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Spaces of Continuous Functions Taking Their Values in the
e-Product

Belmesnaoui Aqzzouz

Abstract. For a nuclear b-space N and a b-space E, we prove that if X is a compact space then the
b-spaces C' (X, NeE) and NeC (X, E) are isomorphic. Also the same result holds if X is a locally
compact space that is countable at infinity.

Espacios de funciones continuas con valores en el c-producto

Resumen. Para un b-espacio nuclear Ny un b-espacio E demostramos que si X es un espacio com-
pacto entonces los b-espacios C (X, NeE) y NeC (X, E) son isomorfos. El mismo resultado se verifica
también si X es un espacio localmente compacto que es numerable en el infinito.

1 Introduction and notations

We will show that if IV is a nuclear b-space and X is a compact space then the exact functors C' (X, Ne.)
and NeC (X, -) are isomorphic on the category of b-spaces of L. Waelbroeck [9]. To prove this, we shall
consider the nuclear b-space N as an union of Banach spaces Np, where each Np is isometrically iso-
morphic to the L..-space ¢y (i.e. the space of sequences which converge to 0). As a consequence, we will
deduce that if E is a b-space, F' is a bornologically closed subspace of E, N a nuclear b-space and X is
a compact space then the b-spaces C(X, Ne(E/F)) and NeC(X, E/F) are isomorphic. Finally, we will
show that if Y is a locally compact space that is countable at infinity then for any nuclear b-space N, the
b-spaces C(Y, Ne(E/F)) and NeC(Y, E/F) are isomorphic.

To state our results, we need to fix some notations and recall some definitions.

1- Let E be a real or complex vector space, and let B be an absolutely convex set of E. Let E'p be the
vector space generated by B, i.e. Ep = UxsoAB. The Minkowski functional of B is a semi-norm on Ep.
It is a norm, if and only if B does not contain any nonzero subspace of E. The set B is completant if its
Minkowski functional is a Banach norm.

A bounded structure 3 on a vector space E is defined by a set of “bounded” subsets of E with the
following properties:

1) Every finite subset of F is bounded; 2) every union of two bounded subsets is bounded; 3) every
subset of a bounded subset is bounded; 4) a set homothetic to a bounded subset is bounded; 5) each bounded
subset is contained in a completant bounded subset.

A b-space (E, () is a vector space E with a boundedness 3. A subspace F’ of a b-space E is bornologically
closed if the subspace F' N Ep is closed in E'p for every completant bounded subset B of E.
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Given two b-spaces (F, Og) and (F, 8r), a linear mapping u: E — F'is bounded, if it maps bounded
subsets of E into bounded subsets of F'. The mapping u: E — F' is bornologically surjective if for every
B’ € (B, there exists B € (g such that u(B) = B’.

We denote by b the category of b-spaces and bounded linear mappings. For more information about b-
spaces we refer the reader to [3] and [9].

2- The e-product of two Banach spaces F and F' is the Banach space E<F of linear mappings £/ — F
whose restrictions to the closed unit ball Bgs of E’ are continuous for the topology o(E’, E). If E; and F;
are Banach spaces and u; : I/; — F; are bounded linear mappings, 7 = 1, 2, the e-product of u; and us is
the bounded linear mapping ujcus: F1eEy — FieFy, f — ug o f o u, where u is the dual mapping
of uy. It is clear that ujeus is injective when uy and s are injective. If GG is a Banach space and I is a
closed subspace of a Banach space F, then GeF is a closed subspace of GeE. See [5] and [8] for more
information about the e-product.

2 Main results

The e-product of a b-space G and a Banach space F is the space Ge E = UgG e E, where B ranges over
the bounded completant subsets of the b-space G. On Ge E we define the following bornology of b-space:
a subset C' of GeFE is bounded if there exists a completant bounded disk A of G such that C' is bounded in
the Banach space G4cF. It is clear that if F’ is a bornologically closed subspace in G, the subspace FcE
is a bornologically closed subspace in GeE.

Now, if G and FE are two b-spaces, the e-product of G and FE is the space Ge £ = U4 pG acE g, where
A (resp. B) ranges over the bounded completant subsets of the b-space G (resp. E). We endow Ge E with
the following bornology of b-space: a subset C' of GeF is bounded if there exists a completant bounded
disk A of G (resp. B of E) such that C' is bounded in the Banach space G s4c F'p.

Let E be a Banach space, F' a closed subspace of E and (p;);cs a set of continuous linear func-
tionals on E such that F = {y € E :foralli € I, p;(y) = 0}. If G is a Banach space, then GeF =
{f € GeE :foralli € I,Idgey; (f) =0} (indeed, f € GeF iff for all ¢ € I and for all x € &,
¢i (f (@) = (pio f)(@) = Dand @, o f = (Idaeps) ().

As application, we have cpe E ~ ¢ (E), in fact, the Banach space C'(N,) is isomorphic to the space of
convergent sequences ¢, where N is the Alexandroff compactification of N. As coeE is isomorphic to a
closed subspace of ce E, containing the sequences of elements of £ which converge to 0, and ceFE ~ ¢(E),
the subspace ¢y (F) is isomorphic to the subspace of ¢ (E) containing the sequences of elements of £ which
converge to 0.

In [6], W. Kaballo introduced the class of locally convex spaces which are e-spaces. For us, a b-space
G is an eb-space if the bounded linear mapping Idgeu: GeE — GeF, f — w o f is bornologically
surjective when u: £ — F'is a surjective bounded linear mapping between Banach spaces.

Recall that a Banach space E is an L x-space, A > 1, if and only if every finite-dimensional sub-
space F' of F is contained in a finite-dimensional subspace F; of E such that d(F7,I5°) < A, where
n = dim Fy, [5° is K* (K = R or C) with the norm sup, <, ||, and d (X, Y) = inf{||T||[|T7"| :
T: X — Y isomorphism} is the Banach-Mazur distance of the Banach spaces X and Y. A Banach space
E'is an Lo-space if it is an L x-space for some A > 1. For more information about £-spaces we refer
the reader to [7].

It is clear that any L..-space is an cb-space, the e-product of two eb-spaces is an eb-space and a
bornologically complemented subspace of an eb-space is eb-space.

Also, it is easy to show that a b-space G is an eb-space if and only if, for every bounded linear mapping
u: X — Y that is bornologically surjective, the bounded linear mapping Idgeu: GeX — GeY,
f —— wo f is bornologically surjective, where X and Y are b-spaces. If GG is an eb-space, the functor
Ge.: b — b is exact, and it follows that if F is a b-space and F' is a bornologically closed subspace of F,
we have Ge(E/F) = (GeE) / (GeF).
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For examples of eb-spaces, if G is a nuclear b-space (i.e. every bounded completant subset B of G is
included in a bounded completant subset A of G such that the inclusion iy5: Gg — (G4 is a nuclear
mapping), by [3], there exists a net (I, <) and a base (B ;)ics of the bornology of G such that G, , is
isometrically isomorphic to the Banach space ¢y and G = U;c1Gp, ;. Since ¢ is an L-space [7] and the
inductive limit is an exact functor on the category b [4], it follows that every nuclear b-space is an eb-space.

Recall from [1] that if X is a compact topological space and F is a b-space, we defined C (X, E) as the
b-space UgC (X, Ep), where B ranges over the bounded completant subsets of E and C(X, Eg) is the
space of continuous mappings from X into the Banach space F.

Since the Banach space C' (X) is an L,-space [7], the functor C' (X, -) : Ban — Ban is exact [6]
and since the inductive limit is an exact functor on the category b [4], it follows that the functor C (X, -) :
b — b is also exact as we showed this in [1]. This implies that, if X is a compact, F is a b-space and F’
a bornologically closed subspace of E, then C(X,E/F) = C(X,E)/C(X, F).

Now, we are in position to prove our first result.

Theorem 1 Let X be a compact space, N a nuclear b-space and E a Banach space. Then the b-spaces
C (X, NeE) and NeC (X, E) are isomorphic.

PROOF. As the functor C'(X,-) : b — b is exact [1], the b-space C (X, NeFE) is defined as the
union of the Banach spaces C (X, N;eE), where N = U, N;.

On the other hand, by the definition of the e-product of a b-space by a Banach space, we have that
NeC (X, E) = U;(N;eC (X, E)).

First we shall prove that the spaces C (X, N;eE) and N;eC (X, E) are isomorphic. As each Ba-
nach space N; is isometrically isomorphic to ¢y [3], we shall construct an isomorphism C (X, coe E) —
coeC (X, E). Since coeE ~ ¢ (F) for all Banach spaces E, so we have to construct an isomorphism
C (X, 0 (E) — co (C (X, E)).

Let f € C (X, ¢y (F)). Foreach z € X, f (x) is a sequence (f,, ()),, of elements of E. We have got
a sequence ( fy,),, of continuous functions X — E. Let us prove that this sequence is in Banach space
¢o (C (X, E)), i.e. it converges uniformly to 0 on X.

For all ¢ > 0, and for all z € X, let V. be an open neighbourhood of z such that for all ' € V,
we have | f(z) — f (2')||.,(m) < & We cover X by a finite set of open subsets {V;,,..., Vs, }. For all
i€ {1,...,n}, (f (z;)); is a sequence of elements of E tending to 0. Thus there exists m € N such that
for all 4 € I and for all n > m, we have || f,, (z)|| < e. Clearly this implies that for all z € X, and all
n>m, || fn(2)] < 2.

We have a map C (X, ¢ (E)) — ¢o(C(X, E)) and it is immediate that this mapping preserves the
norm. Let us show that it is surjective. Let (f,), be a sequence of continuous functions X — E
which converges uniformly to 0 on X. We define a function X — cq (E) by f(z) = (fn (2)),. It
remains to prove its continuity. First, we can find an integer m such that for all n > m, and for all z,
| fn ()| < /2. Then for zyp € X, we choose neighbourhoods Vi, ..., V;,_1 of z such that for all
x € Vi, | fx () — frx (zo)]| < ewithk = 1,...,m — 1. In the intersection of these neighbourhoods, we
get [f (z) = f (@o)ll oo () < &

Thus for all ¢ € I, the Banach spaces C (X, N;eE) and N;eC (X, E) are isomorphic. If we apply the
functor inductive limit which is an exact functor on the category of b-spaces [4], we obtain the result. H

As consequences, we obtain the following results:

Corollary 1 Let X be a compact space, N a nuclear b-space and E a b-space. Then the b-spaces
C (X,NeFE) and NeC (X, E) are isomorphic.

PROOF. In fact, by definition, we have C' (X, NeE) = limpC (X, NeEp). Since C (X, NeEp) =
NeC (X, Ep), we deduce that

C (X,NeE) = limp(NeC (X, Ep)) = Ne(limpC (X, Ep)) = NeC (X, E).
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Corollary 2 Let X be a compact space, N a nuclear b-space, E a b-space and F' a bornologically closed
subspace of E. Then the b-spaces C(X, Ne(E/F)) and NeC (X, E/F) are isomorphic.

PROOF. Since N is an eb-space, we have Ne(E/F) = (NeE) /(NeF). On the other hand, the
Banach space C'(X) is an L,-space and it follows from [1], that

C(X,Ne(E/F)) = C(X, (N<E) / (NeF)) = C(X, NeE)/C(X, NeF)
= (NeC (X, E)) / (NeC (X, F)) = Ne(C(X, E)/C(X, F)) = NeC(X,E/F). ®

Recall from [3] that the bornological projective tensor product ¥®., F' (resp. the bornological injective
tensor product E ®., F') of two b-spaces E and F' is defined as the b-space @B,C(EB@MFC) (resp.
li_n>137c(EB®5Fc)), where B (resp. C') ranges over the bounded completant subsets of F (resp. F'), the
inductive limit is taken in the category b and E'p @ Fe (resp. E'p ®.F¢) is the completion of the space
Ep ® F¢ with the projective tensor norm (resp. the injective tensor norm) given by the formula ||z||, =
inf {370 ol lyell - w=3"5_; 2k @yi} (esp. |[2]l. = sup{[325_, 2’ (wx) y'(yw)| : 2’ € Ber,y' €
Bp:}) where z = ZZ=1 xr ® yr and Bg/, Bp: are the closed unit balls of E’, F” respectively.

Note that the complete injective tensor product Ep&,. F induces the same norm on Ep ® F( than the
e-product EpeFc, moreover B8R Fe is a closed subspace of EpeF. These two spaces are sometime
identical, in fact, the Banach space Ep ®Fo is isometrically isomorphic to EgeF¢ if Ep or F has the
approximation property.

Corollary 3 Let X be a compact space, N a nuclear b-space, E a b-space and F' a bornologically closed
subspace of E. Then the b-spaces C(X, N ®g, (E/F)) and N @, C(X, E/F) are isomorphic.

PROOF. Since N is a nuclear b-space, the functor Ne. is exact, and hence the b-spaces Ne(E/F)
and (NeE)/(NeF) are naturally isomorphic. In other hand, it follows from [3, Theorem 2, p. 78], that
N®y, (E/F)and N ®,, (E/F) are naturally isomorphic. Next, the b-spaces Ne(E/F) and N ®., (E/F)
are isomorphic because NV has the approximation property. Finally, the result follows from Corollary 1 and
Corollary 2. W

Let (X, d) be a metric compact space and F be a Banach space. In [1], we defined the b-space C(X, E).
as the space C'(X, F) that we endow with the equicontinuous boundedness, i.e. a subset A of C(X, E) is
bounded if A is uniformly bounded and equicontinuous. We also showed that C' (X),eE = C (X, E),.
The same result rest true when E is a b-space. In fact:

Proposition 1 Let (X, d) be a metric compact space and let E be a b-space. Then the b-spaces C' (X)) e E
and C (X, E), are isomorphic.

PROOF. By the definition of the e-product of two b-spaces, we have C' (X ) eE = Up(C (X)_ cER).
Since C' (X, Ep), = C(X).Ep and the functor C' (X,-),: b — b is exact [1], we obtain that
UgC (X,Ep), = C(X,UpER),. If follows that C' (X) eE = C(X,E),. A

Proposition 2 Ler (X,d) be a metric compact space, N a nuclear b-space, E a b-space and F a
bornologically closed subspace of E, then the b-spaces C(X, Ne(E/F)). and NeC(X, E/F). are iso-
morphic.

PROOF. The functor C' (X, ), : b — bisexact [1], then C(X,E/F). = C(X,E)./C(X,F).. It
follows that
C(X,Ne(E/F)). = C(X,NeE)./C(X,NeF). = C (X)_e(NeE)/C (X)_e(NeF)
= N&(C/(X),£E)/Ne(C (X),eF) = Ne(C(X, E)/C(X, F),)
= NeC(X,E/F).. 1
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Finally, we will prove an analogue result of Theorem 1 for locally compact topological spaces X which
are countable at infinity.
Let (E,), be a family of b-spaces. We endow the direct product []° ; E,,, with the product boundedness
i.e. a subset B of [['", E, is bounded if p,,(B) = {pn(z) : # € B} is bounded in E,, for all n € N,
where p,, : HZO:O FE, — E,, is the canonical projection. It is clear that all the canonical projections
DPm: HZC:O E, — FE,, are bounded whenever we endow the space HZO:O FE,, with the product bounded-
ness.

To prove the next Theorem (Theorem 2), we need to recall the following result which comes from [2,
Proposition 3.11].

Proposition 3 Let N be a nuclear b-space, and for all n € N, let E,, be a b-space. Then the b-spaces
Ne([12o En) and 1", (NeE,) are isomorphic.

n=0

Theorem 2 Let N be a nuclear b-space, E a b-space and U a locally compact space which is countable
at infinity. Then the b-spaces C (U, NeE) and NeC (U, E) are isomorphic.

PROOF. The space U is an union of a sequence of open sets U,,, each relatively compact in the interior
of the following one. We consider the “disjoint union” V' of the relatively compact sets U,,. For any b-space
E, there exists a bounded linear mapping ¥: C (U, E) — C (V, E), which maps a function f € C (U, E)
onto its composition with the obvious mapping V' — U.

We find next a bounded linear mapping ¥': C (V, E) — C (U, E). The locally compact space U is
paracompact. We have a partition of the unity, (,, ), such that, sup p(,,) C U, for all n where U, is the
interior of U,. Then ¥’ is defined by the formula W'((f,.),,) = >_,,cn @nfn-

The mapping W' is a left inverse of ¥ so it is bornologically surjective. Since the nuclear b-space N is
an eb-space, it follows that the bounded linear mapping Idye¥0’ : NeC (V, E) — NeC (U, E) is borno-
logically surjective. There exists also a bornologically surjective mapping C (V, NeE) — C (U, NeE).

By the Proposition 3 and Corollary 2, NeC (U, E) ~ Ne([][,",C (Uy, E)) ~ ]~ NeC (Un, E)
and C (U, NeE) ~ [[>_,C (U,,NeE) =[], , NeC (U, E), we see that C (U, NeE) ~ NeC (U, E).
Moreover, by this isomorphism, the kernel of the mapping NeC' (V, E) — NeC (U, E) correspond to the
kernel of the mapping C (V, NeE) — C (U, NecE). R

Corollary 4 Let U be a locally compact space that is countable at infinity, N a nuclear b-space, E a b-
space and F' a bornologically closed space of E. Then the b-spaces C(U, Ne(E/F)) and NeC(U, E/F)
are isomorphic.
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