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A Variational Inequality for Discontinuous Solutions of
Degenerate Parabolic Equations

Lorina Dascal, Shoshana Kamin and Nir A. Sochen

Abstract. The Beltrami framework for image processing and analysis introduces a non-linear parabolic
problem, called in this context the Beltrami flow. We study in the framework for functions of bounded
variation, the well-posedness of the Beltrami flow in the one-dimensional case. We prove existence and
uniqueness of the weak solution using lower semi-continuity results for convex functions of measures.
The solution is defined via a variational inequality, following Temam’s technique for the evolution prob-
lem associated with the minimal surface equation.

Una desigualdad variacional para soluciones discontinuas de ecuaciones
parabólicas degeneradas

Resumen. El contexto de Beltrami para el proceso y análisis de imágenes introduce un problema
parabólico no lineal denominado “flujo de Beltrami”. En este artı́culo panorámico mostramos como el
flujo de Beltrami unidimensional está bien planteado en el marco de las funciones de variación acotada.
Obtenemos la existencia y unicidad de soluciones débiles usando resultados sobre la semicontinuidad in-
ferior para funciones convexas de medidas. Definimos la solución va una inecuacin variacional, siguiendo
la técnica de Temam para el problema de evolución asociado a la ecuación de superficies mı́nimas.

1 Introduction
Non-linear PDEs are used extensively in recent years for different tasks in image processing. In many cases
the mathematical properties of these equations are not rigorously treated. We study in this work the well-
posedness of a non-linear parabolic problem, called in this context the Beltrami flow, that emerges in the
Beltrami framework [18] for image denoising. The Beltrami flow is known (see [17, 18]) as a powerful
edge preserving technique for denoising of signals and images. This flow originates from the minimization
of the area of the two-dimensional image manifold embedded in R3 for gray-scale images, and in R5, for
color images. A short review of the Beltrami flow is presented in Section 3 below.

Let Ω be a bounded set in Rn and its boundary ∂Ω of class C1. We are interested in establishing the
well-posedness for the following Neumann problem:

ut = div(g(Du)), (x, t) ∈ Ω× (0, T ) (1)
(P1) u(x, 0) = u0(x), x ∈ Ω (2)

∂u

∂ν
|ST

= 0 (3)
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where u0 ∈ BV (Ω)
⋂

L∞(Ω), g(ξ) = ∇ξG(ξ), and G is a convex function with linear growth as
‖ξ‖ → ∞.

We study here mainly the one-dimensional case. The Beltrami flow in the one-dimensional case is a
particular case of equation (1). Few results for the n-dimensional case will be discussed though as well.

This problem was much considered in the recent years and various results are known. We present in de-
tail the most relevant results in the next subsection. Equation (1) is a particular case of a more general class
of degenerate equations studied in Andreu-Caselles-Mazón [3]. In that work, the existence and uniqueness
of the weak solution for this problem were proved via the concepts and techniques of the entropy solution.

In the present work we propose a generalization of Temam’s definition of the weak solution via a
variational inequality [14]. For the particular class of equations characterized by equation (1), the variational
inequalities approach enables to give a shorter and simpler proof of the well-posedness for the problem (P1)
in the BV space.

The structure of the paper is as follows: In Section 2 we review previous relevant works. In Section 3
we shortly describe the Beltrami framework and flow. We remind some known facts about functions with
bounded variations in section 4. We motivate the definition of the weak solution in Section 5 and in Section 6
we give our main result. Section 7 provides some comments on flows in higher dimensions. We conclude
in Section 8.

2 Previous related works
For many PDE-based models in image processing the only known result of existence and uniqueness is
under the condition that the initial data are of Lipschitz type (see [11]). This assumption is, in general,
inappropriate for images or signals. This is due to the fact that images contain in general edges, i.e. discon-
tinuities. The proper space for images should be therefore the BV space which allows discontinuities. It is
necessary thus to study weak solutions in the more realistic BV space to the suggested PDE-based models.

We describe, in the rest of this section, the main known results of well-posedness for problems which
are related to ours.

In [8] the existence and uniqueness of the following problem is considered:

ut = (φ(u)b(ux))x, (x, t) ∈ R× (0, T ) (4)
u(x, 0) = u0(x), x ∈ Ω (5)

where the function φ : R → R is smooth and strictly positive, and b : R → R is a smooth, strictly increasing
and odd function that is approaching a constant value at infinity. The initial data is a strictly increasing
bounded function. However, this approach cannot be used for generalizations to higher dimensions.

Rosenau [16] studied equations of type

ut =
∂

∂x

(
ux

(1 + u2
x)1/2

)
in the context of thermodynamical theory of phase transition. He showed that free-energy functionals have
a unique infinite-gradient limit which assures a finite energy.

Barenblatt [7] considered various flows of relevance in image processing and studied them in the limit
of very large gradients. He arrived at the modified equation

ut =
uxx

(u2
x)1+α

, α ∈ R+.

Through the analysis of intermediate-asymptotics solutions for the modified equation, he demonstrated
that edge-enhancement takes place.

There are various works which study the degenerate parabolic equations, and for which the entropy
solution is used (see [3, 4, 5, 10]). The n-dimensional Neumann problem associated with the equation
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ut = div(a(u, Du)) is studied in [3]. Here a(z, ξ) = ∇ξf(z, ξ), where f is a function with linear growth
as ‖ξ‖ → ∞. For initial data u0 ∈ L1(Ω), the existence of the entropy solution is shown by using the
Crandall-Ligget scheme and the uniqueness of the entropy solution is proved by means of Kruzhkov’s
technique of doubling variables.

Equation (1) is a particular case of the more general class of degenerate equations considered in [3].
In this work, we propose a simpler method, namely the method of variational inequalities for showing
existence and uniqueness of the problem (1), (2), (3). The possibility of the use of variational inequalities
for the study of discontinuous solutions is interesting. In [14], the method of variational inequalities was
used to prove well-posedness of the evolution problem associated with the minimal surface equation:

ut = div
( ∇u√

1 + |∇u|2
)
, (x, t) ∈ Ω× (0, T ) (6)

u(x, 0) = u0(x), x ∈ Ω (7)
u|ST

= Φ, (8)

where the initial data u0 belongs to the Sobolev space W 1,2(Ω), and the boundary function Φ ∈ W 1,1(Ω).
This work can be seen as a generalization of the Temam’s work [14] for Neumann problems associated

with more general divergence flows and with initial data from the BV space.
To conclude this Section we mention the works by Anzelotti [1, 2], who used the variational inequalities

and BV spaces for the study of stationary problems. Combination, rather not trivial, of Anzelotti’s results
and Theorem 3.2 in the book of Brezis [9] leads to the statement which is close to Theorem 1 below.
Nevertheless we point out that our approach is a direct one and simpler.

3 The Beltrami flow
In this section we review the Beltrami framework [17, 18] for image denoising. In this framework an
image, and other local features, are represented as embedding maps of a Riemannian manifold into a higher
dimensional space. The simplest example is a gray-level image. The graph of the brightness function
is regarded as a 2D surface embedded in R3. We denote the map by U : Σ → R3, where Σ is a two-
dimensional surface, and we denote the local coordinates on it by (σ1, σ2). The map U is given in general
by (U1(σ1, σ2), U2(σ1, σ2), U3(σ1, σ2)). In our example we represent it as follows : (U1 = σ1, U2 =
σ2, U3 = I(σ1, σ2)), where I(·) is the brightness/intensity function.

On this surface we choose a Riemannian structure, namely, a metric. A metric is a positive definite and
a symmetric 2-tensor that may be defined through the local distance measurements:

ds2 = g11(dσ1)2 + 2g12dσ1dσ2 + g22(dσ2)2.

Cartesian coordinates are usually chosen in image processing. For these coordinates, we identify σ1 = x1

and σ2 = x2. Below we use the Einstein summation convention in which the above equation reads ds2 =
gijdxidxj , where repeated indices are summed. We denote the elements of the inverse of the metric by
superscripts gij = (g−1)ij .

Once the image is defined as an embedding mapping of Riemannian manifolds it is natural to look for
a measure on this space of embedding maps.

3.1 Polyakov Action: A measure on the space of embedding maps
Denote the image manifold and its metric by (Σ, g) and by (M,h) the space-feature manifold and its metric.
Then the functional S[U ] attaches a real number to a map U : Σ → M ,

S[Ua, gij , hab] =
∫

dV 〈∇Ua,∇U b〉ghab
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where dV is a volume element and 〈∇Ua,∇U b〉g = (∂xi
Ua)gij(∂xj

U b). This functional, for m = 2 (a
two dimensional image manifold) and hab = δab, was first proposed by Polyakov [15] in the context of
high energy physics, and the theory is known as string theory.

Keeping in mind the form of the map U , the elements of the induced metric for gray-scale images are

gij = δij + Ixi
Ixj

. (9)

This leads to the fact that the functional S is actually the area of the image manifold,

S =
∫
√

g dσ1 dσ2, (10)

where g = det(gij) = g11g22 − g2
12.

Using standard methods in the calculus of variations, the Euler-Lagrange equations with respect to the
embedding (assuming a Euclidean embedding space) are (see [17] for explicit derivation) :

0 =
1
√

g
∂xi

(
√

g gij ∂xj
I). (11)

Since (gij) is positive definite, g ≡ det(gij) > 0 for all σi. This factor is the simplest that does not
change the minimization solution, while giving a reparametrization invariant expression. The operator that
is acting on I is the natural generalization of the Laplacian from flat spaces to manifolds, and is called the
Laplace-Beltrami operator, denoted by ∆g .

Then for the gray-level images the non-linear diffusion emerges as a gradient descent minimization:

It =
(1 + I2

y )Ixx − 2IxIyIxy + (1 + I2
x)Iyy

(1 + I2
x + I2

y )2
.

Remark 1 This equation is not in divergence form.

In the following sections we will study the one dimensional version of this equation, namely

It =
Ixx

(1 + I2
x)2

. (12)

4 Preliminaries

In this section, we introduce basic notation, definitions and results on the space BV (Ω). For general results
on BV spaces, we refer the reader to [6, 20].

Definition 1 Let Ω be a bounded subset of RN and u ∈ L1(Ω) be a real-valued function on Ω. We set∫
Ω

|Du| = sup
v∈C1

0 (Ω,RN )

{∫
Ω

u div(v) dx : |vi(x)| ≤ 1, ∀x ∈ Ω, 1 ≤ i ≤ N

}
,

where v is a vector valued function v = (v1, v2, . . . , vN ).

Definition 2 A function u ∈ L1(Ω) is in BV (Ω) if∫
Ω

|Du| < ∞.
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Remark 2 (see [20]) A function u ∈ BV (Ω) if and only if there are Radon measures µi, . . . , µn such that
|Dµi|(Ω) < ∞ ∀i and ∫

Ω

u Div dx = −
∫

Ω

v µi, (13)

for all v ∈ C∞0 (Ω).

Remark 3 If u ∈ BV (Ω), the distributional gradient Du is a vector valued measure.

Definition 3 Let u be a BV function. The BV norm is defined as

‖u‖BV =
∫

Ω

|Du|+ ‖u‖L1(Ω).

Properties of the BV spaces
We denote by M(Ω) the set of all bounded measures on Ω.

P1) A weak * topology

We will not use the norm defined above, since it does not possess good compactness properties. We
will work with the BV − w∗ topology, defined as

uj ⇀ u (BV − w∗) ⇔ uj → u in L1(Ω) and Duj ⇀ Du (in M(Ω))

where Duj ⇀ Du (in M) means
∫
Ω

φDuj →
∫
Ω

φDu for all φ ∈ C0(Ω).

P2) Compactness

For every bounded sequence uj in BV (Ω), there exists a subsequence ujk
and a function u in BV (Ω)

so that ujk
⇀ u (BV − w∗).

P3) Approximation (Ziemer, [20])

Let u ∈ BV (Ω). Then there exists a sequence {un} ∈ C∞(Ω) such that

lim
n→∞

∫
Ω

|un − u| dx = 0

and
lim

n→∞

∫
Ω

|Dun| dx =
∫

Ω

|Du|.

P4) Convex functions of measures

The next issue concerns the functional∫
Ω

G(Du), u ∈ BV (Ω),

where G is a convex function with linear growth at infinity.

Due to the convexity assumption, the asymptote G∞ of G exists, that means

G∞(ξ) = lim
t→∞

G(tξ)
t

exists.

Given a measure µ on Ω, its Lebesgue decomposition is :

µ = hdx + µs
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Here h is the |µ|-measurable function of modulus 1, i.e. µ = h|µ| and µs is singular with respect to
the Lebesgue measure µ.

We define G(µ) (see [12]) by setting

G(µ) = G ◦ hdx + G∞(µs). (14)

(here, the notation ◦ means composition of two functions).

Below we use the following lemma ([12, Lemma 1.1]):

Lemma 1 ([12]) For every φ ∈ C(Ω̄), φ ≥ 0,∫
Ω

φG(µ) = sup
v∈DG(C∞0 )

{∫
Ω

vφµ−
∫

Ω

G∗(v)φ dx

}
, (15)

where G∗, the conjugate of G is defined as

G∗(ξ) = sup
y∈R

{y · ξ −G(y)},

and DG(C∞0 ) is:
DG(C∞0 ) = {v ∈ C∞0 (Ω), G∗ ◦ v ∈ L1(Ω)}. (16)

Taking φ = 1, µ = Du in (15), and using (13), for u ∈ BV (Ω), one gets∫
Ω

G(Du) = sup
v∈DG(C∞0 )

{
−
∫

Ω

u div v dx−
∫

Ω

G∗(v) dx

}
. (17)

5 Definition and motivation of a weak solution
In this section we start with the one-dimensional Beltrami flow. Adding the initial and boundary conditions
to equation (12), we arrive at the following problem:

ut =
uxx

(1 + u2
x)2

, (x, t) ∈ Ω× R+ (18)

u(x, 0) = u0(x), x ∈ Ω (19)

ux|x=a = ux|x=b = 0, t ∈ R+, (20)

where
Ω = (a, b). (21)

Note that equation (18) is degenerate if we allow u to be discontinuous. In order to include the solutions
with discontinuities, we use the space BV for the definition of the weak solution.

Let T > 0 be some fixed number. For τ ∈ [0, T ] define Qτ = (0, τ) × Ω. Note that below we use the
two BV spaces, BV (Ω) and BV (QT ), where Ω is given in (21).

First, note that we can write the equation (18) in the following divergence form:

ut = (g(ux))x (22)

with

g(s) =
∫ s 1

(1 + t2)2
dt =

1
2

(
s

1 + s2
+ arctan s

)
. (23)

Equation (22) with g as in (23) is a particular case of equation (1) for n = 1.
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Below, following [14], we give the definition of the weak solution. Assume first, that the solution u is
sufficiently smooth to justify the following calculations.

For smooth functions v ∈ C2(0, T, C2(Ω)) we multiply equation (18) by v − u, integrate by parts, and
obtain ∫

QT

ut(v − u) dx dt +
∫

QT

g(Du)(Dv −Du) dx dt = 0. (24)

Let G denote the primitive of the function g. In our case

G(s) =
1
2
s arctan s. (25)

From the convexity, it follows: G(Dv)−G(Du) ≥ g(Du)(Dv −Du).
Therefore equation (24) becomes:∫

QT

ut(v − u) dx dt +
∫

QT

(G(Dv)−G(Du)) dx dt ≥ 0. (26)

We are thus led to the following definition of a weak solution.

Definition 4 A function u ∈ L∞(QT )
⋂

L∞((0, T ), BV (Ω))
⋂
{u;Du ∈ M(QT )} is called a weak

solution of the problem (22), (19), (20) if ut ∈ L2(QT ),u(x, 0) = u0(x), and u satisfies∫
QT

ut(v − u) dx dt +
∫

QT

(G(Dv)−G(Du)) ≥ 0 (27)

for all v ∈ L∞(QT )
⋂
{v;Dv ∈ M(QT )}, where Du is the distributional gradient in space only and

G(Du) and G(Dv) should be understood as functions of measure as were defined in (14).

6 Main result
In this section we prove the existence and uniqueness of the weak solution to the problem (22), (19), (20).

Theorem 1 Suppose u0 ∈ L∞(Ω)
⋂

BV (Ω). Then there exists a unique weak solution of the problem
(22), (19), (20).

PROOF.
a) Existence
Let ε > 0 and consider the following approximating problem :

ut = (g(ux))x, (x, t) ∈ (a, b)× (0, T ) (28)
(Pε) ux|x=a = ux|x=b = 0, t ∈ (0, T ) (29)

u(x, 0) = uε
0(x), x ∈ (a, b) (30)

where the function g is defined in (23).
The regularizing initial data are chosen such that uε

0 ∈ C∞(Ω̄), (uε
0)
′(a) = (uε

0)
′(b) = 0,

‖uε
0 − u0‖L∞(Ω) → 0, as ε → 0, ‖uε

0‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + 1 = m0 (31)

and ∫
Ω

|(uε
0)
′| dx ≤ C(Ω)

∫
Ω

|Du0|. (32)

The existence of such a sequence uε
0 follows from the assumptions of the Theorem 1.

It is well known [13] that there exists a unique classical solution uε of problem Pε. We shall establish
some a priori estimates for the sequence {uε}.
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Lemma 2 a) The sequence {uε} is uniformly bounded in L∞(QT ) and the sequence uε
t is uniformly

bounded in L2(QT ).
b) The sequence {uε} is uniformly bounded in BV (QT ) and in L∞((0, T ), BV (Ω)).
c) The sequence {uε} converges in the space L∞((0, T ), L2(Ω)) and the sequence {uε(t, ·)} converges

in the space L2(Ω) for all t ∈ [0, T ].

PROOF. a) By the maximum principle, we have

uε(x, t) ≤ m0, for all (x, t) ∈ QT .

Next we multiply equation (28) by uε
t and get∫

Qτ

(uε
t)

2 dx dt +
∫

Qτ

g(uε
x)uε

xt dx dt = 0.

∫
Qτ

(uε
t)

2 dx dt +
∫

Ω

G(uε
x)|t=τ dx =

∫
Ω

G(uε
0,x) dx. (33)

By (25), we have ∫
Ω

G(uε
0,x) dx ≤ C

∫
Ω

|uε
0,x| dx ≤ C̄(Ω)

∫
Ω

|Du0|. (34)

In inequality (34) we used (32).
Taking τ = T , it follows from (33) and (34) that

uε
t ∈ L2(QT ). (35)

Thus uε
t is uniformly bounded in L2(QT ).

b) Relations (33) and (34) lead also to∫
Ω

G(uε
x) dx ≤ C̄(Ω)

∫
Ω

|Du0|, ∀ t ∈ [0, T ]. (36)

We have that there exist constants α > 0 and β > 0 so that s arctan s > αs− β. Then∫
Ω

G(uε
x) ≥ α

∫
Ω

|uε
x| dx− β, ∀ t ∈ [0, T ]. (37)

From (36) and (37) it follows that∫
Ω

|uε
x| dx ≤ C1

∫
Ω

|Du0|+ C2, ∀ t ∈ [0, T ]. (38)

(Here C1 = C̄/α and C2 = β/α).
The inequality (38) implies

‖uε(t, ·)‖BV (Ω) < C0, ∀ t ∈ [0, T ], (39)

where C0 does not depend on ε and on t, that means that the sequence uε is uniformly bounded in
L∞((0, T ), BV (Ω)).

From (35) and (38) we get
‖uε‖BV (QT ) < C, (40)

where C does not depend on ε.
Thus we showed that uε is uniformly bounded in BV (QT ).
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c) Next, we show that the sequence uε(t, ·) converges in the space L2(Ω) for all t ∈ [0, T ]. Consider
uεm and uεn that satisfy (28) and (31).

Multiply the difference of the equations (28) for uεm and uεn by the difference uεm − uεn to obtain :

1
2

∫
Ω

(uεm − uεn)2 dx|t=τ +
∫

Qτ

(g(uεm
x )− g(uεn

x ))(uεm
x − uεn

x ) dx dt =
1
2

∫
Ω

(uεm
0 − uεn

0 )2 dx. (41)

Since g(s) is a monotone increasing function, the following integral is nonnegative:∫
Qτ

(g(uε1
x )− g(uε2

x ))(uε1
x − uε2

x ) dx dt ≥ 0. (42)

From (41), (42) and since τ is arbitrary in [0, T ], we conclude

‖uεm − uεn‖L2(Ω) → 0 for all t ∈ [0, T ] as εm, εn → 0,

which means the sequence uεn(t, ·) converges in L2(Ω) for all t ∈ [0, T ].
Moreover, uεn converges in L∞(0, T, L2(Ω)). �

Next, we pass to the limit ε → 0.
By Lemma 2, there exists u ∈ L∞(0, T, L2(Ω)) such that

‖uε(t, ·)− u(t, ·)‖L2(Ω) → 0, for all t ∈ [0, T ] and ‖uε − u‖L2(QT ) as ε → 0. (43)

Moreover, u ∈ L∞(QT ).
By (43) we also have

‖uε(t, ·)− u(t, ·)‖L1(Ω) → 0, for all t ∈ [0, T ] as ε → 0. (44)

and
‖uε − u‖L1(QT ) as ε → 0. (45)

Since ‖uε
t‖L2(QT ) ≤ C, we can extract a subsequence still denoted by {uε} such that :

uε
t ⇀ ut in L2(QT ) and ut ∈ L2(QT ). (46)

Relation (46) implies that the limit function satisfies

u(x, 0) = u0(x).

Next, we show that the limit function u has the property that u ∈ BV (QT ). By (40) and use of
Property P2) we can extract a subsequence {uεi} and find a function η ∈ BV (QT ) such that

uεi(x, t) ⇀ η(x, t) (w∗ in BV (QT )). (47)

This implies that uεi → η in L1(QT ). Taking (45) into consideration, we have that also uεi → u in
L1(QT ). Therefore

η = u. (48)

We thus obtained that u ∈ BV (QT ). By the definition of the BV spaces, Du is a bounded measure on
QT , i.e. Du ∈ M(QT ).

We now prove that for all t ∈ [0, T ], u(t, ·) ∈ BV (Ω).
From (47) and (48) we have

uεi(x, t) ⇀ u(x, t) (w∗ in BV (QT )). (49)
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By (39)
‖uεi(t, ·)‖BV (Ω) < C, ∀ t ∈ [0, T ], (50)

where C does not depend on ε and t.
Fix t0 ∈ [0, T ]. By Property P2) we can again extract a subsequence of {uεi}, which we denote by

{uεj} such that
uεj (t0, ·) ⇀ U(t0, ·) (w∗ in BV (Ω)), (51)

where the function U(t0, ·) ∈ BV (Ω).
By the same reasoning as above, we have uεj (t0, ·) → U(t0, ·) in L1(Ω). Obviously, U = u.
We thus obtain that, for all t ∈ [0, T ],

u(t, ·) ∈ BV (Ω). (52)

Next we prove the following lemma, which is similar to Proposition 2.2, in [3].

Lemma 3 Let u ∈ BV (Ω) and G is a convex function with linear growth at infinity. Then the functional∫
Ω

G(Du) is lower semi-continuous with respect to the L1 convergence.

PROOF. We use Property P4), (17). For a function u ∈ BV (Ω) and G a convex function with linear
growth at infinity, we have∫

Ω

G(Du) = sup
v∈DG(C∞0 )

{
−
∫

Ω

u div v dx−
∫

Ω

G∗(v) dx

}
.

with G∗ and DG(C∞0 ) defined as above in the section Preliminaries.
By Property P3), there exists a sequence {un} ∈ C∞(Ω)

⋂
BV (Ω) such that un → u in L1(Ω).

Then for any function v ∈ DG(C∞0 ) the following holds:

∫
Ω

−u div v dx−
∫

Ω

G∗(v) dx = lim
n→∞

[∫
Ω

−un div v dx−
∫

Ω

G∗(v) dx

]
≤ lim inf

n→∞
sup

v∈DG(C∞0 )

{
−
∫

Ω

un div v dx−
∫

Ω

G∗(v) dx

}
= lim inf

n→∞

∫
Ω

G(Dun) dx.

We thus obtained ∫
Ω

−u div v dx−
∫

Ω

G∗(v) dx ≤ lim inf
n→∞

∫
Ω

G(Dun) dx. (53)

Now in (53) we take the supremum over all v ∈ DG(C∞0 ) and get:

sup
v∈DG(C∞0 )

(∫
Ω

−u div v dx−
∫

Ω

G∗(v) dx

)
≤ lim inf

n→∞

∫
Ω

G(Dun) dx.

Therefore we obtained that if un → u in L1(Ω), then∫
Ω

G(Du) ≤ lim inf
n→∞

∫
Ω

G(Dun) dx. �

Next, by using (44) and (52) and Lemma 3, we have

lim inf
ε→0

∫
Ω

G(Duε) dx ≥
∫

Ω

G(Du), ∀t ∈ [0, T ]. (54)
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By (25) and (38), we have ∫
Ω

G(Duε) dx ≤ C̃, ∀t ∈ [0, T ], (55)

where C̃ = C̃(C0) and the constant C0 was defined in (39).
Therefore, (54) and (55) lead to:

u ∈ L∞((0, T ), BV (Ω)). (56)

Until now we proved that u satisfies u ∈ L∞(QT )
⋂

L∞((0, T ), BV (Ω))
⋂
{u;Du ∈ M(QT )}.

Next, we show that u fulfills the variational inequality (27).
After integrating on [0, T ] in (54), we get:

lim inf
ε→0

∫
QT

G(Duε) dx dt ≥
∫

QT

G(Du). (57)

We proceed now as in Section 5.1 and multiply equation (18) by the function v−uε, where v is a smooth
function v ∈ C2(Q̄T ). After integration we get∫

QT

uε
t(v − uε) dx dt +

∫
QT

(G(Dv)−G(Duε)) dx dt ≥ 0. (58)

Now we have to show that (58) holds also for v as in Definition 4.
Let X be the space defined by X = {v

∣∣∣v ∈ L1(QT ), Dv ∈ M(QT )}.
The space XG is the space X equipped with the topology defined by the distance :

d(u, w) = |u− w|L1(QT ) +
∣∣∣ ∫

QT

|Du| −
∫

QT

|Dw|
∣∣∣+ ∣∣∣ ∫

QT

G(Du)−
∫

QT

G(Dw)
∣∣∣.

By [12, Theorem 2.2, p. 689] and [19, Theorem 2.2, p. 404], the space C∞(QT ) is dense in XG. Then
there exists a sequence of smooth functions {vn}n∈N such that∫

QT

G(Dvn) dx dt →
∫

QT

G(Dv), as n →∞, (59)

and ∫
QT

|vn − v| dx dt → 0, as n →∞. (60)

For the smooth sequence {vn}n∈N we have :∫
QT

uε
t(v

n − uε) dx dt +
∫

QT

(G(Dvn)−G(Duε) dx dt ≥ 0. (61)

We have ∣∣∣ ∫
QT

uε
t(v

n − v) dx dt
∣∣∣ ≤ sup

QT

|uε
t‖vn − v‖L1(QT ). (62)

Using (59), (60) and (62), we pass to the limit as n →∞ in (61) and obtain∫
QT

uε
t(v − uε) dx dt +

∫
QT

G(Dv)−
∫

QT

G(Duε) dx dt ≥ 0, (63)

for all v ∈ L∞(QT )
⋂
{v;Dv ∈ M(QT )}.
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Using (46) and (57) we can pass to the lower limit (ε → 0) in the last inequality:∫
QT

ut(v − u) dx dt +
∫

QT

(G(Dv)−G(Du)) ≥ 0, (64)

for all v ∈ L∞(QT )
⋂
{v;Dv ∈ M(QT )}.

Thus the existence of a weak solution is proved.

b) Uniqueness
Suppose there are two weak solutions u1 and u2 to our problem (18), (19), (20) satisfying

u1(x, 0) = u2(x, 0). (65)

We use inequality (27) first for u = u1, v = u2, and then for u = u2, v = u1.
Then the following inequalities hold:∫

QT

∂u1

∂t
(u2 − u1) dx dt +

∫
QT

G(Du2) ≥
∫

QT

G(Du1). (66)∫
QT

∂u2

∂t
(u1 − u2) dx dt +

∫
QT

G(Du1) ≥
∫

QT

G(Du2). (67)

Adding the above inequalities we get∫
QT

∂(u1 − u2)
∂t

(u2 − u1) dx dt ≥ 0

Thus ∫ T

0

d

dt

( ∫
Ω

(u1 − u2)2 dx
)
dt ≤ 0.

By (65) we obtain:
‖u1(·, T )− u2(·, T )‖L2(Ω) = 0.

As T is arbitrary, the uniqueness follows. �

7 Extensions and comments
In the same manner as we proceeded for the one dimensional case, we can extend the result of existence
and uniqueness to the following Neumann n-dimensional problem:

ut = div(g(Du)), (x, t) ∈ Ω× (0, T ) (68)
u(x, 0) = u0(x), x ∈ Ω (69)
∂u

∂ν
|ST

= 0. (70)

where Ω is a bounded set in Rn, u0 ∈ BV (Ω)
⋂

L∞(Ω), g(ξ) = ∇ξG(ξ), and the function G satisfies:

H1) G is a convex function;

H2) G satisfies the following linear growth condition:

C1‖s‖ −D1 ≤ G(s) ≤ M(‖s‖+ 1),

where C1, D1 and M are some positive constants.

That means that the existence and uniqueness in any dimension n for the class of equations (68), where
the flux does not depend explicitly on x or u, with assumptions H1), H2) can be proved by the method of
variational inequalities.
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8 Conclusions

Motivated by problems from image processing we apply, in this paper, the variational inequalities technique
to prove the well-posedness of a class of degenerate equations with discontinuous initial data. The weak
solution belongs to the BV space, which allows discontinuities. This space is a good model for images.

The method of variational inequalities provides a relatively short and simple proof of existence and
uniqueness of the solution in the BV space.
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