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FINDING THE ROOTS OF POLYNOMIAL
EQUATIONS: AN ALGORITHM WITH
LINEAR COMMAND

Bernard BEAUZAMY

Abstract

We show how an old principle, due to Walsh (1922), can be
used in order to construct an algorithm which finds the roots of
polynomials with complex coefficients. This algorithm uses a linear
command. From the very first step, the zero is located inside a
disk, so several zeros can be searched at the same time.

0 Introduction

Our algorithm will rely on an an old principle, due to Walsh ([3], 1922),
which has not been employed as much as it should be. Indeed, “Walsh
contraction principle”, as we call it here, can be successfully employed
in order to derive, more simply and with quantitative improvements, all
known results about the zeros of a polynomial and those of its derivative,
such as Lucas’ Theorem, Grace’s Theorem, Laguerre’s Theorem and
many others. These consequences will be presented elsewhere. Here, we
concentrate on the search of the zeros.

The algorithm itself is, at this stage, purely theoretical: it works “in
principle”. It has been implemented, but has not been tested against
other algorithms. A lot of work remains to be done, in a more numerical
context, trying to find the situations in which a particular algorithm
(including this one) does not work well, or, on the contrary, behaves
satisfactorily. We thought it necessary to present first the theory.

In a first section, before we describe the algorithm, we give the state-
ment and the proof of Walsh’s principle [3].
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1 Walsh’s contraction principle

Recall that a (closed) circular region is either a (closed) disk, or a (closed)

half-plane, or the (closed) exterior of a disk. Any of the three can be
az+b

cz+d’

transformed into one of the two others by a suitable map z —
ad — be # 0.

These maps were called “linear” by Walsh ; they are now called
“bilinear” or “homographic”. They are indeed linear if one uses homo-
geneous coordinates: if z = z; /29, then the new coordinates are Z; =
az) + bza, Z3 = cz; + dz;. Such homogeneous coordinates are useful, in
order to pass from a one variable polynomial P(z) = Y 7 a;2’ to the asso-
ciated two-variable homogeneous polynomial P(z;,z) = 3.7 ajz{zz =,
The correspondence between both polynomials and between both sys-
tems of variables will be used several times in the sequel.

Theorem 1. (J.L. Walsh). Let ¢(z1,...,2,) be a polynomial in n
variables, with the following properties :

@ has degree 1 with respect to each variable,

@ 1s symmetric with respect to the variables (that is, ¢ in invariant
under permutation of the variables).

Let D be a circular region and assume that in D there are points
(z15...,2n) such that

@(21,...,2n) = 0.

Then there is in D a point z such that

P(z,...,2) = 0.

Proof. The proof we give follows the original one, with only slight im-
provements, but a more modern terminology. We may restrict ourselves
to the case when D is a disk, for any circular region can be transformed
into a disk by a suitable homographic map, which will not modify the
properties of ¢.

The key to the proof is the following proposition :

Proposition 2. Let a, b, ¢ be three complex numbers. We consider the
complex numbers z = (z1,2;) (in homogeneous coordinates) solutions of
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the equation
azi + 2bz1zy + c2z5 = 0. (1)

Let 2' = (21,25), 2" = (2{,25) be the two solutions of (1). Let also
u = (u1,uz), v = (v1,v2) be two complez numbers, satisfying

auyvy + b(uyve + ugvy) + cuguy = 0. (2)

"

Then the four points z', u, 2", v are on the same circle (maybe

degenerate) and in this order.

Proof of Proposition 2. General case: b2 —ac # 0. We define a linear
transformation of homogeneous coordinates, by

Zy = az + Bz, Zy = yz1 + 02s.

We will see that, by a suitable choice of a, 8, v, 6, aé — By # 0, (1)
becomes Z? = Z2 and (2) becomes U, V; = U, V.

Indeed, Z7 = Z2 is equivalent to
(az1 + B2)? = (y21 + 622)7,
that is
(@® =)z} + 2(af — ¥0)z122 + (B% — 6%)22 = 0,
and U1V} = U,V; is equivalent to
(auy + Buz)(awy + PBra) = (yur + dug)(yvy + dvs),
or
(@ = ¥*)ugvy + (@B — 78) (urvz + uzv1) + (% — 6%)ugvy = 0.
So we take a, 3, v, 4 so that
a? — 4% = aq, af -5 = b, p*2-6% = ¢

and such a choice of a, 3, v, § with ad — By # 0 always exists, no matter
what are the values of a, b, ¢, when b? — ac # 0.
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We now consider the complex numbers z', 2", solutions of
2 = 2, (3)
and two complex numbers u, v satisfying
U1t =l Uusva, (4)

and we will show that 2’, u, 2", v are on the same circle, in this order.
3 1

Let z) = & +1m1, 22 = & +in2, where &y, 1, &, 72 € IR.
A circle passing through 2 = 1 and z = —1 is of the form

lz—diA? = 1+ (AeIR),
or, in homogeneous coordinates :
|21 —idz* = (1+2?) |22
In homogeneous real coordinates, this gives :
(61 +2m)* + (m — M2)® = & +m5 + 22 & + )2 n},
or

& +nf + 2XM(Eme — mé2) = & + . (5)

This equation in invariant if we exchange the indexes 1 and 2. Therefore,
if it is satisfied by u, it is also satisfied by v, if uv = 1. The order of
points is clear, since if uv = 1, arg u = —arg v.

-Now, let’s look at the special cases where b? = ac.

First, if b # 0 (so a # 0 and ¢ # 0), (1) becomes az; + bzy = 0, and
(2) becomes (au; + buy)(avy +bvg) = 0. So 2z’ = 2" and either u or v (or
both) coincide with 2z’ and 2".

If =0, and a = 0 but ¢ # 0, (1) becomes z; = 0 and (2) becomes
ugvp = 0, so 2’ = 2" = oo and either u or v is co.

Ifb=0,a#0,c=0,(1)isz2=0, (2)isuv; =0,50 2’ = 2" =0
and u or v is 0.

In all these cases, the line passing through u = 2’ = 2" and v (or by
v =2z = z" and u) meets our request.
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Lemma 3. Let 2/, 2", u, v be as in the assumptions of Proposition 2.
Any circular region containing both u and v must contain either z' or

z.

Proof. This is obvious in the special cases. In the general case, by
the previous transformation, we reduce ourselves to the problem: Any
closed disk containing both z and 1/z must contain either 1 or —1. But
since —1, 2, 1, 1/z are on the same circle, in this order, this is obvious.

For u, v, u # v, satisfying (2), we have seen that there is a well-
defined circle, passing through the four points u, v and the two solutions
of (1). If u moves on this circle in one direction, v moves in the other
(still keeping (2) satisfied) and both points meet either at 2’ or at 2”.

This circle, along which both u, v can move, will be called their
“circle of indifference” (it may be degenerate).

We now prove Walsh’s theorem. Let D be a circular region (it is
enough to consider a closed disk) and z1, ..., 2, € D, with ¢(z, . .. e
0. Let Do C D be the smallest closed disk for which there exist points
z) ..., %, € Do, with ¢(z],...,2,) = 0. We are going to show that D,
is reduced to a single point.

We assume that Dy has non-empty interior, and we will reach a
contradiction.

Let Cy be the circle, boundary of Dy. We consider several cases :

1) If one of the 2, say 2}, is not on Cp, the indifference circle of
the pair (2,25) cannot be Cyp. We consider all pairs (2},2}) for which
the second point z] is on Cy (this must happen for at least one point,
otherwise Do would not be minimal). Say for instance that 2, € C,.
Then we can move both 2] and 2} on their indifference circle, so that 24
is now in Df (the interior of Dy) and 2} remains inside this interior (this
is possible because the indifference circle of the pair is precisely not Cp).
We proceed the same way with the new 2{ and 2} (if 23 € Cp) ; we omit
the pairs (21, 2;) for which z; € D). When we finish, all points are in
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the interior DY, and Dy was not minimal (fig.1).

Figure 1

B ‘5 !
2
Figure 2

2) We assume now that all points 2}, are on Cj. If for some pair, say
(21, #4), the indifference circle is not Cp, then both points can be moved
on this indifference circle, so as to get inside DY, and we are back to the
situation of 1). So we can restrict ourselves, now, to the case where all
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points are on Cy, and moreover all pairs have Cy as indifference circle
(at this stage of the construction, or at later stages).

Let now Ly be the smallest closed arc (in length) on Cp, containing
all points z{,...,2}, (Lo is simply the complement of the largest open
arc between two consecutive points). Let A, B € Cj be the endpoints
of Ly. Of course, some of the points z; are in A (say 2}, 23, ...), some
are in B (say zp, 2;,_;, ... ). We take these points two by two : 2] with
z], to start with, and move them inside Ly. This is possible, since Cj is
precisely the indifference circle of (21,2;,). When we are done with this
pair, we pass to the next one, (2}, z/,_,), and so on. When we finish, at
least one of the points A or B will be free from all 2}, and we see that
Ly was not minimal (see fig. 2). This contradiction finishes the proof.

As we just saw, the entire proof relies on a manipulation of pairs,
playing with points two by two, and this is why the induction procedure
is rather complicated.

So a natural question is : can’t we take the n points at once, and
“shrink” them, still staying inside the given disk D ? The answer is
that such a manipulation is impossible in general. There are cases where
manipulating three points at the same time obliges us to leave D. Indeed
consider

(p(zl, z2, Z3) = 8 z12923 — 3(2122 + 2923 + 232:1) + 2(31 + 29 + 23) - 2.

The equationy = 0 is satisfied for z; = 20 =0, 23 = 1.

Take now 2z = 29 = =z, 23 = y, and let D be the disk with diameter
[0,1]. Then no manipulation of z or of y, satisfying ¢(z,z,y) = 0, can
leave them both in D. Indeed,

5z3 z3e(z)
(z+1)?  (z+1)2[

1 1 3
y—z= = |z — € ;Z— 0,
ly-31 = slz+1° 1 -0 0

s0 to decrease |y — §| means to decrease |z + 1|. But one cannot decrease
at the same time |z — | and |z + 1|, starting at = = 0.

The construction of this example will become clear when we study
the algorithm itself.
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2 Searching for the solutions of polynomial equa-
tions: The theory

We start with an n-degree polynomial in one variable, with complex
coefficients

Plz) = %4 @mi2% Yaou-dape® + % ap, (1)

and we want to solve the equation P(z) = 0.

First, from P(z), we construct a polynomial P(z,,...,z,) in n vari-
ables, symmetric, and of degree 1 with respect to each variable. More-
over, P(z,...,z) = P(z). This polynomial is defined by

P(zy,...,2p) =
Gn-—1 o s .
Ty Tp + =5 Z:il{...(_in__l i, Tin-1

and Walsh’s principle tells us that in any disk containing a n-tuple
(z1,...,T,) satisfying

P(z1,...,7n) = 0 (2)

there is a z satisfying (1), that is a solution of the polynomial equation.

We will take the first n — 1 variables at the same place, say z; =
“++ = 2p-1 = %, and the last one, say z, =y, will be deduced from (2).
This way, the dependence in y will be linear, and we will obtain what
we call a “linear command”. With this choice of points, (2) becomes :

ety ot (et (et y) ok
(aﬁkj ((ngl)xk + (2:})3}":_1 y) e +a0 = O'
k

or
xn—l v+ ann—l (mn—l 4 (n = l)In—2 y)

oo % ((n—k)xk—l—kxk'l y) 4+ 4ay = 0,
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that is

n n
(Z kakmkvl)y + Z(n — k)agz® = 0, (4)
k=0 0
n n n
(Z kakxk'l)y = —n Z axz* + Z kapz®,
k=0 0 0

which can be written
nP(z)+ (y—z)P'(z) = 0 (5)
and means that
P (ysm) = 0,

where Pj(y,x) is the polar derivative of P at the point y (recall that
this polar derivative is defined by

Pi(y,z) = nP(z)+ (y — 2)P'(2),

see Marden [2, p. 49] and Beauzamy-Dégot [1]).
If P'(z) # 0, we obtain the equation
_ P(z)
y =z—n Pa) (6)
Remark. Once again, equations (4), (5), (6) are perhaps better un-
derstood if we use the homogeneous two-variable polynomial associated
with P. Indeed, let

k_n—k

P(zy,29) = 2] +an— m’{‘_lzg+---+ak 1Ty 4+ apzy.

Then, let z = z1/z2, y = y1/y2 be homogeneous coordinates. We obtain

oP oP
1 o (z1,22) + y2 o (z1;32) =0, (7)

which is another expression of the polar derivative (see [1]).

We obtain easily a preliminary information on the location of the
zeros of P:

Proposition 4. Let z be any point such that P'(z) # 0, and let y =
z — nP(z)/P'(z). Then the closed disk of diameter [z,y] contains at
least one zero of P.
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Proof. This is a just a consequence of Walsh’s principle.

Of course, if the initial point z satisfies P'(z) = 0, we change it for
another one (recall that the zeros of P’ are called “critical points” of P
by Walsh [3]).

We now aim at decreasing the distance [z —y|, in order to, eventually,
satisfy z = y. For this, we replace z by z + dz, y by y + dy. Equation
(6) gives, by differentiation :

12 1
dy = (l_nﬂ

() ) ®

so we see that the increment dy, applied to y, depends linearly on the
command dz (thus justifying our title).

We may meet two situations : either P"?(z) — P(z)P"(z) # 0 (then
z will be called a regular point), or P%(z) — P(z)P"(z) = 0 (then z is
a singular point, or as we will prefer later, a point of multiple choices).
Note that P'2— PP" is a polynomial of degree 2n — 2, so there are 2n — 2
singular points in the plane.

a) If we are at a regular point, P”?(z) — P(z)P"(z) # 0, and

P?2(z) — P(z)P"(z)

(y+dy) = (z+dze) = y—z—n P72(0) dz.
We write P(z)
T
F(z) = W’

P?(z) — P(z)P"(z)

pr2 (:C) !
and we let 0 = Arg F'(z), 6, = Arg (y—z). We will choose the increment
dz in such a way that

Fl(z) =

ly—2—n F'(z) da| < |y - . (9)

This is the case if y — z and nF’'(z)dz are on the same line, in the same
direction, that is
6 = 0+ Arg (dz),
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or

Arg (dz) = 6, — 6. (10)

Then (9) holds as soon as |dz| is small enough ; a precise value can be
derived from Taylor formula, as follows.

With z' = z + dz, and the argument 9 of dz fixed as explained
earlier, we have :
' 1 ' ' (It = w)Q "
F(@) = ——(y-2)+ (@ —2)F(z) + ———F'(c)
for some ¢ on the segment [z, z'].
Therefore, if dz = § e*¥,

1 52
FE)| < 1=~y =2) + @ - 2)F'@)] + SIF ()
and with M; = sup{|F"(z +n)|; [n| < 6},
— 52
PE) < L2 g1 @) + 2
n 2
and this is smaller than |y — z|/n as soon as -
5M; < 2|F'(z)|.
A precise bound depends on Mjs. In practice, we will take

_ ly—=
kel = P =

b) If we are at a singular point, the first derivative of F' is zero. This
means that, in the first order of approximation, |y —z| does not change,
no matter in which direction £ moves.

Let’s first consider an example : P(z) = 22 + 1, P'(2) = 22, F(z) =
z? +1 2 —1

———— .'=
5 ,and F 522
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So the point z = 1, giving y = —1 (since zy = —1), is a singular
point, or more exactly, a point of multiple choices :

34

32

Figure 3

You may choose to move upwards (in order to catch z) and y will
move accordingly, or downwards, and y will do the same: If z = €°,
y=e e,

It should be understood on this example that singular points are not
bad points. There are places at which one has to make a choice ; they
are, in some sense, boundaries between basins of attraction associated
with the zeros. The easiest way to get out of the ambiguity would be
to make a small move at random, in any direction, but there are better
ways, as we will now see.

Lemma 5. A point ¢ such that

Fliz) = F'(z) = --- = F®(z) = 0

satisfies
P’(m) B P"(z) 3 o P(k+l)($) o
P(zy Pz PW(z) (12)
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Proof of Lemma 5. If, at the point z, F' is “flat at the order k”, that

is satisfies F' = ... = F(k) =0, so is 1/F = P'/P For k = 1, we get :
PH P." Pl Pﬂ' P."
! RS SO < - R L

and since we are at a point where P'(z) # 0, (12) follows. Now, in (13),

all terms are sums or products of terms of the form -5.—, and this will

be preserved under derivation. When computing F*) we get only one
plk+1) pk)

pk)  pk-1)°
k — 1, all other terms disappear, and so this one must be zero. This

proves the lemma.

term of the form If we assume (12) up to the order

So, since we are at a point where F'(z) # 0, we must have k < n,
and one of the derivatives F'(z),..., F"~(z) must be # 0.

Say for instance that F”(z) # 0. Then, from
y = z—n F(z),
we deduce that, for the new positions z + dz, y + dy :

(dz)?

=L F'(2) (14)

(y+dy) —(z+dz)~y—z—n

and we must take the argument of dz in such a way that
Arg (y—z) = Arg(dz)® + Arg F"(z),

that is 3
Arg (dz) = 5 (91 — Arg F"(w)) (15)

and |dz| small enough so that (14) holds. In practice :

[ 2ly-n|\?
lde] = (nIF”(x)i) ‘

A more geometrical method can be taken. If F'(z) = 0 but F"'(z) #
0, F' is an analytic function which, locally, multiplies the angles by a
factor 2 (if F' # 0, F is conformal and preserves the angles).
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Take any straight line passing through z (say for instance the parallel
to the z axis) and the four directions 8 = 0,0 = n/4, 0 = n /2, 0 = 3« /4.
Their image is a cross with angles /2.

A
N

f

N
N

Figure 4

So at least one of them must enter the disk D(0,|F(z)|). For more
precision, one may wish to consider eight directions instead of four, since
then one of them will point more sharply towards the center of the disk.

If F'(z) = F"(z) = 0, but F"(z) # 0, one needs four directions
(resp 8), but this time in a sector of angle 27 /3, since angles will be
multiplied by 3. If F'(z) = --- = F(¥)(g) = 0, F(+1)(z) # 0, one needs
four directions (resp. 8) in any sector of angle 27 /(k + 1).

So one can avoid to compute any derivative at all (including F') :
divide a circle around z in n sectors of angle 2%’, and take four equi-
distributed directions in each (or, more simply, take 4n directions on
the circle, with angles equal to 5-). Then for at least one of them,
|y — z| will diminish.

In all cases, we see that we can move z in such a way that |y — z|
decreases (much more slowly for a singular point than for a regular point,
though). Repeating the procedure, we finally obtain ¥y = z, that is a
root is found.

3 Staying in the original disk

In the first step, when y is computed from z by (6), we know that there
is a root of P in the disk of diameter [z,y]. However, the way we move
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z, in later stages, may very well take us outside this disk, so we may end
up on another root than the one originally located. Usually, this has
no importance, for people want to find a root, and do not care about a
specific disk.

However, it may be useful to keep this extra information in mind.
It may be the case, for instance, if we try to locate several roots at the
same time (using parallel machines): If we can locate disjoint disks D;,
Dy, ...at the beginning and if we are sure that each procedure stays in
the corresponding disk, we will end up with distinct roots.

So let’s see if we can modify the algorithm 50 as to stay in the original
disk of diameter [z,y].

a) Assume first that z is a regular point. The set of directions dz
for which = will remain in the disk is the half plane H,, tangent to the
disk at z.

J

H 4

pa
o

N\

NSANN

Figure 5

The set of directions dy for which y will remain in the disk is the
half plane Hj, tangent to the disk at y.
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Now, dy is obtained from dz by formula (8), so by a rotation of
directions. This means that Hj is the image of a half-plane H| passing
through z. Usually, H; and Hj are not equal (both lines intersect at z)
and so, if we take dz in the cone limited by H; and H{, both z and y
will move into the disk (and thus |y — z| will decrease).

b) The only case where this construction does not work is when
dy = dz, that is z is a singular point.

Then we will see that, already for a polynomial of degree 3, one
cannot usually stay in a given disk. The example we now detail was
already mentioned in §1.

Let P = z°+az?+bz+c. In symmetrized form, we have the equation

a b
T1T2T3 + 3 ($1$2 + ToT3 + x;;:::l) + 3 (a:l + zo + xg) +c¢ = 0. (16)

Taking z) = z9 = z, 3 = y yields :
2 & B b
;-:y+§(ac +2xy)+§{2m+y)-+-c=0. (17)
Let’s say we want y = 1 for z = 0. For this, we need

b = -3¢ (18)

Now P2(0) — P(0)P"(0) = b% — 2ac = 9¢? — 2ac, so 0 will be a singular
point if
b
=3¢

In this case, our polynomial P can be written :
3.9 o
P =z +§ cz® —3cz +c.
If we write y = z — nF(z) = z + ¢(z), we choose ¢ so that ¢”(0) = 1.
A simple computation gives
2+ 9c

©"(0) = P so ¢ = —1/4. (19)

Taylor expansion at z = 0 gives :

_ 1 2 _ 5z3 z3e(z)
v=g =g letl) (1 @+ @+ D)

2 2

2), e(z) 20, =0
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and so
523 z3e(z)

~ + .
(z+1)2  (z+1)2
Staying in the disk means that |z —1/2| and |y — 1/2| must decrease (or

remain the same). But the above formula means that both |z —1/2| and
|z + 1| should decrease, starting at z = 0, and this is impossible.

(20)

1 1 g
o 12 [1
ly—35l = 5 lz+1

So here, in order to decrease |y — z|, we have to leave the circle (at
least for one of the points). But of course the motion may be arbitrarily
small, and this pathological phenomenon will occur only at singular
points, that is at 2n — 2 isolated points. So we can conclude that the
algorithm will find a zero in any larger disk : if we start with points
Tg, Yo, and fix some € > 0, we can build the algorithm (with small
deplacement around singular points) in such a way that it finds the root
in the disk of center (zo + y0)/2, and radius |zo — yo| + €.

The algorithm will depend on €, and the smaller ¢ is, the shorter
some deplacements will be. Therefore, the algorithm will take longer to
converge.

4 Practical implementation of the algorithm

Let P = ag+ajz+---+an2z" be a polynomial with complex coefficients,
P’ its derivative. Let € > 0 be a prescribed accuracy.

1. Start at the point £ = —a,_;/an, which is the barycenter of the
Zeros.
- If P'(z) =0 and P(z) =0, z is a root.

~-If P(z) =0 and P(z) # 0, change z. Consider for instance one of
the n points z + e*™%/" k=1,... n.

P(z)

———. Then we know that there is a zero in
P'(z)

2. Computey =z —n
the disk of diameter [z, y].

3. Let F = P/P'. Compute F'(z).

—If F'(z) # 0, go to step 4.

- If F'(z) =0, go to step 7.
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4. If F'(z) # 0, write nF’(z) using polar coordinates :

n F'(z) =p e’

Let 6, = Arg (y — z).
5. Define h € € by the properties :

Arg h=6, -6
_ _ly—=
Il = max(p,4)

6. Replace z + h by z, compute the new position of y using step
2. Check that |y — z| has decreased. If not do step 5 again, but with A
replaced by h/2 (repeat this step enough times, so that |y — z| actually
decreases : this will happen when A is small enough).

7. If F'(z) = 0, compute F"(z).
~If F"(z) # 0, write nF"(z) = pe'®. Define h by

Arg h = %(61 —0)
] 2ly—g|
A=\ max(p, 9

(If F"(x) =0, go to F™ ...).

8. Replace z + h by z, compute the new position of y using step 2.
Check that |y — z| has decreased. If not, do step 7 again, but with A
replaced by h/2 ; repeat this step enough times.

9. Repeat the procedure, until |y — z| < ¢, the prescribed accuracy.

Remarks.

| P ()]
|P'|

at a point where P’ # 0, we are certain that the algorithm will never

converge to a zero of P’ (and, in fact, it will avoid them) unless a zero

of P' is also a zero of P (that is a multiple zero of P).

1. Since the quotient

can only decrease, and since we started
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2. There is some formal similarity with Newton’s method : if z, = z,
then in Newton’s method : z,4; = y. But he we do not jump from z to
y, we move them so as to get them closer to each other.

3. To decide to jump from z to (z + y)/2 may be a very bad idea :
f P=zz+1,z=1 9= -1, then 2’ = (z +y)/2 = 0 and the
corresponding 3’ would be oo.

4. In some cases, y may not move when z does. This may happen
locally, when dy = 0, and this means that (1 — n)P?2 + nPP" = 0 at
this point 2. Or it may happen globally, but only when P is of the form
(z — A)%. None of these cases prevents the algorithm from working : z
gets closer to y and y does not move.

5. When a first z is chosen and y is returned, one more information is
obtained, namely that there is a root outside the open disk of diameter
[z,y]. Indeed, this outside is itself a circular region, which contains both
z and y so must contain a root, by Walsh’s principle. Therefore, we have
the following situation (at any stage of the algorithm): Either there is a
root on the boundary circle, or there is a root inside the open disk and
a root outside the closed disk.
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