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Spaces of Continuous Functions Taking Their Values in the
ε-Product

Belmesnaoui Aqzzouz

Abstract. For a nuclear b-space N and a b-space E, we prove that if X is a compact space then the
b-spaces C (X, NεE) and NεC (X, E) are isomorphic. Also the same result holds if X is a locally
compact space that is countable at infinity.

Espacios de funciones continuas con valores en el ε-producto

Resumen. Para un b-espacio nuclear Ny un b-espacio E demostramos que si X es un espacio com-
pacto entonces los b-espacios C (X, NεE) y NεC (X, E) son isomorfos. El mismo resultado se verifica
también si X es un espacio localmente compacto que es numerable en el infinito.

1 Introduction and notations

We will show that if N is a nuclear b-space and X is a compact space then the exact functors C (X, Nε.)
and NεC (X, ·) are isomorphic on the category of b-spaces of L. Waelbroeck [9]. To prove this, we shall
consider the nuclear b-space N as an union of Banach spaces NB , where each NB is isometrically iso-
morphic to the L∞-space c0 (i.e. the space of sequences which converge to 0). As a consequence, we will
deduce that if E is a b-space, F is a bornologically closed subspace of E, N a nuclear b-space and X is
a compact space then the b-spaces C(X, Nε(E/F )) and NεC(X, E/F ) are isomorphic. Finally, we will
show that if Y is a locally compact space that is countable at infinity then for any nuclear b-space N , the
b-spaces C(Y, Nε(E/F )) and NεC(Y, E/F ) are isomorphic.

To state our results, we need to fix some notations and recall some definitions.
1- Let E be a real or complex vector space, and let B be an absolutely convex set of E. Let EB be the

vector space generated by B, i.e. EB = ∪λ>0λB. The Minkowski functional of B is a semi-norm on EB .
It is a norm, if and only if B does not contain any nonzero subspace of E. The set B is completant if its
Minkowski functional is a Banach norm.

A bounded structure β on a vector space E is defined by a set of “bounded” subsets of E with the
following properties:

1) Every finite subset of E is bounded; 2) every union of two bounded subsets is bounded; 3) every
subset of a bounded subset is bounded; 4) a set homothetic to a bounded subset is bounded; 5) each bounded
subset is contained in a completant bounded subset.
A b-space (E, β) is a vector space E with a boundedness β. A subspace F of a b-space E is bornologically
closed if the subspace F ∩ EB is closed in EB for every completant bounded subset B of E.
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Given two b-spaces (E, βE) and (F, βF ), a linear mapping u : E −→ F is bounded, if it maps bounded
subsets of E into bounded subsets of F . The mapping u : E −→ F is bornologically surjective if for every
B′ ∈ βF , there exists B ∈ βE such that u(B) = B′.
We denote by b the category of b-spaces and bounded linear mappings. For more information about b-
spaces we refer the reader to [3] and [9].

2- The ε-product of two Banach spaces E and F is the Banach space EεF of linear mappings E′ −→ F
whose restrictions to the closed unit ball BE′ of E′ are continuous for the topology σ(E′, E). If Ei and Fi

are Banach spaces and ui : Ei −→ Fi are bounded linear mappings, i = 1, 2, the ε-product of u1 and u2 is
the bounded linear mapping u1εu2 : E1εE2 −→ F1εF2, f 7−→ u2 ◦ f ◦ u′1, where u′1 is the dual mapping
of u1. It is clear that u1εu2 is injective when u1 and u2 are injective. If G is a Banach space and F is a
closed subspace of a Banach space E, then GεF is a closed subspace of GεE. See [5] and [8] for more
information about the ε-product.

2 Main results

The ε-product of a b-space G and a Banach space E is the space GεE = ∪BGBεE, where B ranges over
the bounded completant subsets of the b-space G. On GεE we define the following bornology of b-space:
a subset C of GεE is bounded if there exists a completant bounded disk A of G such that C is bounded in
the Banach space GAεE. It is clear that if F is a bornologically closed subspace in G, the subspace FεE
is a bornologically closed subspace in GεE.

Now, if G and E are two b-spaces, the ε-product of G and E is the space GεE = ∪A,BGAεEB , where
A (resp. B) ranges over the bounded completant subsets of the b-space G (resp. E). We endow GεE with
the following bornology of b-space: a subset C of GεE is bounded if there exists a completant bounded
disk A of G (resp. B of E) such that C is bounded in the Banach space GAεEB .

Let E be a Banach space, F a closed subspace of E and (ϕi)i∈I a set of continuous linear func-
tionals on E such that F = {y ∈ E : for all i ∈ I, ϕi(y) = 0}. If G is a Banach space, then GεF =
{f ∈ GεE : for all i ∈ I, IdGεϕi (f) = 0} (indeed, f ∈ GεF iff for all i ∈ I and for all x ∈ G′,
ϕi (f (x)) = (ϕi ◦ f)(x) = 0 and ϕi ◦ f = (IdGεϕi)(f)).

As application, we have c0εE ' c0 (E), in fact, the Banach space C(N∞) is isomorphic to the space of
convergent sequences c, where N∞ is the Alexandroff compactification of N. As c0εE is isomorphic to a
closed subspace of cεE, containing the sequences of elements of E which converge to 0, and cεE ' c(E),
the subspace c0(E) is isomorphic to the subspace of c (E) containing the sequences of elements of E which
converge to 0.

In [6], W. Kaballo introduced the class of locally convex spaces which are ε-spaces. For us, a b-space
G is an εb-space if the bounded linear mapping IdGεu : GεE −→ GεF , f 7−→ u ◦ f is bornologically
surjective when u : E −→ F is a surjective bounded linear mapping between Banach spaces.

Recall that a Banach space E is an L∞,λ-space, λ ≥ 1, if and only if every finite-dimensional sub-
space F of E is contained in a finite-dimensional subspace F1 of E such that d(F1, l

∞
n ) ≤ λ, where

n = dim F1, l∞n is Kn (K = R or C) with the norm sup1≤i≤n |xi|, and d (X, Y ) = inf{
∥∥T

∥∥∥∥T−1
∥∥ :

T : X −→ Y isomorphism} is the Banach-Mazur distance of the Banach spaces X and Y . A Banach space
E is an L∞-space if it is an L∞,λ-space for some λ ≥ 1. For more information about L∞-spaces we refer
the reader to [7].

It is clear that any L∞-space is an εb-space, the ε-product of two εb-spaces is an εb-space and a
bornologically complemented subspace of an εb-space is εb-space.

Also, it is easy to show that a b-space G is an εb-space if and only if, for every bounded linear mapping
u : X −→ Y that is bornologically surjective, the bounded linear mapping IdGεu : GεX −→ GεY ,
f 7−→ u ◦ f is bornologically surjective, where X and Y are b-spaces. If G is an εb-space, the functor
Gε. : b −→ b is exact, and it follows that if E is a b-space and F is a bornologically closed subspace of E,
we have Gε(E/F ) = (GεE) / (GεF ).
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For examples of εb-spaces, if G is a nuclear b-space (i.e. every bounded completant subset B of G is
included in a bounded completant subset A of G such that the inclusion iAB : GB −→ GA is a nuclear
mapping), by [3], there exists a net (I,≤) and a base (B0,i)i∈I of the bornology of G such that GB0,i is
isometrically isomorphic to the Banach space c0 and G = ∪i∈IGB0,i . Since c0 is an L∞-space [7] and the
inductive limit is an exact functor on the category b [4], it follows that every nuclear b-space is an εb-space.

Recall from [1] that if X is a compact topological space and E is a b-space, we defined C (X, E) as the
b-space ∪BC (X, EB), where B ranges over the bounded completant subsets of E and C(X, EB) is the
space of continuous mappings from X into the Banach space EB .

Since the Banach space C (X) is an L∞-space [7], the functor C (X, ·) : Ban −→ Ban is exact [6]
and since the inductive limit is an exact functor on the category b [4], it follows that the functor C (X, ·) :
b −→ b is also exact as we showed this in [1]. This implies that, if X is a compact, E is a b-space and F
a bornologically closed subspace of E, then C(X, E/F ) = C(X, E)/C(X, F ).

Now, we are in position to prove our first result.

Theorem 1 Let X be a compact space, N a nuclear b-space and E a Banach space. Then the b-spaces
C (X, NεE) and NεC (X, E) are isomorphic.

PROOF. As the functor C (X, ·) : b −→ b is exact [1], the b-space C (X, NεE) is defined as the
union of the Banach spaces C (X, NiεE), where N = ∪i∈INi.

On the other hand, by the definition of the ε-product of a b-space by a Banach space, we have that
NεC (X, E) = ∪i(NiεC (X, E)).

First we shall prove that the spaces C (X, NiεE) and NiεC (X, E) are isomorphic. As each Ba-
nach space Ni is isometrically isomorphic to c0 [3], we shall construct an isomorphism C (X, c0εE) −→
c0εC (X, E). Since c0εE ' c0 (E) for all Banach spaces E, so we have to construct an isomorphism
C (X, c0 (E)) −→ c0 (C (X, E)).

Let f ∈ C (X, c0 (E)). For each x ∈ X, f (x) is a sequence (fn (x))n of elements of E. We have got
a sequence (fn)n of continuous functions X −→ E. Let us prove that this sequence is in Banach space
c0 (C (X, E)), i.e. it converges uniformly to 0 on X .

For all ε > 0, and for all x ∈ X , let Vx be an open neighbourhood of x such that for all x′ ∈ Vx,
we have ‖f(x)− f (x′)‖c0(E) ≤ ε. We cover X by a finite set of open subsets {Vx1 , . . . , Vxn}. For all
i ∈ {1, . . . , n}, (f (xi))i is a sequence of elements of E tending to 0. Thus there exists m ∈ N such that
for all i ∈ I and for all n > m, we have ‖fn (x)‖ ≤ ε. Clearly this implies that for all x ∈ X , and all
n > m, ‖fn (x)‖ ≤ 2ε.

We have a map C (X, c0 (E)) −→ c0(C(X, E)) and it is immediate that this mapping preserves the
norm. Let us show that it is surjective. Let (fn)n be a sequence of continuous functions X −→ E
which converges uniformly to 0 on X . We define a function X −→ c0 (E) by f (x) = (fn (x))n. It
remains to prove its continuity. First, we can find an integer m such that for all n > m, and for all x,
‖fn (x)‖ ≤ ε/2. Then for x0 ∈ X , we choose neighbourhoods V1, . . . , Vm−1 of x0 such that for all
x ∈ Vk, ‖fk (x)− fk (x0)‖ ≤ ε with k = 1, . . . ,m − 1. In the intersection of these neighbourhoods, we
get ‖f (x)− f (x0)‖c0(E) ≤ ε.

Thus for all i ∈ I , the Banach spaces C (X, NiεE) and NiεC (X, E) are isomorphic. If we apply the
functor inductive limit which is an exact functor on the category of b-spaces [4], we obtain the result. �

As consequences, we obtain the following results:

Corollary 1 Let X be a compact space, N a nuclear b-space and E a b-space. Then the b-spaces
C (X, NεE) and NεC (X, E) are isomorphic.

PROOF. In fact, by definition, we have C (X, NεE) = lim−→BC (X, NεEB). Since C (X, NεEB) =
NεC (X, EB), we deduce that

C (X, NεE) = lim−→B(NεC (X, EB)) = Nε(lim−→BC (X, EB)) = NεC (X, E) . �
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Corollary 2 Let X be a compact space, N a nuclear b-space, E a b-space and F a bornologically closed
subspace of E. Then the b-spaces C(X, Nε(E/F )) and NεC(X, E/F ) are isomorphic.

PROOF. Since N is an εb-space, we have Nε(E/F ) = (NεE) / (NεF ). On the other hand, the
Banach space C(X) is an L∞-space and it follows from [1], that

C(X, Nε(E/F )) = C(X, (NεE) / (NεF )) = C(X, NεE)/C(X, NεF )
= (NεC (X, E)) / (NεC (X, F )) = Nε(C(X, E)/C(X, F )) = NεC(X, E/F ). �

Recall from [3] that the bornological projective tensor product E⊗πb
F (resp. the bornological injective

tensor product E ⊗εb
F ) of two b-spaces E and F is defined as the b-space lim−→B,C(EB⊗̂πFC) (resp.

lim−→B,C(EB⊗̂εFC)), where B (resp. C) ranges over the bounded completant subsets of E (resp. F ), the
inductive limit is taken in the category b and EB⊗̂πFC (resp. EB⊗̂εFC) is the completion of the space
EB ⊗ FC with the projective tensor norm (resp. the injective tensor norm) given by the formula ‖z‖π =
inf {

∑n
k=1 ‖xk‖ ‖yk‖ : u =

∑n
k=1 xk ⊗ yk} (resp. ‖z‖ε = sup{|

∑n
k=1 x′ (xk) y′(yk)| : x′ ∈ BE′ , y′ ∈

BF ′}) where z =
∑n

k=1 xk ⊗ yk and BE′ , BF ′ are the closed unit balls of E′, F ′ respectively.

Note that the complete injective tensor product EB⊗̂εFC induces the same norm on EB ⊗ FC than the
ε-product EBεFC , moreover EB⊗̂εFC is a closed subspace of EBεFC . These two spaces are sometime
identical, in fact, the Banach space EB⊗̂εFC is isometrically isomorphic to EBεFC if EB or FC has the
approximation property.

Corollary 3 Let X be a compact space, N a nuclear b-space, E a b-space and F a bornologically closed
subspace of E. Then the b-spaces C(X, N ⊗πb

(E/F )) and N ⊗πb
C(X, E/F ) are isomorphic.

PROOF. Since N is a nuclear b-space, the functor Nε. is exact, and hence the b-spaces Nε(E/F )
and (NεE)/(NεF ) are naturally isomorphic. In other hand, it follows from [3, Theorem 2, p. 78], that
N⊗πb

(E/F ) and N⊗εb
(E/F ) are naturally isomorphic. Next, the b-spaces Nε(E/F ) and N⊗εb

(E/F )
are isomorphic because N has the approximation property. Finally, the result follows from Corollary 1 and
Corollary 2. �

Let (X, d) be a metric compact space and E be a Banach space. In [1], we defined the b-space C(X, E)e

as the space C(X, E) that we endow with the equicontinuous boundedness, i.e. a subset A of C(X, E) is
bounded if A is uniformly bounded and equicontinuous. We also showed that C (X)e εE = C (X, E)e.
The same result rest true when E is a b-space. In fact:

Proposition 1 Let (X, d) be a metric compact space and let E be a b-space. Then the b-spaces C (X)eεE
and C (X, E)e are isomorphic.

PROOF. By the definition of the ε-product of two b-spaces, we have C (X)eεE = ∪B(C (X)eεEB).
Since C (X, EB)e = C (X)eεEB and the functor C (X, ·)e : b −→ b is exact [1], we obtain that
∪BC (X, EB)e = C (X,∪BEB)e. If follows that C (X)eεE = C (X, E)e. �

Proposition 2 Let (X, d) be a metric compact space, N a nuclear b-space, E a b-space and F a
bornologically closed subspace of E, then the b-spaces C(X, Nε(E/F ))e and NεC(X, E/F )e are iso-
morphic.

PROOF. The functor C (X, ·)e : b −→ b is exact [1], then C(X, E/F )e = C(X, E)e/C(X, F )e. It
follows that

C(X, Nε(E/F ))e = C(X, NεE)e/C(X, NεF )e = C (X)eε(NεE)/C (X)eε(NεF )
= Nε(C (X)eεE)/Nε(C (X)eεF ) = Nε(C(X, E)e/C(X, F )e)
= NεC(X, E/F )e. �
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Finally, we will prove an analogue result of Theorem 1 for locally compact topological spaces X which
are countable at infinity.
Let (En)n be a family of b-spaces. We endow the direct product

∏∞
n=0 En, with the product boundedness

i.e. a subset B of
∏∞

n=0 En is bounded if pn(B) = {pn(x) : x ∈ B} is bounded in En for all n ∈ N,
where pm :

∏∞
n=0 En −→ Em is the canonical projection. It is clear that all the canonical projections

pm :
∏∞

n=0 En −→ Em are bounded whenever we endow the space
∏∞

n=0 En with the product bounded-
ness.

To prove the next Theorem (Theorem 2), we need to recall the following result which comes from [2,
Proposition 3.11].

Proposition 3 Let N be a nuclear b-space, and for all n ∈ N, let En be a b-space. Then the b-spaces
Nε(

∏∞
n=0 En) and

∏∞
n=0 (NεEn) are isomorphic.

Theorem 2 Let N be a nuclear b-space, E a b-space and U a locally compact space which is countable
at infinity. Then the b-spaces C (U,NεE) and NεC (U,E) are isomorphic.

PROOF. The space U is an union of a sequence of open sets Un, each relatively compact in the interior
of the following one. We consider the “disjoint union” V of the relatively compact sets Un. For any b-space
E, there exists a bounded linear mapping Ψ: C (U,E) −→ C (V,E), which maps a function f ∈ C (U,E)
onto its composition with the obvious mapping V −→ U .

We find next a bounded linear mapping Ψ′ : C (V,E) −→ C (U,E). The locally compact space U is
paracompact. We have a partition of the unity, (ϕn)n such that, sup p(ϕn) ⊂ U̇n for all n where U̇n is the
interior of Un. Then Ψ′ is defined by the formula Ψ′((fn)n) =

∑
n∈N ϕnfn.

The mapping Ψ′ is a left inverse of Ψ so it is bornologically surjective. Since the nuclear b-space N is
an εb-space, it follows that the bounded linear mapping IdNεΨ′ : NεC (V,E) −→ NεC (U,E) is borno-
logically surjective. There exists also a bornologically surjective mapping C (V,NεE) −→ C (U,NεE).

By the Proposition 3 and Corollary 2, NεC (U,E) ' Nε(
∏∞

n=0 C (Un, E)) '
∏∞

n=0 NεC (Un, E)
and C (U,NεE) '

∏∞
n=0 C (Un, NεE) '

∏∞
n=0 NεC (Un, E), we see that C (U,NεE) ' NεC (U,E).

Moreover, by this isomorphism, the kernel of the mapping NεC (V,E) −→ NεC (U,E) correspond to the
kernel of the mapping C (V,NεE) −→ C (U,NεE). �

Corollary 4 Let U be a locally compact space that is countable at infinity, N a nuclear b-space, E a b-
space and F a bornologically closed space of E. Then the b-spaces C(U,Nε(E/F )) and NεC(U,E/F )
are isomorphic.
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