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Abstract

Backward error analysis of numerical methods for ordinary differential equations
has proved to be in recent times a valuable tool to study the geometric properties
of numerical integrators [3]. In this approach the numerical solution is the exact
solution of a new differential equation which is a perturbation of the original equa-
tion in which the step size appears as small parameter. Clearly such an approach
is closely related with perturbation theories that have been widely used in Celestial
Mechanics to approximate the solution of some dynamical systems. The aim of this
paper is to give a brief view of backward error analysis and to show its connection

with Lie-Hori perturbation theory.
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1 Introduction

In the numerical solution of initial value problems for ODEs
d m
V=7, =0, y0)=yeR (1)

by means of one step methods with a fixed step size one gets a discrete solution (yj)j>0
that approximates the exact solution y(t) of (1) at the uniformly spaced grid points
t; = jh,j = 0,1,.... The approximations y;+1 = ¢n(y;),7 = 0,1,... are computed

81



recursively by a map ¢, = ¢y, s that depends on the vector field f of (1) , the numerical
method and the step size h.

A standard measure to test the quality of a given method ¢y ; is the so called local
error defined at each y,, by || Pp ¢(yn) — dn.f(yn)|| where @, ¢ is the time-¢ flow map of (1),
i.e. ®;¢(yn) is the solution of the differential equation of (1) starting from the point y,
at t = 0. A method ¢, s has order p if its local error behaves as O(hP*!) when h — 0
for all f sufficiently smooth. Further this fact implies that the global error, i.e. the error
after N steps with Nh moderately sized, behaves as O(h?) when h — 0. This forward
error analysis has been the basis to construct most of the standard numerical methods in
use for solving ODEs.

An alternative approach to study the error behaviour of a method ¢y, s is to consider
the numerical solution (1,) as the exact flow of another vector field f(y; h) depending on

the constant step size h

WER _ Fgmin), 120 g0:0) =, ©)

at the grid points t; = jh, so that @, 7 (yo) =Y(tj;h) =y;, forall j =0,1,.... Provided

that such an equation (2) exist, it is usually called the modified equation of (1) associated
to the method ¢, ;. Hence the comparison of the flows of the original equation (1) and
the modified equation (2) allows us to assess the quality of a method. In this approach
called Backward Error Analysis (BEA) the numerical solution generated by a method
with step size h is the exact solution of a differential system (2) that can be considered
as a perturbation of the original system (1).

It must be noticed that, as remarked by several authors [3, 7, 1] BEA, in conjunction
with some perturbation results for differential equations, permits to derive not only error
bounds for the numerical solution but also other results on the preservation of qualitative
properties of the original differential system and the long term behaviour of numerical
methods. On the other hand (2) may be viewed as a perturbed system of (1) with the
step size as a small parameter and it is well known that there is a long experience with
perturbation methods in the field of Celestial Mechanics [2, 5, 4, 6] and in this context
the aim of this paper connecting the two fields is two fold: First of all to show that the
modified equations (2) of (1) associated to the method ¢  can be considered as a Lie-
Hori type generator [5] of the near identity map ¢, s and therefore some algorithms used
to derive the Lie—Hori transformations can be applied to BEA. Secondly, it is expected
that linking BEA and perturbation theories of Celestial Mechanics will allow researchers
of both fields to exchange techniques and tools useful to their problems of interest.

The paper is organized as follows: In section 2 some well known remarks on the mod-
ified equations are briefly collected. In section 3 the relevant algorithms of the Lie-Hori

perturbation theory for general (non Hamiltonian) differential equations are presented
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making clear its connection with BEA. Finally in section 4 some numerical examples are

given to illustrate the applicability of Lie-Hori techniques to some problems.

2 The Modified Equations

As remarked before it is not evident that given an IVP (1) with f sufficiently smooth and
a numerical method ¢y, ¢ there exists a function f(y, h) for all h € [0, hol, hg > 0 such that
the solution y(t; h) of (2) satisfies y(t,;h) = y, for all n > 0. However if (1) is a linear
system

v =fy) =5y, (3)
with a constant matrix S and ¢y, is the map generated by a Runge-Kutta method (A €
R***,b € R®) with stability function R(z) = 1+2 b7 (I—zA) e withe = (1,...,1)T € R,
then ¢y, is the linear map ¢p(yo) = R(hS) yo, and for ¢t = nh, we have

Un = On(yn1) = [R(AS)]" yo = [R(hS)] " yo = exp [t b7 log(R(RS)] o,

and therefore a continuous function 7(¢; h) such that g(nh;h) = y, can be taken as the

solution of the linear system

g =1[(/h) log(R(hS)] ¥, §(0) = wo. (4)

Now, since R(z) is a rational approximation to the exponential, there exist some hy > 0
such that the h—power series expansion of (1/h) log(R(hS)) has a positive radius of
convergence. Thus for a linear system (3) and a Runge-Kutta method there exists a
modified equation (4) with the vector field f(y;h) given as a power series of h with a
positive radius of convergence.

For non linear functions it must be noticed that even for an analytic function f(y) in
a neighbourhood of the initial point yy and very simple methods the modified equation is
an asymptotic expansion that does not converge. To illustrate this fact consider the case
of a quadrature

y'(t)=f(t),  y0)=0, (5)

with an arbitrary analytic function f(¢). Note that although the equation is non au-
tonomous it can be written as a two dimensional autonomous system with the state
vector (t,y)T.

Taking as numerical method the trapezoidal rule v, 1 = yn + (h/2)[f(yn) + [ (Yns1)]
we have y((n+ 1)h) = y(nh) 4+ (h/2)[f(t,) + f(tn+1)] Whose ¢p—map is given by

Dulty) =y + L LF(0) + F(t+ B

2
Here it can be seen that the modified equation of (5) is a quadrature that has the form
h? h?
¥ = f(t)+ = Bof"(t) + o Bsf"(t) + ... (6)

2! 3!
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where B; are the Bernoulli numbers that behave as

Const.

and for an analytic function f with poles we have

f®(t)  Const.

~

k! Rk

then the series in the right hand side of (6) diverges for all A > 0.
Leaving aside all convergence matters, it has been usual to assume that the discrete
flow map ¢, ¢ defined by a one step method (typically a Runge-Kutta method) for a step

size h and a vector field f, possess a Taylor series expansion in powers of h with the form

on(y) =y + > I ¢iy) (7)

j>1

and the vector field of the modified equation possess a formal series expansion
Fly: h) = Way) + hWa(y) + h2Ws(y) + . .. (8)

with Wy (y) = f(y). Now since (2) is an autonomous system §(t;; h) = y; = ¢} () holds
for all j = 1,2,... if and only if it holds for j = 1, i.e. y(h;h) = ¢n(yo) and comparing
the Taylor series expansion of the solution of (2), where f given by (8), with (7) we can
get successively the functions W;. This has been the approach followed by Hairer, Lubich
and Wanner in ([3], p. 288).

Another equivalent approach due to Reich [7] proposes to compute recursively the
successive modified vector fields

%

fily;h) =S W 'Wiy),  i>1

=1

by the recursion f; = W = f, and

_ - . o on(x) =@, #(2)
firi = fi TR Wi, Win(z) = ,llli% hi+1h7fl '

where q)t,}; is the flow— map of the modified equation with field f;. This recursion, al-
though it is not practical for the explicit computation of f;, turns out to be very convenient
to study geometric properties of BEA and the long term behaviour of numerical methods.

In spite of the lack of convergence of the vector field (8) of the modified equation,
in many cases taking a few terms of this asymptotic expansion the flow defined by this
vector field provides an excellent approximation of ¢,. A deep result on this line was
proved by Benettin and Giorgilli (1994) [1]. Here we present a slightly modified version
due to Reich [7] in which assuming that
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e the real vector field f(y) of (1) is analytic and there is a compact set I C R™ and
constants K and R > 0 such that

sup{|| f(2)[l; = € Br(K)} < K,
where B, (K) = Uy exc B(zo, R).
e ¢ is a real analytic map and there exists constant M > K such that

sup ||on(z) —z| < (1 —a)M, for h<(l—a)R/M,
K)

2E€Bar(

(This assumption is satisfied for all Runge-Kutta methods)

then there exist some hg >0, N = N(h) and constants C' and M such that
sup gy (x) — @, = (2)|| < C h M e e/™,
zeK N

where p is the order of the method and v some constant.

Therefore, by taking a suitable number of terms in (8), the numerical flow of the trun-
cated modified equation is exponentially convergent. The above analysis indicates that
the flow of the modified equations is close to the flow of the numerical method in expo-
nentially long intervals and therefore a comparison of the properties of the original and
the modified equations provides a very convenient tool to study the qualitative properties
of numerical methods.

If the vector field f of (1) belongs to a certain linear subspace G of the Lie algebra of
smooth vector fields on R™ and the numerical method ¢; is a geometric integrator for
this subspace for all h > 0 sufficiently small then it can be proved [7] that all modified
vector fields f; € G. In particular if G is the linear subspace of Hamiltonian vector
fields i.e. f(y) = J~' V,H(y) with H : R* — R sufficiently smooth and the numerical
method ¢y, is symplectic (observe that the diffeomorphisms that preserve the Hamiltonian
form are the symplectic ones) then all modified vector fields ﬁ-(y; h),i=1,2,... are also
Hamiltonian, i.e. there exist H; : R* — R such that W; = J~'(H,), and therefore

Fin =7 v, (L -tm).
j=1
Similar remarks hold for other linear subspaces. Thus if G are the vector fields that
preserve a particular first integral F' : R™ — R, i.e. 9,F - f = 0 and ¢, is a geometric
integrator for the F—preservation, F' - ¢, = F' then the modified vector fields ﬁ preserve
the first integral F (9,F - f; = 0).
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3 Near Identity Transformations in The Lie-Hori Perturbation Theory

Hori’s perturbation theory constructs near identity transformations x € R™ — y =
¢(z;¢) € R™ where € € [0, ] is a small parameter and ¢(z;0) = x, that are defined as
the solution y(7) = y(7;¢, ) of an autonomous IVP with the form

dy(7)
dr

=Wi(y(r);e),  y(0)=2ze€R", (9)

for 7 = ¢, ie. ¢(z;¢) = y(e;e,x). Here W : R™ x [0,69] — R™ is a sufficiently smooth
vector function that is given as a power series expansion in the small parameter € in the

form

Wiyie) = 3 W) (10)

j>0 /"
Such a function is usually called the (vector field) generating function of the near identity
map ¢(x;e). Thus, for a given ¢ > 0, ¢ is the time— € flow map of the autonomous
differential equation (9). Equivalently, some authors (Reich [7]) describe ¢ as the time—
one flow map of the vector field eW (y; ¢).

In the context of Celestial Mechanics such a near identity maps ( and also their gene-
rating functions W ) are usually determined so that a given perturbed problem described
by a set of non integrable differential equations is transformed into another set of equations
whose flow can be studied more easily.

The main drawback of Hori’s transformations (in contrast with Lie-Deprit [2] trans-
formation) is that they do not satisfy the so called commutation theorem. However if
we want to compute a repeated application of an Hori’s transformation ¢.(x) = y(e; ¢, x)

associated to (9), since it is an autonomous system we have

02 (x) = ¢=(¢=(2)) = y(e1€;0:()) = y(ese,y(eie,2) ) = yle +&1¢,2),

and in general
¢l (1) = y(Neje, @),

i.e. the Nth power of ¢. can be obtained as the solution of IVP (9) for the time 7 = Ne.
In view of this property if we have a numerical method that applied to (1) gives
Yn+1 = On(yn),n =0,1,... we may consider the step size h as the small parameter ¢ and

the continuous solution of IVP (1) y(7; h, yo) satisfies

Yn = ¢Z(y0) = y(?’Lh, h7y0)7 (11)

and therefore (9) will be the modified equations of the method ¢, applied to (1). This
means that some techniques used in Hori’s perturbation theory can be used to construct

the modified equations of some numerical methods.
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Next, let us revise some basic algorithms used in Hori’s theory. Assuming that the
generating function W(x ¢) has the power series representation (10) we will derive recur-

sively the functions V) (z) of

el
_ L) — =)
y=olwie) =2+ Y 9 (a), (12)
j=1J"
For p =1,2,... we denote the derivatives of the solution y(7;¢,z) of (9) in the form
Py(t;e,x)
T Z VV]—&-I T E,SE)). (13)
Clearly for p =1
Wj(i)l (y) = m+1<y>a .] = 07 17 s (14>

Next we introduce the Lie derivative of a tensor ¢(x) along a vector field W : R™ — R
which is an essential tool to describe the perturbation theories and allows us to give a
clearly defined iterative procedure to compute the modified equations. Let @, be the
flow map of the vector field W, the Lie derivative of v along W is defined by
Lwdla) = 0 @uwle)|

t=0
and represents the derivative of 1 in the direction of the vector field W. If b : R™ — R™
is a smooth vector field, the Lie derivatives £, associated to the terms W (y) of the
vector field W (y;e) will be denoted by

Lap(y) = (0, 0w) Wh(y),  s=1,2,... (15)
where 0,1 is the Jacobian matrix.
It is easy to see that Wj(p ) may be computed recursively by
j .
J _
Wj@l - Z <l> Ej*lJerVl(fl Y, (16)
1=0

The computation of Wj(p ) proceeds recursively according to the following table (referred
to as the W-table):

W
N
Wy Wi
N N
Wi Wi Wi
N N N
W e W W
N N N N
W e W W W



(1)

Given the elements 1,7, j = 1, ... of the first column we compute recursively the elements

of the second, third, etc rows. Thus in the first four rows we have

w® = £,

Wi = (§) LWV + (1) Loy
W = L

Wi = ()L + (3) ey + (5) Loy
Wi = ()L + ()L
Wt = Lo

According to (9),(10) Taylor’s expansion of y(7;¢,z) at 7 = 0 becomes

™ OFy(r;e, x)

y(r;e,z) = y(0;e,2) +
g; or* 7=0
ok
- S (55wt
k>1 ]>0

and putting 7 = ¢ we get

"~ (N
y(ese, o) —a:—l—zz i g+1 ):x+z—z<k> Wrgk_)kﬂ@),
n>1 k=1

n
|
k>1 j>0 n:

and comparing to (12) we get

n = n
90( ) = Z (k) W:i)k-i-l' (17)

k=1

Here o™ is given as a linear combination of the functions W that appear in the nth row

of the above table. In the first orders we have

1
o= Y,

2
o = <1>W§1)+W1(2),

3 3
e = <1> Wi + <2> Wi + Wi,
4 4 4
o = <1> Wit + <2> Wi + <3> Wy + i

Equations (16) and (17) allow us to determine recursively the near identity transfor-

mation associated to a given generating function W. Conversely, for a given near identity
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map (12) we may compute recursively the generating functions Wj(l) ,J > 1 by using again
(17) and (16).

Consider now the case that the near identity map ¢ coincides with the Taylor expansion

of the solution of ¥ = f(y),y(0) = x at t = € up to some order p > 1, i.e.

pD(@) = fla), oP@)= () =Li(f)- - 9P(x) = LF (),
and "™ (z) # L5(f). Then it can be seen that all elements of the above W-table under
the main diagonal up to the row p vanish identically and
V=W = L), i = 770 (),

where £, has been substituted by £ and Wl(l) by f. This implies that the WW—generating
function (10) of the modified equation has the form

Wiy;e) E: (18)

J>P

Further, in the rows (p+ 1) and (p + 2) of the W—table the only non vanishing elements

are
1 1
Wi, 0, .0, WY
Wp(_lF)QJ Wp+17 07 07 W1(p+2)

Since W™ = E?Wl(l) = L%(f) and

1 _ (P ), (P e
So(p )_( 1 >Wp+1+<p+1 Wlp ,

the first non vanishing term Wp(i)l (after f) of the modified equation is given by

wi= ("1 [ - o) (19

Observe that in view of (11) {gp(p“)(:v) — £?(f):| et /(p + 1)! is the leading term of the
local error of the ¢—method.

Next, since

p
Wp+1 <0> £p+1W1(1) + ( )Elwp+1 £p+1(f> + EfW +15

and WP = LEF(f), it follows from

2y _ (PFT2\ ) , (P22 | (PH2) 02
<P(p+)—< 1 >Wp+2 9 Wy + D42 Wy,

that the second non vanishing term is given by

p+2\" p+2
ngig__ ( ) ) l¢;p+m _,5§+1(f)<_ ( ) ) (£p+1vvf +—th@;+1)]. (20)

Note that these terms can be easily derived by using the inverse of (12).
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4 Some Examples and Applications

For the sake of brevity we include here only one example. We consider the differential
equation of the simple pendulum as an example of non linear undamped oscillation that

is solved by means of the fourth order Runge-Kutta method defined by the Butcher array

0
1/2]1/2
/2] 0 1/2 1)
1 0 0 1
1/6 2/6 2/6 1/6
whose equations are
4 i1
Yns1 =UYn + 0D _bifi, with fi=flyn+hD_ ayy;
i=1 j=1
The second order equation of pendulum ¢” = —sin(q) is written as a set of two first order

equations

i=(" ) — s = (7). (22)

Denoting by ¢y, s the numerical h-flow map and by ®, s the exact flow map, after some

calculation it is found that

Onf(y) — Prp(y) = =& (y) + ...
with & = &(p, q) € R” given by

—1 (sin q(—21 + p* + 36p? cos q — 3cos(2q)>

= 4 2p(3 + 2p? cos g + 9 cos(2q)

since & # 0 the numerical method has indeed order four for this equation.
Next we compute the first two perturbation terms of the modified equations. Consis-

tently with the above notations we write the modified equations in the form
7 =f@)+ W@+ =wg 23
g=rw+Ws @)+ W ')+ (23)

where according to (19), Ws(l) is given by

1 —1 (sing (=21 + p* + 36p* cos ¢ — 3 cos(2q))
WD = —g5 = = ) (24)
5 o! 2p (3 + 2p® cos q + 9 cos(2q)
Next by using (20) we get for the following term of the modified equation
1 ([ 5p(—2p* —9cosq+ cos(3
i~ L p(—2p 74 (Ba)\ (25)
48 5(p* — 4 cos q) sin(2q)
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Let us see that a study of the modified equation (23),(22),(24),(25) may give some insight
on the behaviour of the numerical method.

The original problem (22) is Hamiltonian with H = (1/2)p* — cosq, however the
numerical method RK4 is not symplectic and therefore we do not expect ¢ to be sym-
plectic. Nevertheless in this case it is easy to check that div W5(1) =0, div Wél) #0
and therefore the modified system with the first perturbation term is Hamiltonian with

4

- 1 h
H(y;h) = 5p° = cosq — ;oo

(6p2 + 2p* cos g + 18p? cos(2q) — 39 cos g — cos(Bq)) :

Now the numerical solution remains in exponentially long time intervals into the constant
energy manifold H(y; h) = C.
Given the initial conditions py = 0,90 = a > 0 (corresponding to an oscillating

solution), it is well known that in the original problem the pendulum describes the curve

pz:l:\/Q(—cosoH—cosq), q € |[—a,a

with period
/2 —-1/2
T = 4/ (1 — sin®(a/2) sin? u) ” du.
0

In the first order modified equations with the same initial conditions the solution describes
(for small || with v = —h*/(4! 120))

q € [_a> CY],

o0
i
b \/\/B2 —1AC + B’

where

A = 2vycosg, B = (1/2) + 67y + 18y cos(2q),
C = —(1429v)cosq—ycos(3q) + (1 + 39y) cosa + v cos(3a),

due to the fact that —2C > 0 for all ¢ € [—a, +a] but —2C' < 0 outside this interval.
Further the motion in the perturbed manifold H = C is also periodic with a period
T > T ( the expression of T is too complicated ).
The figure of the (upper) perturbed and unperturbed orbits corresponding to the
initial conditions pg = 0,q0 = o = /3 is displayed for ¢ € [—a, +a] in the phase plane
(¢, p)-

Since they are very close, at first sight the figure is the same but for ¢ ~ 0 the non

perturbed orbit is under the perturbed one as shown in the following figure
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The two orbits coincide at both ends of the interval [—«, +a] and cross at ¢ = £0.359025.

A complete study of the relative graphs and periods of these orbits can be carried out
for all kind of orbits.

The above remarks show how the BEA together with the Lie-Hori perturbation theory
can be used to analyze the behaviour of the one step methods for a given problem.
Here a first order perturbation theory permits to describe the Hamiltonian behaviour of
the method for this problem, however higher order terms do not retain this symplectic

behaviour.
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