quadrics defined
locally by

(y − x2)(y − 2x2)(y − 3x2) · · · (y − nx2).

Then the local monodromy around 0 is a fulltwist H2 of the n points (H is a coun-
terclockwise halftwist).

Proof. Take a loop x = e2πit in y = 0, starting (and ending) at the point ∗ and
encircling the point 0, 0 ≤ t ≤ 1. Take a typical fiber F∗ next to the fiber F0. We
have n points on F∗, say 1, 2, . . . , n (the intersection points of the arrangement with
the fiber).

When t = 0, the points 1, 2, . . . , n are still in their initial positions. When t is
proceeding from 0 to 1, there is an induced motion of the points. The point 1 is
rotating around the other points with a fulltwist e2πi, the point 2 is rotating along a
closed curve which bounds a disk, containing the trajectory of the point 1, and so on.
This gives the required monodromy.

Proof of Theorem 2.2. Let us denote the loops around the points 1, . . . , n in Proposi-
tion 3.1 as a1, . . . , an, respectively. These loops get the forms ã1, . . . , ãn, as depicted
in figure 6.

By the Zariski Theorem [17],

ã1 = an · · · a2a1an · · · a2a1a2
−1 · · · an

−1a1
−1a2

−1 · · · an
−1

ã2 = an · · · a2a1an · · · a2a1a2a1
−1a2

−1 · · · an
−1a1

−1a2
−1 · · · an

−1

...

ãn = an · · · a1an · · · a1ana1
−1 · · · an

−1a1
−1 · · · an

−1.
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2a
1a

na

*
Figure 6: The resulting loops

These relations get the forms

(an · · · a1)2 = (a1an · · · a2)2

(an · · · a1)2 = (a2a1an · · · a3)2

...

(an · · · a1)2 = (an−1an−2 · · · a1an)2.

Since the points (1, 0) and (−1, 0) are intersections of branch points, we have

ai = a′i for 1 = 1, . . . , n.

The projective relation
a′1a

′
2 · · · a′nan · · · a2a1 = 1

gets the form
a1a2 · · · an

2 · · · a2a1 = 1.

Therefore, the group π1(P2 \ An) admits (3).

Proof of Proposition 2.3. It is easy to see that the arrangement A1 consists of a
smooth quadric, and the group is Z2, see (4).

For the case n = 2, we depict figure 7. We substitute n = 2 in (3) and get the
presentation (5). Now we prove that π1(P2 \ A2) is an infinite solvable group. Apply
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fiber
singularsingular fiber

fiber

a

b

b’

a’

Figure 7: The arrangement A2

a change of generators in (5): α := ba, β := b, and get

π1(P2 \ A2) �
�
α, β

����� βα
2β−1 = α2

α−1β = βα

�
.

The first relation gets the form (by the second one) α−1βαβ−1 = α2. This yields
βαβ−1 = α3. We repeat this procedure and obtain α4 = 1. Therefore the subgroup
generated by α is a finite one. Since βαβ−1 = α3, βα3β−1 = α, and βα2β−1 = α2,
this subgroup is normal. Sending α→ 1, the image is generated by β and no relations
remain. Thus π1(P2 \ A2) is an extension of Z4 by Z, and in particular an infinite
solvable one.

Now, when we substitute n = 3 in (3) we get (6). We prove that π1(P2 \ A3) is
big. We apply a change of generators in (6), α := cba, β := cb, γ := b, which gives

π1(P2 \ A3) �
�
α, β, γ

����� [α2, β] = [α2, γ] = 1

γβγ−1 = α−1βα−1

�
.

There is a surjection of π1(P2 \ A3) onto its quotient, by adding α2 = 1

�
α, β, γ

����� α
2 = 1
αγβ = βαγ

�
. (15)
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An isomorphism α, β, γ → α, β, α−1γ, respectively, gives�
α, β, γ

����� α
2 = 1
γβ = βγ

�
.

Mapping β → 1 and fixing γ3 = 1, we get Z2 ∗Z3. This group has a free subgroup [6],
therefore π1(P2 \ A3) is big.

Proof of Corollary 2.4. π1(P2 \ A3) is a quotient group of π1(P2 \ An) (n ≥ 3), and
π1(P2 \ A3) is big, therefore π1(P2 \ An) is a big group.

4. Proof of Theorem 2.5

The arrangement Bn is defined by

(x2 + y2 − 1)
��
x− 1

2

�2

+ y2 − 1
4

���
x− 3

4

�2

+ y2 − 1
16

�
· · · .

The quadrics Q1, . . . , Qn are tangent to each other at one common tangency (1, 0), see
figure 3. As in the case of the arrangement An, it is readily seen that arrangements
of type Bn are all isotopic to each other for fixed n.

The projection to the line y = −2 has two types of singular fibers:

(i) the fibers F−1, F0, F 1
2
, . . . corresponding to branch points of the n quadrics,

(ii) the fiber F1 corresponding to the tangency (1, 0).

In order to find the group π1(P2 \ Bn), we shall apply the same procedure as in
section 3. Let ∗ be the base point and F∗ a typical fiber. Denote the branch points
of the quadrics as s1, . . . , sn and (1, 0) as sn+1. Say that the typical fiber intersects
Q1 at a1, a

′
1, Q2 at a2, a

′
2, and so on.

First we study the local monodromy around the point sn+1.

Proposition 4.1. Define the unique tangency of n quadrics (e.g. figure 5) locally by

(y − x4)(y − 2x4)(y − 3x4) · · · (y − nx4).

Let a1, . . . , an be the intersection points of the quadrics with a typical fiber. Then the
local monodromy around this tangency is a double fulltwist H4 of the points a1, . . . ,an.

Proof. Take a loop x = e2πit in y = 0, starting (and ending) at the point ∗ and
encircling the point 0, 0 ≤ t ≤ 1.

When t = 1
2 , the resulting motion of the points is: the point a1 is turning around

all the points in a twist of e4πi, the point a2 is turning around in a bigger twist of
2e4πi, and so on.
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3s2s1s

1

1b

2

2

b

a

a

typical fiber

singular fiber

Figure 8: The arrangement B2

Proof of Theorem 2.5. We compute the group π1(P2 \ Bn). Take a g-base a1, . . . , an

for F∗ \ {a1, . . . , an}.
By Proposition 4.1, for t = 1 the motion of the n points is a e8πi twist. The branch

points s1, . . . , sn contribute ai = a′i for i = 1, . . . , n, and together with the projective
relation, lengthy computations yield the presentation (7).

Proof of Proposition 2.6. It is easy to see that the arrangement B1 consists of a
smooth quadric, and the group is Z2, see (8).

The arrangement B2 is shown in figure 8. Substituting n = 2 in (7) yields (9).
Now we show another way to find π1(P2 \B2). We understand first the local mon-

odromy around the point (1, 0). A tangency of two quadrics is homotopic equivalent
to a tangency of a line with a quadric. Therefore, we can use figure 9 as a local model
defined by y(y − x4) = 0.

Lemma 4.2. The local monodromy around the point 0 is a twist H4 of b around a.

Proof. Since we explained already the construction of a g-base for a fundamental
group in [3], we can directly compute the local monodromy around the point 0. Take
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typical fiber

b
a0

F1

Figure 9: The local model

a loop x = e2πit in y = 0, starting (and ending) at the point ∗ and encircling the
point 0, 0 ≤ t ≤ 1. Take, for example, the fiber F1 in figure 9. The points on this fiber
are a = (1, 0) and b = (1, 1). They are encircled by the loops (liftings of x = e2πit) a
and b of π1(P2 \B2). It is easy to see that when t = 1

2 , the induced motion is a double
fulltwist of b around a.

When t = 1, the point y = 0 is left in its place, while the second point is now
y = e8πi. That means that the second point was encircling 0 in four counterclockwise
fulltwists. The resulting loops ã and b̃ are shown in figure 10 and formulated as
follows:

ã = babababab−1a−1b−1a−1b−1a−1b−1

b̃ = bababababa−1b−1a−1b−1a−1b−1a−1b−1.

These relations get the form
(ab)4 = (ba)4.

s1 and s2 are branch points (figure 8), therefore a1 = b1 and a2 = b2. The projective
relation

b1b2a2a1 = 1

is transformed to
b2a2 = 1.

Therefore we obtain (9).
We prove that π1(P2 \ B2) is an infinite solvable group. Apply a change of gener-

ators in (9), α := ba, β := b, and get

π1(P2 \ B2) �
�
α, β

����� βα
4β−1 = α4

βαβ−1 = α−1

�
.
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ba

*

b
~

*

~a

*

Figure 10: Resulting generators ã, b̃ in π1(P2 \ B2)
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The first relation is transformed by the second relation to α−1βα3β−1 = α4. This
yields βα3β−1 = α5. We repeat this procedure and obtain α8 = 1. Therefore the
subgroup generated by α is a finite one. One can prove that it is also normal. Mapping
α → 1, the image is generated by β and no relations remain. Thus π1(P2 \ B2) is an
extension of Z8 by Z, and in particular infinite and solvable.

Now, substituting n = 3 in (7), we obtain (10). We prove that it is a big group.
By a change of generators κ := cba, τ := cb, m := c in (10), we obtain

π1(P2 \ B3) �
�
κ, τ,m

����� [κ4, τ ] = [κ4,m] = 1

κmτ = τκ−1m

�
.

Adding the relation κ2 = 1, we have a surjection of π1(P2 \ B3) onto�
κ, τ,m

����� [κm, τ ] = 1

κ2 = 1

�
,

which is equal to (15). At this point, we have to repeat the proof which we did for
π1(P2 \ A3), and then we get π1(P2 \ B3) is also big.

Proof of Corollary 2.7. The group π1(P2 \ B3) is a quotient of π1(P2 \ Bn) (n ≥ 3),
and π1(P2 \ B3) is big, therefore π1(P2 \ Bn) is big.

5. Proof of Theorem 2.8

Let Cn be a quadric arrangement, composed of n quadrics as shown in Figure 4. Each
one of the quadrics Q2, . . . , Qn is tangent to the quadric Q1 in one tangency and
intersects each one of the other quadrics at two points.

The projection to the line y = −2 has three types of singular fibers:

(i) the fibers Fsi
, where si is a branch point of a quadric Qi, 1 ≤ i ≤ n,

(ii) the fibers Fxi
corresponding to the nodes,

(iii) the fibers Fti
corresponding to the n− 1 tangencies.

In order to find the group π1(P2 \ Cn), take ∗ ∈ R a base point and F∗ a typical
fiber. Next to each branch point one can find a fiber which intersects the same quadric
in two real points. Denote this pair of points as ai, bi for 1 ≤ i ≤ n.

Proof of Theorem 2.8. Since we are familiar with the types of the singularities, we
can compute easily the group π1(P2 \ Cn). The nodes and tangencies give [ai, aj ] = 1
for i �= j, 2 ≤ i, j ≤ n, and (a1ak)4 = (aka1)4 for 2 ≤ k ≤ n. The branch points
s1, . . . , sn give ai = bi. The projective relation is an

2 · · · a1
2 = 1. Therefore we

get 2.8.
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Proof of Proposition 2.9. The group π1(P2 \ C1) is again Z2, see (12).
The group π1(P2 \ C2) admits the presentation (13), hence is isomorphic to the

group π1(P2 \ B2). Therefore it is an infinite solvable group.
The group π1(P2 \ C3) admits (14). We apply a change of generators in (14),

κ := a2a1, τ := a2, m := a3, which yields a better look at the group:

π1(P2 \ C3) �

�
κ, τ,m

����������
[m, τ ] = 1

[κ4, τ ] = 1

(τ−1κm)4 = (mτ−1κ)4

τκτ−1κm2 = 1

�
.
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