(2000) vol. XIII, num. 1, 85-109 http://dx.doi.org/10.5209/rev REMA.2000.v13.n1.17091

TREE STRUCTURE ON THE SET OF MULTIPLICATIVE SEMI-NORMS OF KRASNER ALGEBRAS H(D)

K. BOUSSAF, N. MAÏNETTI and M. HEMDAOUI

Abstract

Let K be an algebraically closed field, complete for an ultrametric absolute value, let D be an infinite subset of \mathbb{K} and let H(D) be the set of analytic elements on D [7]. We denote by $\operatorname{Mult}(H(D), \mathcal{U}_D)$ the set of semi-norms ψ of the K-vector space H(D) which are continuous with respect to the topology of uniform convergence on D and wich satisfy further $\psi(fg) = \psi(f)\psi(g)$ whenever $f, g \in H(D)$ such that $fg \in H(D)$. This set is provided with the topology of simple convergence. By the way of a metric topology thinner than the simple convergence, we establish the equivalence between the connectedness of $Mult(H(D), \mathcal{U}_D)$, the arc-connectedness of $\operatorname{Mult}(H(D), \mathcal{U}_D)$ and the infraconnectedness of D. This generalizes a result of Berkovich given on affinoid algebras [2]. Next, we study the filter of neighbourhoods of an element of $Mult(H(D), \mathcal{U}_D)$, and we give a condition on the field K such that this filter admits a countable basis. We also prove the local arc-connectedness of $\operatorname{Mult}(H(D), \mathcal{U}_D)$ when D is infraconnected. Finally, we study the metrizability of the topology of simple convergence on $\operatorname{Mult}(H(D), \mathcal{U}_D)$ and we give some conditions to have an equivalence with the metric topology defined above. The fundamental tool in this survey consists of circular filters.

Throughout this paper, \mathbb{K} will denote an algebraically closed field which is complete for a non-trivial ultrametric absolute value denoted by $|\cdot|$. We also denote by $|\cdot|_{\infty}$ the classical absolute value of \mathbb{R} .

1 Preliminaries

Definitions and notation: Let $a \in \mathbb{K}$ and r, r' > 0 with r < r'. We

1991 Mathematics Subject Classification: Primary: 46S10, Secondary: 11Q25. Servicio de Publicaciones. Universidad Complutense. Madrid, 2000

denote by d(a,r) the circumferenced disk $\{x \in \mathbb{K} \mid |a-x| \leq r\}$, by $d(a,r^-)$ the non-circumferenced disk $\{x \in \mathbb{K} \mid |a-x| < r\}$, by C(a,r) the circle $\{x \in \mathbb{K} \mid |a-x| = r\}$, by $\Gamma(a,r,r')$ the non-circumferenced annulus $\{x \in \mathbb{K} \mid r < |a-x| < r'\}$, and by $\Delta(a,r,r')$ the circumferenced annulus $\{x \in \mathbb{K} \mid r \leq |a-x| \leq r'\}$. We put $|\mathbb{K}| = \{|x| \mid x \in \mathbb{K}\}$ and we denote by \mathbb{K} the residue class field $d(0,1)/d(0,1^-)$. The field \mathbb{K} will be said to be weakly valued if both $|\mathbb{K}|$ and \mathbb{K} are countable. Else \mathbb{K} will be said to be strongly valued.

In any topological space E, the closure of a subset A is denoted by \overline{A} , and the interior is denoted by \mathring{A} .

Let D be an infinite subset of \mathbb{K} . We denote by \widetilde{D} the smallest circumferenced disk which contains D. We call holes of D the maximal non-circumferenced disks of $\widetilde{D} \setminus \overline{D}$. The set of holes of D forms a partition of $\widetilde{D} \setminus \overline{D}$, [7]. We write R(D) the \mathbb{K} -subalgebra of \mathbb{K}^D of the rational functions with no poles in D. We denote by H(D) the completion of R(D) for the topology \mathcal{U}_D of uniform convergence on D. The elements of H(D) are called the analytic elements on D [4], [7].

We denote by \mathcal{A} the set of the $D \subset \mathbb{K}$ such that H(D) is a \mathbb{K} -algebra. It is known that $D \in \mathcal{A}$ if and only if $\overline{D} \setminus D \subset \mathring{\overline{D}}$ and $\widetilde{D} \setminus \overline{D}$ is bounded [5, Th. III.6]).

Let $D \subset \mathbb{K}$. Then D is said to be infraconnected if, for all $a \in D$, the set $\{|x-a|; x \in \mathbb{K}\}$ is an interval of \mathbb{R} , [4], [5] and [7]. A closed bounded infraconnected set B in \mathbb{K} is said to be affinoid if it only admits finitely many holes, if their diameters belong to $|\mathbb{K}|$ and if diam $(B) \in |\mathbb{K}|$. More generally, a bounded set D in \mathbb{K} will be said to be affinoid if it is the union of finitely many closed infraconnected affinoids [8].

Remark. It is known that the intersection of two infraconnected affinoids is always an infraconnected affinoid [8]. But it is known that the intersection of two infraconnected sets may be a non-infraconnected subset of K. However, we have the following lemma.

Lemma 1.1 Let D be infraconnected and B be an infraconnected affinoid. Then $D \cap B$ is infraconnected.

Proof. We suppose that $D \cap B$ is not infraconnected. Then, there exist $a, b \in D \cap B$ and $r_1, r_2 \in \mathbb{R}$ with $0 < r_1 < r_2 < |a - b|$ such that $\Gamma(a, r_1, r_2) \cap B \cap D = \emptyset$.

Since B is an infraconnected affinoid, there only exist finitely many

 $\rho \in]0, |a-b|[$ such that the circle $C(a, \rho)$ contains holes of B. So, clearly there do exist ρ_1 and ρ_2 such that $r_1 < \rho_1 < \rho_2 < r_2$ and such that $\Gamma(a, \rho_1, \rho_2) \subset B$. Since D is infraconnected, then $\Gamma(a, \rho_1, \rho_2) \cap D \neq \emptyset$. This contradicts the hypothesis $\Gamma(a, r_1, r_2) \cap B \cap D = \emptyset$.

Definitions. A sequence $(a_n)_{n\in\mathbb{N}}$ in \mathbb{K} is said to be an increasing distances sequence (resp. a decreasing distances sequence) if the sequence $|a_{n+1} - a_n|$ is strictly increasing (resp. decreasing) and has a limit $l \in \mathbb{R}^*_+$.

A sequence $(a_n)_{n\in\mathbb{N}}$ is said to be a monotonous distances sequence if it is either an increasing distances sequence or a decreasing distances sequence.

A sequence $(a_n)_{n\in\mathbb{N}}$ in \mathbb{K} is said to be an equal distances sequence if $|a_n - a_m| = |a_m - a_q|$ whenever $n, m, q \in \mathbb{N}$ such that $n \neq m \neq q$.

We call a decreasing filter of diameter r on \mathbb{K} a filter \mathcal{G} on \mathbb{K} that admits for basis a sequence $(D_n)_{n\in\mathbb{N}}$ in \mathbb{K} of the form $D_n=d(a_n,r_n)\setminus (\bigcap_{m\in\mathbb{N}}d(a_m,r_m))$ with $d(a_{n+1},r_{n+1})\subset d(a_n,r_n),\ r_{n+1}< r_n$ and

 $\lim_{n\to\infty} r_n = r$. We call center of \mathcal{G} each element of $\bigcap_{m\in\mathbb{N}} d(a_m, r_m)$. If

 $\bigcap_{m\in\mathbb{N}}d(a_m,r_m)=\emptyset$ then $\mathcal G$ is said to be a decreasing filter with no center.

According to such a notation the sequence $(D_n)_{n\in\mathbb{N}}$ is called a canonical basis of \mathcal{G} .

Let $a \in \mathbb{K}$ and r > 0. We call circular filter on \mathbb{K} , of center a and diameter r, the filter \mathcal{F} on \mathbb{K} which admits as a generating system the family of the annuli $\Gamma(\alpha, r', r'')$ with $\alpha \in d(a, r)$ and r' < r < r'', i.e. \mathcal{F} is the filter which admits for basis the family of sets of the form $\bigcap_{q} \Gamma(\alpha_i, r'_i, r''_i) \text{ with } \alpha_i \in d(a, r) \text{ and } r'_i < r < r''_i \ (1 \le i \le q, q \in \mathbb{N}). \text{ We}$

call circular filter on $\mathbb K$ with no center any decreasing filter $\mathcal G$ with no center.

The filter of neighbourhoods of a point a in \mathbb{K} is called *circular filter* of center a and diameter 0 on \mathbb{K} . It is also named Cauchy circular filter of center a on \mathbb{K} and will be denoted by \mathcal{F}_a .

Finally we will call *circular filter on* \mathbb{K} all filters of one of those three kind above. A circular filter on \mathbb{K} will be said to be *large* if it has

diameter different from 0. Given a circular filter \mathcal{F} on \mathbb{K} , its diameter will be denoted by diam(\mathcal{F}). As usual about filters, a filter \mathcal{F} will be said to be *secant* with a subset D of \mathbb{K} if every element A of \mathcal{F} is such that $A \cap D \neq \emptyset$. Two filters \mathcal{F} and \mathcal{G} are said to be *secant* if for every $A \in \mathcal{F}$ and $B \in \mathcal{G}$, then $A \cap B \neq \emptyset$.

Let \mathcal{G} be a decreasing filter of center a (resp. with no center) and diameter r. The circular filter \mathcal{F} of center a (resp. \mathcal{G}) and diameter r is known to be the unique circular filter less thin than \mathcal{G} (Proposition 3.13 [7]).

If two circular filters are secant, they are equal [7].

Remark. Every circular filter \mathcal{F} on \mathbb{K} admits a basis consisting of a family of affinoid sets. Indeed, if \mathcal{F} is the circular filter on \mathbb{K} of center a

and diameter r, then we clearly obtain a basis of the form $\bigcap_{i=1}^{q} \Delta(\alpha_i, r_i', r_i'')$ with $\alpha_i \in d(a, r), r_i', r_i'' \in |\mathbb{K}|^*$ and $r_i' < r < r_i'' \ (1 \le i \le q, q \in \mathbb{N}).$

If \mathcal{F} is a circular filter with no center, of canonical basis $(D_n)_{n\in\mathbb{N}}$, we can find a sequence of disks B_n , the diameter of which lie in $|\mathbb{K}|$, such that $D_n \subset B_n \subset D_{n-1}$.

If \mathcal{F} is the Cauchy circular filter of center a, we just consider disks $d(a, r_n)$ with $r_n \in |\mathbb{K}|$ and $\lim_{n \to \infty} r_n = 0$.

Notation. We denote by $\operatorname{Mult}(\mathbb{K}[X])$ (resp. $\operatorname{Mult}(\mathbb{K}(X))$) the set of multiplicative semi-norms on the \mathbb{K} -algebra $\mathbb{K}[X]$ (resp. $\mathbb{K}(X)$).

Given $D \subset \mathbb{K}$, we denote by $\operatorname{Mult}(R(D), \mathcal{U}_D)$ the set of multiplicative semi-norms on the \mathbb{K} -algebra R(D) that are continuous with respect to the topology \mathcal{U}_D . Furthermore, we denote by $\operatorname{Mult}(H(D), \mathcal{U}_D)$ the set of continuous semi-norms ψ of the \mathbb{K} -vector space H(D) satisfying $\psi(fg) = \psi(f)\psi(g)$ whenever $f, g \in H(D)$ such that $fg \in H(D)$. We notice that for defining $\operatorname{Mult}(H(D), \mathcal{U}_D)$ we don't require H(D) to be a \mathbb{K} -algebra.

2 Distance on circular filters

This chapter is aimed at defining a distance on the set of circular filters on \mathbb{K} , by the way of a partial order relation on this set.

Definitions and notation. Let \mathcal{F} be a circular filter of center a and diameter r. We denote by $\mathcal{Q}(\mathcal{F})$ the set of the centers of \mathcal{F} . The set $\mathcal{Q}(\mathcal{F})$ will be called the *heart* of \mathcal{F} . Here we have $\mathcal{Q}(\mathcal{F}) = d(a, r)$. If \mathcal{F} is a circular filter without centers, we put $\mathcal{Q}(\mathcal{F}) = \emptyset$.

Given two circular filters on \mathbb{K} , \mathcal{F} and \mathcal{G} , we say that \mathcal{G} surrounds \mathcal{F} if \mathcal{F} is secant with $\mathcal{Q}(\mathcal{G})$ or if $\mathcal{F} = \mathcal{G}$. We put $\mathcal{F} \preceq \mathcal{G}$ when \mathcal{G} surrounds \mathcal{F} . We say that \mathcal{G} strictly surrounds \mathcal{F} , if $\mathcal{F} \preceq \mathcal{G}$ and $\mathcal{F} \neq \mathcal{G}$; such a filter \mathcal{G} clearly posseses centers and we note $\mathcal{F} \prec \mathcal{G}$.

Remark. If $\mathcal{F} \preceq \mathcal{G}$ and diam $(\mathcal{F}) = \text{diam}(\mathcal{G})$ then $\mathcal{F} = \mathcal{G}$.

It is clearly seen that " \preceq " is a partial order relation on the set of circular filters on \mathbb{K} . Given a circular filter \mathcal{F} on \mathbb{K} , we will call *wire* of \mathcal{F} the set $\mathcal{W}(\mathcal{F})$ of circular filters \mathcal{G} on \mathbb{K} such that $\mathcal{F} \preceq \mathcal{G}$.

The following lemma is a direct adaptation of Lemma 41.2 of [7].

Lemma 2.1. Let \mathcal{F} be a circular filter on \mathbb{K} , of diameter r > 0. For all $s \in [r, +\infty[$, there exists a unique circular filter \mathcal{G} of diameter s surrounding \mathcal{F} . Further, if s > r, then $\mathcal{Q}(\mathcal{G}) \neq \emptyset$.

Proof. If s = r, we take $\mathcal{G} = \mathcal{F}$ and the uniqueness is obvious. Now, suppose s > r and let d(a, s) be a disk which belongs to \mathcal{F} . Then, the circular filter \mathcal{G} of center a and diameter s surrounds \mathcal{F} . Suppose that an other circular filter \mathcal{G}' of center b and diameter s also surrounds \mathcal{F} . Since \mathcal{F} is secant with both d(a, s) and d(b, s) and since r < s, we have $|a - b| \le s$, and therefore $\mathcal{G} = \mathcal{G}'$.

Lemma 2.2 is obvious.

Lemma 2.2. Let \mathcal{F} , \mathcal{G} be two circular filters with centers such that $\mathcal{Q}(\mathcal{F}) \subset \mathcal{Q}(\mathcal{G})$. Then \mathcal{G} surrounds \mathcal{F} .

Lemma 2.3. Given any circular filter \mathcal{F} on \mathbb{K} , then $\mathcal{W}(\mathcal{F})$ is totally ordered by \preceq .

Proof. Let \mathcal{G} and \mathcal{H} belong to $\mathcal{W}(\mathcal{F}) \setminus \{\mathcal{F}\}$. By Lemma 2.1, both $\mathcal{Q}(\mathcal{G})$ and $\mathcal{Q}(\mathcal{H})$ are not empty. So \mathcal{F} is secant with both $\mathcal{Q}(\mathcal{G})$ and $\mathcal{Q}(\mathcal{H})$. Let $d(a,r) \in \mathcal{F}$ such that $d(a,r) \subset \mathcal{Q}(\mathcal{G})$. Then, as $d(a,r) \cap \mathcal{Q}(\mathcal{H}) \neq \emptyset$, we have $\mathcal{Q}(\mathcal{H}) \cap \mathcal{Q}(\mathcal{G}) \neq \emptyset$. Hence $\mathcal{Q}(\mathcal{H})$ and $\mathcal{Q}(\mathcal{G})$ are comparable for the relation \subset and therefore \mathcal{H} and \mathcal{G} are comparable for \preceq .

Definition. A family of circular filters on \mathbb{K} will be said to be on the same wire if their set is all ordered for \leq .

Remark and definitions. Given a circular filter \mathcal{F} on \mathbb{K} , we may define a distance δ' on $\mathcal{W}(\mathcal{F})$ in this way: given $\mathcal{G}, \mathcal{H} \in \mathcal{W}$, we put $\delta'(\mathcal{G}, \mathcal{H}) = |\text{diam}(\mathcal{G}) - \text{diam}(\mathcal{H})|_{\infty}$.

The elements of $W(\mathcal{F})$ are just characterized by their diameters and then $W(\mathcal{F})$, topologized with δ' , is clearly isometrically homeomorphic to the real interval $[\operatorname{diam}(\mathcal{F}), +\infty[$. Moreover this homeomorphism does respect the order. Given $\mathcal{G}, \mathcal{H} \in W(\mathcal{F})$ with $\mathcal{G} \preceq \mathcal{H}$, we will denote by $[\mathcal{G}, \mathcal{H}]$ the set of the circular filters \mathcal{X} such that $\mathcal{G} \preceq \mathcal{X} \preceq \mathcal{H}$. Then $[\mathcal{G}, \mathcal{H}]$ is isometrically homeomorphic to the real interval $[\operatorname{diam}(\mathcal{G}), \operatorname{diam}(\mathcal{H})]$.

We shall now generalize this distance to the set of circular filters.

Lemma 2.4. Let \mathcal{F} and \mathcal{G} be non comparable circular filters on \mathbb{K} . There exist disks $d(a, \rho) \in \mathcal{F}$, $d(b, \sigma) \in \mathcal{G}$ such that $d(a, \rho) \cap d(b, \sigma) = \emptyset$.

Proof. Suppose one can't find $d(a, \rho) \in \mathcal{F}$, $d(b, \sigma) \in \mathcal{G}$ such that $d(a, \rho) \cap d(b, \sigma) = \emptyset$. Then the family S of circumferenced disks which belong to \mathcal{F} and \mathcal{G} is totally ordered. Let $\Lambda = \bigcap_{A \in S} A$ and let \mathcal{H} be the decreasing filter admitting for basis the family $\{A \setminus \Lambda; A \in S\}$.

If $diam(\mathcal{F}) = diam(\mathcal{G})$, we see that $\mathcal{F} = \mathcal{G}$.

Now let $r = \operatorname{diam}(\mathcal{F})$, let $s = \operatorname{diam}(\mathcal{G})$, and suppose r < s. Then \mathcal{F} contains a disk $d(\alpha, \lambda)$ with $r < \lambda < s$. Such a disk is included in all disks $d(\beta, \mu) \in \mathcal{G}$, because $\mu > s$. Hence \mathcal{F} is secant with $\mathcal{Q}(\mathcal{G})$ and therefore \mathcal{G} surrounds \mathcal{F} , a contradiction to the hypothesis.

Theorem 2.1. Let \mathcal{F} , \mathcal{G} be circular filters on \mathbb{K} . Let $(D_i)_{i\in I}$ be the family of circumferenced disks that belong to both \mathcal{F} and \mathcal{G} , and let $\Lambda = \bigcap_{i\in I} D_i$. Let \mathcal{H} be the decreasing filter admitting for basis the family $\{D_i \setminus \Lambda; i \in I\}$ and let \mathcal{M} be the circular filter less thin than \mathcal{H} . Then $\mathcal{M} = \sup(\mathcal{F}, \mathcal{G})$ and $\mathcal{W}(\mathcal{M}) = \mathcal{W}(\mathcal{F}) \cap \mathcal{W}(\mathcal{G})$.

Proof. As the claims are immediate if $\mathcal{F} \preceq \mathcal{G}$, we may suppose that \mathcal{F} and \mathcal{G} are not comparable. By Lemma 2.4 there exist $d(a,\rho) \in \mathcal{F}$, $d(b,\sigma) \in \mathcal{G}$ such that $d(a,\rho) \cap d(b,\sigma) = \emptyset$. Let t = |a-b|. Both \mathcal{F} , \mathcal{G} are secant with d(a,t). Therefore, the circular filter \mathcal{N} of center a and diameter t surrounds \mathcal{F} and \mathcal{G} . We will show that $\mathcal{N} = \inf(\mathcal{W}(\mathcal{F}) \cap \mathcal{W}(\mathcal{G}))$. Indeed, let $\mathcal{E} \in \mathcal{W}(\mathcal{F}) \cap \mathcal{W}(\mathcal{G})$ and let $u = \operatorname{diam}(\mathcal{E})$. Let $l = \max(\rho, \sigma, u)$ and suppose u < t. Then we have l < t and $d(a, l) \cap d(b, l) = \emptyset$. Let \mathcal{L} be the circular filter of diameter l, surrounding \mathcal{F} . Then \mathcal{L} and \mathcal{E} lie in the wire of \mathcal{F} . But since $\operatorname{diam}(\mathcal{L}) \geq \operatorname{diam}(\mathcal{E})$, then \mathcal{L} surrounds \mathcal{E} . As a consequence $\mathcal{L} \in \mathcal{W}(\mathcal{G})$. So, \mathcal{F} is secant with d(a, l)

and \mathcal{G} is secant with d(b,l). Hence a and b lie in $\mathcal{Q}(\mathcal{L})$, and therefore $|a-b| \leq l$, which contradicts l < t. Thus $u \geq t$. As a consequence, \mathcal{N} and \mathcal{E} are two elements of $\mathcal{W}(\mathcal{F})$ such that $\operatorname{diam}(\mathcal{N}) \leq \operatorname{diam}(\mathcal{E})$. Hence $\mathcal{N} \leq \mathcal{E}$. This proves $\mathcal{N} = \inf(\mathcal{W}(\mathcal{F}) \cap \mathcal{W}(\mathcal{G}))$. Consequently we have $\mathcal{N} = \sup(\mathcal{F}, \mathcal{G})$ and therefore $\mathcal{W}(\mathcal{N}) = \mathcal{W}(\mathcal{F}) \cap \mathcal{W}(\mathcal{G})$.

Finally, as $d(a, \rho) \in \mathcal{F}$, $d(b, \sigma) \in \mathcal{G}$ and $d(a, \rho) \cap d(b, \sigma) = \emptyset$ we check that $\Lambda = d(a, t)$. Then, clearly \mathcal{N} is equal to \mathcal{M} .

Notation. For any two circular filters \mathcal{F} and \mathcal{G} on \mathbb{K} , we will denote by $\mathcal{M}_{\mathcal{F},\mathcal{G}}$ the circular filter $\sup(\mathcal{F},\mathcal{G})$ whose existence has been shown in the previous theorem, and by $r_{\mathcal{F},\mathcal{G}}$ its diameter.

Remark 1. If $\mathcal{F} \neq \mathcal{G}$ then $\mathcal{M}_{\mathcal{F},\mathcal{G}}$ owns centers.

Remark 2. Let \mathcal{F} and \mathcal{G} be two circular filters on \mathbb{K} such that $\mathcal{F} \leq \mathcal{G}$. Then $\mathcal{M}_{\mathcal{F},\mathcal{G}} = \mathcal{G}$.

Lemma 2.5. Let \mathcal{F} and \mathcal{G} be two circular filters on \mathbb{K} , let $\mathcal{H} \in \mathcal{W}(\mathcal{F}) \setminus \mathcal{W}(\mathcal{G})$ and $\mathcal{I} \in \mathcal{W}(\mathcal{G}) \setminus \mathcal{W}(\mathcal{F})$. Then we have $\mathcal{M}_{\mathcal{F},\mathcal{G}} = \mathcal{M}_{\mathcal{H},\mathcal{I}}$.

Proof. We have $\mathcal{M}_{\mathcal{F},\mathcal{G}} \in \mathcal{W}(\mathcal{F}) \cap \mathcal{W}(\mathcal{G})$. Since $\mathcal{H} \in \mathcal{W}(\mathcal{F}) \setminus \mathcal{W}(\mathcal{G})$ and $\mathcal{I} \in \mathcal{W}(\mathcal{G}) \setminus \mathcal{W}(\mathcal{F})$, then $\mathcal{M}_{\mathcal{F},\mathcal{G}} \in \mathcal{W}(\mathcal{H}) \cap \mathcal{W}(\mathcal{I})$. Suppose that there exists $\mathcal{M}' \in \mathcal{W}(\mathcal{H}) \cap \mathcal{W}(\mathcal{I})$ such that $\mathcal{M}' \preceq \mathcal{M}_{\mathcal{F},\mathcal{G}}$. As $\mathcal{M}' \in \mathcal{W}(\mathcal{H})$, then $\mathcal{M}' \in \mathcal{W}(\mathcal{F})$ and as $\mathcal{M}' \in \mathcal{W}(\mathcal{I})$, then $\mathcal{M}' \in \mathcal{W}(\mathcal{G})$. Hence $\mathcal{M}' \in \mathcal{W}(\mathcal{F}) \cap \mathcal{W}(\mathcal{G})$, and then we have $\mathcal{M}' = \mathcal{M}_{\mathcal{F},\mathcal{G}}$. So $\mathcal{M}_{\mathcal{F},\mathcal{G}}$ is the lower bound of $\mathcal{W}(\mathcal{H}) \cap \mathcal{W}(\mathcal{I})$, hence $\mathcal{M}_{\mathcal{F},\mathcal{G}} = \mathcal{M}_{\mathcal{H},\mathcal{I}}$.

Definition and notation. We are now able to extend δ' to a distance δ defined on all circular filters on \mathbb{K} . Let \mathcal{F}, \mathcal{G} be two circular filters on \mathbb{K} . We put $\delta(\mathcal{F}, \mathcal{G}) = \delta'(\mathcal{F}, \mathcal{M}_{\mathcal{F}, \mathcal{G}}) + \delta'(G, \mathcal{M}_{\mathcal{F}, \mathcal{G}}) = 2r_{\mathcal{F}, \mathcal{G}} - \operatorname{diam}(\mathcal{F}) - \operatorname{diam}(\mathcal{G})$.

Theorem 2.2. The mapping δ is a distance on the set of circular filters on \mathbb{K} , satisfying further $\delta(\mathcal{F},\mathcal{G}) = \delta'(\mathcal{F},\mathcal{G})$ when \mathcal{F} and \mathcal{G} are comparable for \preceq .

Proof. We first notice that if $\mathcal{F} \leq \mathcal{G}$, then $\delta(\mathcal{F}, \mathcal{G}) = 2r_{\mathcal{F},\mathcal{G}} - \operatorname{diam}(\mathcal{F}) - \operatorname{diam}(\mathcal{G})$. But since $\delta'(\mathcal{F}, \mathcal{G}) = \operatorname{diam}(\mathcal{G}) - \operatorname{diam}(\mathcal{F})$ and $r_{\mathcal{F},\mathcal{G}} = \operatorname{diam}(\mathcal{G})$, we obviously have $\delta(\mathcal{F}, \mathcal{G}) = \delta'(\mathcal{F}, \mathcal{G})$.

It is clearly seen that $\delta(\mathcal{F}, \mathcal{G}) = 0$ if and only if $\mathcal{F} = \mathcal{G}$ and that $\delta(\mathcal{F}, \mathcal{G}) = \delta(\mathcal{G}, \mathcal{F})$ for all circular filters \mathcal{F} and \mathcal{G} .

We now have to check the triangle inequality. Let \mathcal{F} , \mathcal{G} , \mathcal{H} be circular filters on \mathbb{K} whose diameters are respectively λ , μ and ν . It is clearly seen

that, if \mathcal{F} and \mathcal{G} are on the same wire, then the inequality is satisfied. Suppose that \mathcal{F} and \mathcal{G} are not on the same wire.

If $\mathcal{H} \in \mathcal{W}(\mathcal{F}) \cap \mathcal{W}(\mathcal{G})$ then $\mathcal{M}_{\mathcal{F},\mathcal{G}} \leq \mathcal{H}$, hence $r_{\mathcal{F},\mathcal{G}} \leq \nu$. So we have $\delta(\mathcal{F},\mathcal{G}) = 2r_{\mathcal{F},\mathcal{G}} - \lambda - \mu \leq (\nu - \lambda) + (\nu - \mu) = \delta(\mathcal{F},\mathcal{H}) + \delta(\mathcal{H},\mathcal{G})$.

If $\mathcal{H} \in \mathcal{W}(\mathcal{F}) \setminus \mathcal{W}(\mathcal{G})$ then by Lemma 2.5, we have $\mathcal{M}_{\mathcal{F},\mathcal{G}} = \mathcal{M}_{\mathcal{H},\mathcal{G}}$ and then $r_{\mathcal{F},\mathcal{G}} = r_{\mathcal{H},\mathcal{G}}$. Hence $\delta(\mathcal{F},\mathcal{H}) = \nu - \lambda$ and $\delta(\mathcal{G},\mathcal{H}) = 2r_{\mathcal{F},\mathcal{G}} - \nu - \mu$. So we have $\delta(\mathcal{F},\mathcal{G}) = 2r_{\mathcal{F},\mathcal{G}} - \lambda - \mu = \delta(\mathcal{F},\mathcal{H}) + \delta(\mathcal{G},\mathcal{H})$.

If $\mathcal{H} \preceq \mathcal{F}$, then $\nu \leq \lambda$, so $-\lambda \leq -2\nu + \lambda$. Moreover, by Lemma 2.5 we have $\mathcal{M}_{\mathcal{F},\mathcal{G}} = \mathcal{M}_{\mathcal{H},\mathcal{G}}$. So $\delta(\mathcal{F},\mathcal{G}) = 2r_{\mathcal{F},\mathcal{G}} - \lambda - \mu \leq (\lambda - \nu) + 2r_{\mathcal{F},\mathcal{G}} - \nu - \mu = \delta(\mathcal{F},\mathcal{H}) + \delta(\mathcal{G},\mathcal{H})$.

Finally, suppose $\mathcal{H} \notin \mathcal{W}(\mathcal{F}) \cup \mathcal{W}(\mathcal{G})$. Of course $\mathcal{M}_{\mathcal{F},\mathcal{G}}$ and $\mathcal{M}_{\mathcal{F},\mathcal{H}}$ are on the wire of \mathcal{F} . Put $\mathcal{E} = \mathcal{M}_{\mathcal{F},\mathcal{H}}$. First suppose $\mathcal{M}_{\mathcal{F},\mathcal{H}} \prec \mathcal{M}_{\mathcal{F},\mathcal{G}}$, then we have $\mathcal{M}_{\mathcal{F},\mathcal{H}} \in \mathcal{W}(\mathcal{F}) \setminus \mathcal{W}(\mathcal{G})$, then by Lemma 2.5 $\mathcal{M}_{\mathcal{E},\mathcal{G}} = \mathcal{M}_{\mathcal{F},\mathcal{G}}$. In the same way, as $\mathcal{M}_{\mathcal{F},\mathcal{H}} \in \mathcal{W}(\mathcal{H}) \setminus \mathcal{W}(\mathcal{G})$, we have $\mathcal{M}_{\mathcal{E},\mathcal{G}} = \mathcal{M}_{\mathcal{H},\mathcal{G}}$, and then $\mathcal{M}_{\mathcal{F},\mathcal{G}} = \mathcal{M}_{\mathcal{H},\mathcal{G}}$. So, we have $\delta(\mathcal{F},\mathcal{G}) = 2r_{\mathcal{F},\mathcal{G}} - \lambda - \mu = 2r_{\mathcal{H},\mathcal{G}} - \lambda - \mu \leq 2r_{\mathcal{H},\mathcal{G}} - \lambda - \mu + 2r_{\mathcal{F},\mathcal{H}} - 2\nu = \delta(\mathcal{F},\mathcal{H}) + \delta(\mathcal{G},\mathcal{H})$ (as $\mathcal{H} \preceq \mathcal{M}_{\mathcal{F},\mathcal{H}}$ we have $2r_{\mathcal{F},\mathcal{H}} - 2\nu \geq 0$). Finally, if $\mathcal{M}_{\mathcal{F},\mathcal{G}} \preceq \mathcal{M}_{\mathcal{F},\mathcal{H}}$, we have $\delta(\mathcal{F},\mathcal{G}) = 2r_{\mathcal{F},\mathcal{G}} - \lambda - \mu \leq 2r_{\mathcal{F},\mathcal{H}} - \lambda - \mu \leq 2r_{\mathcal{F},\mathcal{H}} - \lambda - \mu + 2r_{\mathcal{G},\mathcal{H}} - 2\nu = \delta(\mathcal{F},\mathcal{H}) + \delta(\mathcal{G},\mathcal{H})$ (as $\mathcal{H} \preceq \mathcal{M}_{\mathcal{G},\mathcal{H}}$ we have $2r_{\mathcal{G},\mathcal{H}} - 2\nu \geq 0$). This ends the proof.

Remark. Cauchy circular filters on \mathbb{K} are canonically identified with the points of \mathbb{K} . For $a, b \in \mathbb{K}$, let \mathcal{F} and \mathcal{G} be the Cauchy circular filters whose centers are respectively a and b. We have $\delta(\mathcal{F}, \mathcal{G}) = 2|a - b|$. Thus the usual distance on \mathbb{K} , defined by the absolute value and the restriction of δ to \mathbb{K} , are equivalent on \mathbb{K} .

3 Topologies on $Mult(\mathbb{K}[X])$

Notation and definitions. We will denote by Φ the mapping from the set of circular filters on \mathbb{K} onto $\mathrm{Mult}(\mathbb{K}[X])$, defined as $\Phi(\mathcal{F}) = \varphi_{\mathcal{F}}$ where $\varphi_{\mathcal{F}}$ is the multiplicative semi-norm on $\mathbb{K}[X]$ defined by $\varphi_{\mathcal{F}}(h) = \lim_{\mathcal{F}} |h(x)|, \ \forall h \in \mathbb{K}[X]$. We know that Φ is a bijection, [9] and [10].

This bijection allows us to consider an order relation and a distance on $\operatorname{Mult}(\mathbb{K}[X])$, also respectively denoted by \preceq and δ , and defined in a natural way by $\varphi_{\mathcal{F}} \preceq \varphi_{\mathcal{G}}$ if and only if $\mathcal{F} \preceq \mathcal{G}$ and by $\delta(\varphi_{\mathcal{F}}, \varphi_{\mathcal{G}}) = \delta(\mathcal{F}, \mathcal{G})$. So, we may consider $\operatorname{Mult}(\mathbb{K}[X])$ as a metric space.

We will denote by S the topology of simple convergence on $\operatorname{Mult}(\mathbb{K}[X])$ and by \mathfrak{T}_{δ} the metric topology defined by δ .

Given $\psi \in \text{Mult}(\mathbb{K}[X])$, $h \in \mathbb{K}[X]$, $\varepsilon > 0$, we denote by $V(\psi, h, \varepsilon)$ the set of the $\varphi \in \text{Mult}(\mathbb{K}[X])$ such that $|\varphi(h) - \psi(h)|_{\infty} < \varepsilon$.

Remark. We obtain a basis of neighbourhoods for the topology S of any $\psi \in \text{Mult}(\mathbb{K}[X])$ by taking the sets of the form $\bigcap_{j=1}^q V(\psi, h_j, \varepsilon_j), \ q \in \mathbb{N}^*$.

Proposition 3.1. On $\operatorname{Mult}(\mathbb{K}[X])$, the topology \mathfrak{T}_{δ} is strictly thinner than the topology \mathcal{S} .

Proof. For $h \in \mathbb{K}[X]$, let ξ_h be the mapping from $\operatorname{Mult}(\mathbb{K}[X])$ onto \mathbb{R} such that $\xi_h(\varphi_{\mathcal{F}}) = \varphi_{\mathcal{F}}(h) = \lim_{\mathcal{F}} |h(x)|$. It is known that \mathcal{S} is the least thin topology on $\operatorname{Mult}(\mathbb{K}[X])$ such that ξ_h is continuous for all $h \in \mathbb{K}[X]$. So, by proving that ξ_h is continuous for \mathfrak{T}_{δ} , we will show that \mathfrak{T}_{δ} is thinner than \mathcal{S} .

We denote by $B(\varphi_{\mathcal{F}}, \beta)$ the open ball in $\operatorname{Mult}(\mathbb{K}[X])$ of center $\varphi_{\mathcal{F}}$ and radius β with respect to the distance δ . Given $\varepsilon > 0$, by definition of $\varphi_{\mathcal{F}}(h)$, there exists an element $A \subset \mathbb{K}$ of the canonical basis of \mathcal{F} such that

$$(1) |\varphi_{\mathcal{F}}(h) - |h(x)||_{\infty} < \varepsilon, \ \forall x \in A.$$

If \mathcal{F} is large and admits a center (resp. \mathcal{F} has no center or \mathcal{F} is a Cauchy circular filter), A is of the form $\bigcap_{i \in I} \Gamma(a_i, r_i, r)$ (resp. d(a, r)) with $r > \operatorname{diam}(\mathcal{F})$ and $|a_i - a_j| = \operatorname{diam}(\mathcal{F})$ if $i \neq j$ (resp. $r > \operatorname{diam}(\mathcal{F})$).

Let $\lambda = \sup_{i \in I} (r_i)$, $\alpha = \inf(r - \operatorname{diam}(\mathcal{F}), \operatorname{diam}(\mathcal{F}) - \lambda)$ (resp. $\alpha = r - \operatorname{diam}(\mathcal{F})$). For all $\psi \in B(\varphi_{\mathcal{F}}, \alpha)$, the circular filter on \mathbb{K} associated to ψ is secant with A. Hence by (1), we have $|\psi(h) - \varphi_{\mathcal{F}}(h)|_{\infty} < \varepsilon$. As $|\xi_h(\psi) - \xi_h(\varphi_{\mathcal{F}})|_{\infty} = |\psi(h) - \varphi_{\mathcal{F}}(h)|_{\infty}$, for all $\psi \in B(\varphi_{\mathcal{F}}, \alpha)$, we have $|\xi_h(\psi) - \xi_h(\varphi_{\mathcal{F}})|_{\infty} < \varepsilon$. Hence ξ_h is continuous for \mathfrak{T}_{δ} and so, \mathfrak{T}_{δ} is thinner than \mathcal{S} . Now, it rests to show that \mathcal{S} is not thinner than \mathfrak{T}_{δ} .

For this, let \mathcal{F} be a large circular filter on \mathbb{K} of center $a \in \mathbb{K}$ and let $\beta \in]0$, diam $(\mathcal{F})[$. Now, the filter of neighbourhoods of $\varphi_{\mathcal{F}}$, with respect to \mathcal{S} , admits a basis of the form $\cap_{j=1}^q V(\varphi_{\mathcal{F}}, h_j, \varepsilon_j)$ with $q \in \mathbb{N}^*$, $h_j \in \mathbb{K}[X]$. In particular, we consider such a neighbourhood $W = \bigcap_{j=1}^q V(\varphi_{\mathcal{F}}, h_j, \varepsilon_j)$. We put $\varepsilon = \inf_{j=1,...,q} (\varepsilon_j)$. For any $j \in \{1,...,q\}$, there

exists an element A_j of \mathcal{F} such that $|\varphi_{\mathcal{F}}(h_j) - |h_j(x)||_{\infty} < \varepsilon$, $\forall x \in A_j$. We put $A = \cap_{j=1}^q A_j$ and then, we have $\forall j \in \{1, ..., q\}$, $\forall x \in A$, $|\varphi_{\mathcal{F}}(h_j) - |h_j(x)||_{\infty} < \varepsilon$. Of course A is not empty because \mathcal{G} is a filter. Let \mathcal{G} be a circular filter on \mathbb{K} of center $b \in d(a, \operatorname{diam}(\mathcal{F})) \cap A$ and of diameter $\gamma \in]0$, $\operatorname{diam}(\mathcal{F}) - \beta[$ (which is obviously secant with A). Such a circular filter exists because A is open. We have $|\varphi_{\mathcal{F}}(h_j) - \varphi_{\mathcal{G}}(h_j)|_{\infty} < \varepsilon$, $\forall j \in \{1, ..., q\}$. Then $\varphi_{\mathcal{G}} \in W$. But we clearly have $\delta(\varphi_{\mathcal{F}}, \varphi_{\mathcal{G}}) = \operatorname{diam}(\mathcal{F}) - \gamma > \beta$. Hence $\varphi_{\mathcal{G}} \notin B(\varphi_{\mathcal{F}}, \beta)$. And then, $B(\varphi_{\mathcal{F}}, \beta)$ may not be a neighbourhood of $\varphi_{\mathcal{F}}$ with respect to the topology \mathcal{S} . In particular, $B(\varphi_{\mathcal{F}}, \beta)$ does not contain images by Φ of Cauchy filters on \mathbb{K} i.e. it only contains absolute values on $\mathbb{K}[X]$, [9]. This ends the proof.

Definitions. Given \mathcal{F} and \mathcal{G} two circular filters on \mathbb{K} such that $\mathcal{F} \preceq \mathcal{G}$, we call segment $[\varphi_{\mathcal{F}}, \varphi_{\mathcal{G}}]$ of $\mathrm{Mult}(\mathbb{K}[X])$ the image by Φ of the interval $[\mathcal{F}, \mathcal{G}]$, i.e. $[\varphi_{\mathcal{F}}, \varphi_{\mathcal{G}}] = {\varphi_{\mathcal{H}} \in \mathrm{Mult}(\mathbb{K}[X]) \mid \varphi_{\mathcal{F}} \preceq \varphi_{\mathcal{H}} \preceq \varphi_{\mathcal{G}}}$.

A continuous function γ from an interval [a, b] of \mathbb{R} into a topological space E is called a path of E. A subset S of a Hausdorff topological space E is said to be arc-connected if for every $A, B \in S$, there exists a path γ from [0, 1] into S such that $\gamma(0) = A$ and $\gamma(1) = B$.

Proposition 3.2. Every segment of $\mathrm{Mult}(\mathbb{K}[X])$ is an arc-connected set with respect to the topology \mathfrak{T}_{δ} .

Proof. Given \mathcal{F} and \mathcal{G} two circular filters on \mathbb{K} such that $\mathcal{F} \preceq \mathcal{G}$, we respectively denote by λ and μ their diameters and we consider the segment $[\varphi_{\mathcal{F}}, \varphi_{\mathcal{G}}]$ of $\text{Mult}(\mathbb{K}[X])$.

For every $t \in [\lambda, \mu]$, we denote by \mathcal{F}_t the circular filter in $\mathcal{W}(\mathcal{F})$ of diameter t, so $\mathcal{F}_t \in [\mathcal{F}, \mathcal{G}]$. Let f be the path on $\mathrm{Mult}(\mathbb{K}[X])$ defined from $[\lambda, \mu]$ into $\mathrm{Mult}(\mathbb{K}[X])$ by $f(t) = \varphi_{\mathcal{F}_t}$. Given $\varepsilon > 0$ and $t_0 \in [\lambda, \mu]$, for all $t \in [\lambda, \mu]$ such that $|t - t_0|_{\infty} < \varepsilon$, we have $\delta(\varphi_{\mathcal{F}_{t_0}}, \varphi_{\mathcal{F}_t}) < \varepsilon$. Hence, the path f is continuous with respect to the topology \mathfrak{T}_{δ} on $\mathrm{Mult}(\mathbb{K}[X])$ and this ends the proof.

Theorem 3.1. Mult($\mathbb{K}[X]$) is an arc-connected space with respect to the topology \mathfrak{T}_{δ} .

Proof. Let $\varphi_{\mathcal{F}}$ and $\varphi_{\mathcal{G}}$ be two elements of Mult($\mathbb{K}[X]$) associated to the circular filters \mathcal{F} and \mathcal{G} . By Proposition 3.2, both segments $[\varphi_{\mathcal{F}}, \varphi_{\mathcal{M}_{\mathcal{F},\mathcal{G}}}]$ and $[\varphi_{\mathcal{G}}, \varphi_{\mathcal{M}_{\mathcal{F},\mathcal{G}}}]$ are arc-connected. Hence there exists a path f from [0,1] into Mult($\mathbb{K}[X]$) such that $f(0) = \mathcal{F}$, $f(1) = \mathcal{G}$ and $f(\frac{1}{2}) = \mathcal{M}_{\mathcal{F},\mathcal{G}}$.

Corollary 3.1. $\operatorname{Mult}(\mathbb{K}[X])$ is an arc-connected space with respect to the topology S.

Definitions and Notation. We denote by Φ^* the restriction of Φ to the set of large circular filters on \mathbb{K} . Then, given a large circular filter \mathcal{F} on \mathbb{K} , we may extend $\Phi^*(\mathcal{F}) = \varphi_{\mathcal{F}}$ to $\mathbb{K}(X)$. The mapping Φ^* is a bijection from the set of large circular filters on \mathbb{K} onto $\mathrm{Mult}(\mathbb{K}(X))$, [9]. This bijection allows us to define the distance δ on $\mathrm{Mult}(\mathbb{K}(X))$ by putting again $\delta(\varphi_{\mathcal{F}}, \varphi_{\mathcal{G}}) = \delta(\mathcal{F}, \mathcal{G})$, for all large circular filters \mathcal{F} and \mathcal{G} on \mathbb{K} . We also denote by \mathcal{S} the topology of simple convergence on $\mathrm{Mult}(\mathbb{K}(X))$ and by \mathfrak{T}_{δ} the metric one associated to the distance δ .

The same proof of the one of Proposition 3.1 holds on $\operatorname{Mult}(\mathbb{K}(X))$, then we have the following proposition.

Proposition 3.3. On $\operatorname{Mult}(\mathbb{K}(X))$, \mathfrak{T}_{δ} is strictly thinner than S.

Theorem 3.2. Mult($\mathbb{K}(X)$) is an arc-connected space with respect to both topologies.

Proof. Let $\varphi_{\mathcal{F}}$, $\varphi_{\mathcal{G}} \in \text{Mult}(\mathbb{K}(X))$. Then \mathcal{F} , \mathcal{G} are large circular filter on \mathbb{K} and so is each element of $[\mathcal{F}, \mathcal{M}_{\mathcal{F},\mathcal{G}}]$ (resp. $[\mathcal{G}, \mathcal{M}_{\mathcal{F},\mathcal{G}}]$). Put $\mathcal{E} = \mathcal{M}_{\mathcal{F},\mathcal{G}}$. Therefore $[\varphi_{\mathcal{F}}, \varphi_{\mathcal{E}}]$ (resp. $[\varphi_{\mathcal{G}}, \varphi_{\mathcal{E}}]$) is included in $\text{Mult}(\mathbb{K}(X))$, so the conclusion comes from Theorem 3.1 and Corollary 3.1.

4 Topologies on $Mult(H(D), \mathcal{U}_D)$.

Remark. If two circular filters \mathcal{F} , \mathcal{G} on \mathbb{K} are secant with a set D and satisfy ${}_{D}\mathcal{F} = {}_{D}\mathcal{G}$ then $\mathcal{F} = \mathcal{G}$ because \mathcal{F} and \mathcal{G} are secant.

Definitions and notation. Let $D \subset \mathbb{K}$ and let \mathcal{F} be a large circular filter on \mathbb{K} secant with D. We denote by ${}_{D}\mathcal{F}$ the filter $\mathcal{F} \cap D$ which is called *circular filter on* D. The filter of neighbourhoods, in D, of a point $a \in D$ is also called *circular filter on* D. This filter is the filter $\mathcal{F}_a \cap D$ that we also call *Cauchy circular filter on* D, [7] and [9]. The set of circular filters on D will be denoted by $\Theta(D)$.

Remark. Let $a \in \overline{D} \setminus D$. The Cauchy filter \mathcal{F}_a is secant with D but it is not a circular filter on D. If D is closed, then each circular filter on \mathbb{K} secant with D, large or not, induces on D a circular filter on D, [7] and [9].

By properties of the intersection, we may obviously define on $\Theta(D)$ a partial order relation, also denoted by \leq i.e.: ${}_{D}\mathcal{F} \leq {}_{D}\mathcal{G}$ if $\mathcal{F} \leq \mathcal{G}$. In the same way, we may also define a distance on $\Theta(D)$, denoted by δ again, as $\delta({}_{D}\mathcal{F}, {}_{D}\mathcal{G}) = \delta(\mathcal{F}, \mathcal{G})$.

Lemma 4.1. Let D be an infraconnected subset of \mathbb{K} and let \mathcal{F} and \mathcal{G} be two circular filters on \mathbb{K} secant with D such that $\mathcal{F} \preceq \mathcal{G}$. Then for all $\mathcal{H} \in [\mathcal{F}, \mathcal{G}]$, \mathcal{H} is secant with D.

Proof. Let $\mathcal{H} \in [\mathcal{F}, \mathcal{G}]$ and $\lambda = \operatorname{diam}(\mathcal{H})$. Since $\lambda \in [\operatorname{diam}(\mathcal{F}), \operatorname{diam}(\mathcal{G})]$, by Lemma 41.2 of [7] there exists a unique circular filter $D\mathcal{X}$ on D of diameter λ satisfying $D\mathcal{F} \preceq D\mathcal{X}$. But by Lemma 2.1, \mathcal{H} is the unique circular filter of diameter λ surrounding \mathcal{F} . So, we have $\mathcal{H} = \mathcal{X}$, hence \mathcal{H} is secant with D.

Lemma 4.2. Let D be an infraconnected subset of \mathbb{K} and let \mathcal{F} and \mathcal{G} be two circular filters on \mathbb{K} secant with D. Then $\mathcal{M}_{\mathcal{F},\mathcal{G}}$ is secant with D.

Proof. If $\mathcal{F} \preceq \mathcal{G}$ or $\mathcal{G} \preceq \mathcal{F}$, Lemma 4.2 is obvious by Remark 2 of section 2. Else, by Lemma 2.4 there exist disks $d(a,r) \in \mathcal{F}$ and $d(b,s) \in \mathcal{G}$ such that $d(a,r) \cap d(b,r') = \emptyset$. Since \mathcal{F} and \mathcal{G} are secant with D, without loss of generality we may suppose $a,b \in D$. Let \mathcal{H} be the circular filter of center a and diameter |a-b|. Since D is infraconnected, by Proposition 3.14 [7], \mathcal{H} is secant with D and then we have $\mathcal{F} \preceq \mathcal{H}$ and $\mathcal{G} \preceq \mathcal{H}$, so $\mathcal{M}_{\mathcal{F},\mathcal{G}} \preceq \mathcal{H}$. Hence, by Lemma 4.1, $\mathcal{M}_{\mathcal{F},\mathcal{G}}$ is secant with D.

Definitions and notation. Let $D \subset \mathbb{K}$. Circular filters on D are known to characterize the elements of $\operatorname{Mult}(H(D), \mathcal{U}_D)$ in the following way. To each circular filter ${}_D\mathcal{F}$ on D, we can associate an element ${}_D\varphi_{\mathcal{F}}$ of $\operatorname{Mult}(H(D), \mathcal{U}_D)$ such that $\forall f \in H(D), {}_D\varphi_{\mathcal{F}}(f) = \lim_{D \in \mathcal{F}} |f(x)|$. The mapping ${}_D\Phi : {}_D\mathcal{F} \mapsto {}_D\varphi_{\mathcal{F}}$ is a bijection from $\Theta(D)$ onto $\operatorname{Mult}(H(D), \mathcal{U}_D)$ (Theorem 4.14 [7]).

Then, as in $\operatorname{Mult}(\mathbb{K}[X])$, this bijection defines an order relation and a distance on $\operatorname{Mult}(H(D), \mathcal{U}_D)$, also respectively denoted by \preceq and δ ; they are defined in a natural way as: ${}_{D}\varphi_{\mathcal{F}} \preceq {}_{D}\varphi_{\mathcal{G}}$ if ${}_{D}\mathcal{F} \preceq {}_{D}\mathcal{G}$ and $\delta({}_{D}\varphi_{\mathcal{F}}, {}_{D}\varphi_{\mathcal{G}}) = \delta({}_{D}\mathcal{F}, {}_{D}\mathcal{G})$. Given two circular filters ${}_{D}\mathcal{F}$ and ${}_{D}\mathcal{G}$ on D, we define in a natural way the segment $[{}_{D}\varphi_{\mathcal{F}}, {}_{D}\varphi_{\mathcal{G}}]$ of $\operatorname{Mult}(H(D), \mathcal{U}_D)$ as $[{}_{D}\varphi_{\mathcal{F}}, {}_{D}\varphi_{\mathcal{G}}] = \{{}_{D}\varphi_{\mathcal{H}} \in \operatorname{Mult}(H(D), \mathcal{U}_D) \mid {}_{D}\varphi_{\mathcal{F}} \preceq {}_{D}\varphi_{\mathcal{H}} \preceq {}_{D}\varphi_{\mathcal{G}}\}$.

As we did on $\operatorname{Mult}(\mathbb{K}[X])$, we will denote by \mathcal{S} the topology of simple convergence on $\operatorname{Mult}(H(D), \mathcal{U}_D)$ and by \mathfrak{T}_{δ} the metric one (defined by δ).

Proposition 4.1. On $\operatorname{Mult}(H(D), \mathcal{U}_D)$, the topology \mathfrak{T}_{δ} is thinner than the topology \mathcal{S} .

Proof. The proof is similar to this of Proposition 3.1. For $h \in H(D)$, let ξ_h be the mapping from $\operatorname{Mult}(H(D), \mathcal{U}_D)$ onto \mathbb{R} such that $\xi_h(D\varphi_{\mathcal{F}}) = D\varphi_{\mathcal{F}}(h) = \lim_{D\mathcal{F}} |h(x)|$. It is known that \mathcal{S} is the least thin topology on $\operatorname{Mult}(H(D), \mathcal{U}_D)$ such that ξ_h is continuous for all $h \in H(D)$. So, by proving that ξ_h is continuous for \mathfrak{T}_{δ} , we will show that \mathfrak{T}_{δ} is thinner than \mathcal{S} .

We denote by $B(D\varphi_{\mathcal{F}}, \beta)$ the open ball in $\operatorname{Mult}(H(D), \mathcal{U}_D)$ of center $D\varphi_{\mathcal{F}}$ and radius β with respect to the distance δ . Given $\varepsilon > 0$, by definition of $D\varphi_{\mathcal{F}}(h)$, there exists an element $A \subset \mathbb{K}$ of a canonical basis of \mathcal{F} such that

(1)
$$|\varphi_{\mathcal{F}}(h) - |h(x)||_{\infty} < \varepsilon, \ \forall x \in A \cap D.$$

If \mathcal{F} is large and admits a center (resp. \mathcal{F} has no center or \mathcal{F} is a Cauchy circular filter), A is of the form $\bigcap_{i\in I}\Gamma(a_i,r_i,r)$ (resp. d(a,r)) with $r>\operatorname{diam}(\mathcal{F})$ and $|a_i-a_j|=\operatorname{diam}(\mathcal{F})$ if $i\neq j$ (resp. $r>\operatorname{diam}(\mathcal{F})$). Let $\lambda=\sup_{i\in I}(r_i)$, $\alpha=\inf(r-\operatorname{diam}(\mathcal{F}),\operatorname{diam}(\mathcal{F})-\lambda)$ (resp. $\alpha=r-\operatorname{diam}(\mathcal{F})$). For $D\varphi_{\mathcal{G}}\in B(D\varphi_{\mathcal{F}},\alpha)$, the circular filter $D\mathcal{G}$ is secant with $A\cap D$. Hence by (1), we have $|D\varphi_{\mathcal{G}}(h)-D\varphi_{\mathcal{F}}(h)|_{\infty}<\varepsilon$. As $|\xi_h(D\varphi_{\mathcal{G}})-\xi_h(D\varphi_{\mathcal{F}})|_{\infty}=|D\varphi_{\mathcal{G}}(h)-D\varphi_{\mathcal{F}}(h)|_{\infty}$, for all $D\varphi_{\mathcal{G}}\in B(D\varphi_{\mathcal{F}},\alpha)$, we have $|\xi_h(D\varphi_{\mathcal{G}})-\xi_h(D\varphi_{\mathcal{F}})|_{\infty}<\varepsilon$. Hence ξ_h is continuous for \mathfrak{T}_δ and so, \mathfrak{T}_δ is thinner than \mathcal{S} .

Remark. Take care that, here, topologies S and \mathfrak{T}_{δ} may be equivalent in certain particular cases. See explanations and examples in Chapter IV.

Notation and definitions. As for $\operatorname{Mult}(\mathbb{K}[X])$, given ${}_{D}\varphi_{\mathcal{F}} \in \operatorname{Mult}(H(D), \mathcal{U}_{D}), f \in H(D), \varepsilon > 0$ we will denote by $V({}_{D}\varphi_{\mathcal{F}}, f, \varepsilon)$ the set of the ${}_{D}\varphi_{\mathcal{G}} \in \operatorname{Mult}(H(D), \mathcal{U}_{D})$ such that $|{}_{D}\varphi_{\mathcal{F}}(f) - {}_{D}\varphi_{\mathcal{G}}(f)|_{\infty} < \varepsilon$. So, we have a basis of neighbourhoods of any ${}_{D}\varphi_{\mathcal{F}} \in \operatorname{Mult}(H(D), \mathcal{U}_{D})$

for the topology S by taking the sets of the form $\bigcap_{j=1}^{q} V(D\varphi_{\mathcal{F}}, f_j, \varepsilon_j)$, $q \in \mathbb{N}^*$ that we call canonical neighbourhoods of $D\varphi_{\mathcal{F}}$.

We will denote by $W(D\varphi_{\mathcal{F}}, f, \varepsilon)$ the set of the $D\varphi_{\mathcal{G}} \in \text{Mult}(H(D), \mathcal{U}_D)$ such that $|D\varphi_{\mathcal{F}}(f) - D\varphi_{\mathcal{G}}(f)|_{\infty} \leq \varepsilon$. Thus, we also have a basis of neighbourhoods of $D\varphi_{\mathcal{F}}$ with respect to \mathcal{S} by taking the sets of the form

$$\bigcap_{j=1}^{q} W({}_{D}\varphi_{\mathcal{F}}, f_{j}, \varepsilon_{j}), \ q \in \mathbb{N}^{*}.$$

Proposition 4.2. Let D be infraconnected. Then every segment in $Mult(H(D), \mathcal{U}_D)$ is arc-connected with respect to both topologies.

Proof. Let $D\varphi_{\mathcal{F}}$, $D\varphi_{\mathcal{G}} \in \operatorname{Mult}(H(D), \mathcal{U}_D)$ such that $D\varphi_{\mathcal{F}} \preceq D\varphi_{\mathcal{G}}$. As \mathcal{F} and G are secant with D, by Lemma 4.1, every circular filter of $[\mathcal{F}, \mathcal{G}]$ is secant with D. Further, as every circular filter $\mathcal{H} \in [\mathcal{F}, \mathcal{G}]$ such that $\mathcal{F} \prec \mathcal{H}$ is large, we see that every circular filter in $[\mathcal{F}, \mathcal{G}]$ induces a circular filter on D. Hence we may consider the segment $[\varphi_{\mathcal{F}}, \varphi_{\mathcal{G}}]$ in $\operatorname{Mult}(\mathbb{K}[X])$ as a subset of $\operatorname{Mult}(H(D), \mathcal{U}_D)$. Then, by Theorem 3.1, $[\varphi_{\mathcal{F}}, \varphi_{\mathcal{G}}]$ is arc-connected with respect to \mathfrak{T}_{δ} and therefore by Proposition 4.1, it is arc-connected with respect to \mathcal{S} .

Definitions. An element $u \in H(D)$ will be called *idempotent* if u(x) = 0 or u(x) = 1 for every $x \in D$. (This definition holds even when $D \notin A$). An idempotent u is said to be *trivial* if u = 0 or u = 1.

Now we can prove the following theorem.

Theorem 4.1. Given $D \subset \mathbb{K}$, the following properties are equivalent:

- i) There does not exist non-trivial idempotents on H(D).
- ii) D is infraconnected.
- iii) $Mult(H(D), \mathcal{U}_D)$ is arc-connected with respect to the topology S.
- iv) $Mult(H(D), \mathcal{U}_D)$ is connected with respect to the topology \mathcal{S} .

Proof. Since it is known that i) $\Leftrightarrow ii$) ([5] and [7]) and since trivially iii) $\Rightarrow iv$), we only have to prove that ii) $\Rightarrow iii$) and that iv) $\Rightarrow i$).

We first show that $ii) \Rightarrow iii$). The proof is similar to this of Proposition 3.2. Let $D\varphi_{\mathcal{F}}$, $D\varphi_{\mathcal{G}} \in \text{Mult}(H(D), \mathcal{U}_D)$. Then \mathcal{F} and \mathcal{G} are two

circular filters on \mathbb{K} secant with D. By Proposition 4.2, the circular filter $\mathcal{M}_{\mathcal{F},\mathcal{G}}$ is secant with D. Hence by Proposition 4.2, both $[D\varphi_{\mathcal{F}}, D\varphi_{\mathcal{M}_{\mathcal{F},\mathcal{G}}}]$ and $[D\varphi_{\mathcal{G}}, D\varphi_{\mathcal{M}_{\mathcal{F},\mathcal{G}}}]$ are arc-connected subsets of $\mathrm{Mult}(H(D), \mathcal{U}_D)$ with respect to \mathcal{S} . Hence, we may obviously construct a continuous path f from [0,1] into $\mathrm{Mult}(H(D),\mathcal{U}_D)$, provided with \mathcal{S} , such that $f(0) = D\varphi_{\mathcal{F}}$ and $f(1) = D\varphi_{\mathcal{G}}$.

Now we prove that $iv) \Rightarrow i$). Suppose that there exists a non-trivial idempotent f in H(D). Then, for all ${}_D\varphi_{\mathcal{F}} \in \operatorname{Mult}(H(D), \mathcal{U}_D)$, we have either ${}_D\varphi_{\mathcal{F}}(f) = 0$ or ${}_D\varphi_{\mathcal{F}}(f) = 1$. Let A and B be the subsets of $\operatorname{Mult}(H(D), \mathcal{U}_D)$ defined as $A = \{{}_D\varphi_{\mathcal{F}} \in \operatorname{Mult}(H(D), \mathcal{U}_D) \mid {}_D\varphi_{\mathcal{F}}(f) = 0\}$ and $B = \{{}_D\varphi_{\mathcal{F}} \in \operatorname{Mult}(H(D), \mathcal{U}_D) \mid {}_D\varphi_{\mathcal{F}}(f) = 1\}$. We have $A \cup B = \operatorname{Mult}(H(D), \mathcal{U}_D)$. Both A and B are not empty because for $a \in D$ such that f(a) = 0, we have ${}_D\Phi(\mathcal{F}_a) \in A$, and for $b \in D$ such that f(b) = 1, we have ${}_D\Phi(\mathcal{F}_b) \in B$. So, we just have to check that A is closed. Let ${}_D\varphi_{\mathcal{F}} \in \overline{A}$, and let ${}_D\varphi_{\mathcal{G}} \in V({}_D\varphi_{\mathcal{F}}, f, \frac{1}{2}) \cap A$. Then $|{}_D\varphi_{\mathcal{F}}(f) - {}_D\varphi_{\mathcal{G}}(f)|_{\infty} = |{}_D\varphi_{\mathcal{G}}(f)|_{\infty} \leq \frac{1}{2}$ and therefore ${}_D\varphi_{\mathcal{F}}(f) = 0$. In the same way, so is B. This ends the proof.

Remark 1. In general, in [10] B. Guennebaud proved that given a \mathbb{K} -Banach algebra, then $\operatorname{Mult}(A, \|\cdot\|)$ is connected if and only if A has no non trivial idempotents. Here we get a link between this property, arc-connectedness, and infraconnected sets.

Remark 2. According to [2], given an affinoid \mathbb{K} -algebra A, if $\text{Mult}(A, \|\cdot\|)$ is connected then it is arc-connected.

According to [7, Th. 12.1], every element of $\operatorname{Mult}(R(D), \mathcal{U}_D)$ uniquely extends to H(D) to an element of $\operatorname{Mult}(H(D), \mathcal{U}_D)$. Conversely, every element of $\operatorname{Mult}(H(D), \mathcal{U}_D)$ defines by restriction to R(D), an element of $\operatorname{Mult}(R(D), \mathcal{U}_D)$. Hence, since R(D) is dense in H(D) with respect to \mathcal{U}_D , we clearly see that $\operatorname{Mult}(H(D), \mathcal{U}_D)$ and $\operatorname{Mult}(R(D), \mathcal{U}_D)$ are homeomorphic with respect to the topology \mathcal{S} . So, we have the following theorem.

Theorem 4.2. Given $D \subset \mathbb{K}$, the following properties are equivalent:

- i) D is infraconnected.
- ii) $Mult(R(D), \mathcal{U}_D)$ is arc-connected with respect to the topology \mathcal{S} .
- iii) $Mult(R(D), \mathcal{U}_D)$ is connected with respect to the topology \mathcal{S} .

Notation. As noticed in the Remark following Theorem 2.2, there exists a natural injection from \mathbb{K} into $\operatorname{Mult}(\mathbb{K}[X])$ that, to each point $a \in \mathbb{K}$, associates φ_a . In the same way, there exists a natural injection Ψ from D into $\operatorname{Mult}(H(D), \mathcal{U}_D)$ that, to each point $a \in D$, associates $D\varphi_a$. So, every subset A of D may be considered as a subset of $\operatorname{Mult}(H(D), \mathcal{U}_D)$ and we denote by \underline{A} the closure of A in $\operatorname{Mult}(H(D), \mathcal{U}_D)$ with respect to S.

If A is a subset of \mathbb{K} , we denote by U_A the set of the $\varphi_{\mathcal{F}} \in \operatorname{Mult}(\mathbb{K}[X])$ such that the associated circular filter \mathcal{F} on \mathbb{K} is secant with A.

In the same way, if A is a subset of D, we denote by ${}_DU_A$ the set of the ${}_D\varphi_{\mathcal{F}} \in \operatorname{Mult}(H(D), \mathcal{U}_D)$ such that ${}_D\mathcal{F}$ is secant with A.

Remark. Given two subsets A and B of D, $_DU_{A\cap B}$ is included in $_DU_A\cap _DU_B$.

Proposition 4.3. Let $D \subset \mathbb{K}$. For every subset A of D, we have $\underline{A} = {}_DU_A$.

Proof. We first show that ${}_DU_A\subset\underline{A}$. Let ${}_D\varphi_{\mathcal{F}}\in{}_DU_A$. As \mathcal{F} is secant with A, there exists a sequence $(x_n)_{n\in\mathbb{N}}$ in A thinner than \mathcal{F} . Then, for all $f\in H(D)$, we have ${}_D\varphi_{\mathcal{F}}(f)=\lim_{n\to\infty}|f(x_n)|=\lim_{n\to\infty}{}_D\varphi_{x_n}(f)$. Hence the sequence $({}_D\varphi_{x_n})_{n\in\mathbb{N}}$ converges in $\mathrm{Mult}(H(D),\mathcal{U}_D)$ to ${}_D\varphi_{\mathcal{F}}$ with respect to \mathcal{S} . Since for all $n\in\mathbb{N}$, ${}_D\varphi_{x_n}$ lies in A, then ${}_D\varphi_{\mathcal{F}}$ lies in A.

Now, we will show that $\underline{A} \subset {}_DU_A$. Let ${}_D\varphi_{\mathcal{F}} \in \underline{A}$ and suppose that \mathcal{F} is not secant with A.

If \mathcal{F} has no center, we denote by $(D_n)_{n\in\mathbb{N}}=d(a_n,r_n))_{n\in\mathbb{N}}$ a canonical basis of \mathcal{F} . So, there exists a disk D_i in this basis such that $A\cap D_i=\emptyset$. Hence, for all $c\in A$, we have $|c-a_{i+1}|>r_i>r_{i+1}$ and therefore $|\varphi_{\mathcal{F}}(x-a_{i+1})-\varphi_{\mathcal{F}_c}(x-a_{i+1})|_{\infty}=|r_{i+1}-|c-a_{i+1}||_{\infty}>|r_i-r_{i+1}|_{\infty}$. Hence, we have $V(D\varphi_{\mathcal{F}},x-a_{i+1},r_i-r_{i+1})\cap A=\emptyset$ and therefore $D\varphi_{\mathcal{F}}\not\in A$, which contradicts the hypothesis.

If \mathcal{F} has a center and is large, then, there exists an infraconnected affinoid B, element of the canonical basis of \mathcal{F} , whose holes are denoted by $T_i = d(a_i, r_i^-)$, i = 1, ..., n, such that $|a_i - a_j| = \operatorname{diam}(\mathcal{F})$ for $i \neq j$ and $B \cap A = \emptyset$. Since $r_i < \operatorname{diam}(\mathcal{F}) < \operatorname{diam}(B)$ for all i = 1, ..., n, there exists $\varepsilon > 0$ such that $\varepsilon < \operatorname{diam}(B) - \operatorname{diam}(\mathcal{F})$ and $\varepsilon < \inf_{i=1,...,n} (\operatorname{diam}(\mathcal{F}) - r_i)$. Let $b \in A$. Then, since $B \cap A = \emptyset$, for all $i \in \{1, ..., n\}$: either $|b - a_i| < r_i$

or $|b-a_i| > \operatorname{diam}(B)$, and therefore, we have either $|\operatorname{diam}(\mathcal{F}) - |b-a_i||_{\infty} > \operatorname{diam}(\mathcal{F}) - r_i$, or $|\operatorname{diam}(\mathcal{F}) - |b-a_i||_{\infty} > |\operatorname{diam}(B) - \operatorname{diam}(\mathcal{F})|_{\infty}$. In both cases, we have $|\operatorname{diam}(\mathcal{F}) - |b-a_i||_{\infty} > \varepsilon$, hence, $|D\varphi_b(x-a_i) - \varphi_{\mathcal{F}}(x-a_i)|_{\infty} > \varepsilon$. This last inequality is obtained for all $b \in A$, hence, we have $\bigcap_{i=1}^n V(D\varphi_{\mathcal{F}}, x-a_i, \varepsilon) \cap A = \emptyset$, and then $D\varphi_{\mathcal{F}} \not\in \underline{A}$. This contradicts the hypothesis.

Finally suppose that \mathcal{F} is a Cauchy circular filter of center a. So, there exists a disk d(a,r) in \mathcal{F} such that $d(a,r)\cap A=\emptyset$. Hence, for $r'\in]0,r[$ we have |a-b|>r-r' for all $b\in A$. Hence we have $V({}_D\varphi_{\mathcal{F}},x-a,r-r')\cap A=\emptyset$, which contradicts the hypothesis ${}^n_D\varphi_{\mathcal{F}}\in \underline{A}$ and completes the proof.

The two following lemmas are useful when proving Theorem 4.3.

Lemma 4.3. Let \mathcal{F} be a circular filter on \mathbb{K} , let $a \in \mathbb{K}$ and let $r = \varphi_{\mathcal{F}}(x-a)$.

If r > 0 then for all $\varepsilon \in]0, r[$ we have $W(\varphi_{\mathcal{F}}, x - a, \varepsilon) = U_{\Delta(a, r - \varepsilon, r + \varepsilon)}$. If r = 0 then, for all $\varepsilon > 0$, $W(\varphi_{\mathcal{F}}, x - a, \varepsilon) = U_{d(a, \varepsilon)}$.

Proof. We notice that if r=0 then \mathcal{F} is the Cauchy circular filter of center a. Let \mathcal{G} be a circular filter on \mathbb{K} secant with $\Delta(a, r-\varepsilon, r+\varepsilon)$ (resp. $d(a,\varepsilon)$). There exists a sequence $(\alpha_n)_{n\in\mathbb{N}}$ in $\Delta(a, r-\varepsilon, r+\varepsilon)$ (resp. $d(a,\varepsilon)$) thinner than \mathcal{G} . So, we have $||\alpha_n-a|-r|_\infty \leq \varepsilon \ \forall n \in \mathbb{N}$. But, since $\varphi_{\mathcal{G}}(x-a) = \lim_{n\to +\infty} |\alpha_n-a|$, we have $|\varphi_{\mathcal{G}}(x-a)-r|_\infty \leq \varepsilon$. Hence, $\varphi_{\mathcal{G}} \in W(\varphi_{\mathcal{F}}, x-a,\varepsilon)$.

Conversely, let $\varphi_{\mathcal{G}} \in W(\varphi_{\mathcal{F}}, x-a, \varepsilon)$ (where r may be equal to 0). Then, we have $|\varphi_{\mathcal{G}}(x-a)-r|_{\infty} \leq \varepsilon$. We first suppose that $a \in \mathcal{Q}(\mathcal{G})$. If $\varphi_{\mathcal{G}}(x-a) > r$ (resp. $\varphi_{\mathcal{G}}(x-a) < r$, resp. $\varphi_{\mathcal{G}}(x-a) = r$), we consider an increasing (resp. decreasing, resp. monotonuous) distances sequence $(\alpha_n)_{n \in \mathbb{N}} \subset d(a, \operatorname{diam}(\mathcal{G})^-)$ (resp. $(\alpha_n)_{n \in \mathbb{N}} \subset \mathbb{K}$) thinner than \mathcal{G} ([9, 7]). Since $\varphi_{\mathcal{G}}(x-a) = \lim_{n \to +\infty} |\alpha_n - a|$, there exists $N_1 \in \mathbb{N}$ such that for all $n \geq N_1$, we have $\varphi_{\mathcal{G}}(x-a) > |\alpha_n - a| > r$ (resp. $\varphi_{\mathcal{G}}(x-a) < |\alpha_n - a| < r$, resp. $|r - |\alpha_n - a||_{\infty} < \varepsilon$). Now, for every $B \in \mathcal{G}$, there exists $N_2 \in \mathbb{N}$ such that $\alpha_n \in B$ whenever $n \geq N_2$. So, \mathcal{G} is secant with $\Delta(a, r - \varepsilon, r + \varepsilon)$ (resp. $d(a, \varepsilon)$). If $a \notin \mathcal{Q}(\mathcal{G})$, it is easly seen that there exists $B \in \mathcal{G}$ such that $\varphi_{\mathcal{G}}(x-a) = |y-a|$, whenever $y \in B$. Hence $B \subset \Delta(a, r - \varepsilon, r + \varepsilon)$ (resp. $B \subset d(a, \varepsilon)$) and then it follows that \mathcal{G} is secant with $\Delta(a, r - \varepsilon, r + \varepsilon)$ (resp. $d(a, \varepsilon)$).

Proposition 4.4. For $i \in \{1,..,n\}$, let $a_i \in \mathbb{K}$ and let $r'_i > r_i > 0$. Let $E = \bigcap_{i=1}^{n} \Delta(a_i, r_i, r'_i). \quad Then \cap_{i=1}^{n} U_{\Delta(a_i, r_i, r'_i)} = U_E.$

Proof. It is clear that $U_E \subset \bigcap_{i=1}^n U_{\Delta(a_i,r_i,r_i')}$. Let $\mathcal F$ be a circular filter on $\mathbb K$ such that $\varphi_{\mathcal F} \in \bigcap_{i=1}^n U_{\Delta(a_i,r_i,r_i')}$. If $E=\emptyset$, then the claim

is trivial. So we suppose $E \neq \emptyset$. Then $\bigcap_{i=1}^n d(a_i, r_i') \neq \emptyset$, hence we

may assume $a_1 \in \bigcap_{i=1}^n d(a_i, r_i')$. Let $\rho = \inf_{1 \le i \le n} (r_i')$. Then $\mathbb{K} \setminus E = (\mathbb{K} \setminus d(a_1, \rho)) \cup (\bigcup_{i=1}^n d(a_i, r_i^-))$. More precisely, There exists a set $I \subset \{1, ..., n\}$ such that $\mathbb{K} \setminus E = (\mathbb{K} \setminus d(a_1, \rho)) \cup (\bigcup_{i \in I} d(a_i, r_i^-))$ and $d(a_i, r_i^-) \cap \mathbb{K} \setminus \mathbb{K}$

 $d(a_j, r_j^-) = \emptyset$ if $i, j \in I$ and $i \neq j$. Suppose that \mathcal{F} is not secant with E. Then either it is secant with $\mathbb{K} \setminus d(a_1, \rho)$ or it is secant with one of the $d(a, r_i^-)$ $(i \in I)$ which are the holes of E.

Suppose first \mathcal{F} is secant with $\mathbb{K} \setminus d(a_1, \rho)$. Since it is not secant with E, more precisely there does exist $\rho' > \rho$ such that F is not secant with $d(a_1, \rho')$. And therefore \mathcal{F} is not secant with $\Delta(a_1, r_1, r'_1)$, which contradicts the hypothesis $\varphi_{\mathcal{F}} \in U_{\Delta(a_1,r_1,r'_1)}$.

Now suppose that \mathcal{F} is secant with a certain $d(a_i, r_i^-)$ $(i \in I)$. Since \mathcal{F} is not secant with E, we have diam(\mathcal{F}) < r_i and therefore \mathcal{F} is not secant with $\Delta(a_i, r_i, r'_i)$. A contradiction with the hypothesis. As a consequence \mathcal{F} is secant with E, and therefore $\varphi_{\mathcal{F}} \in U_E$. This finishes proving that $\bigcap_{i=1}^n U_{\Delta(a_i,r_i,r_i')} \subset U_E$.

proving that
$$\bigcap_{i=1}^{n} U_{\Delta(a_i,r_i,r_i')} \subset U_{E}$$
.

Theorem 4.3. Let D be infraconnected and let $D\varphi_{\mathcal{F}} \in \text{Mult}(H(D), \mathcal{U}_D)$. Then the set $\{DU_A \mid A \in D\mathcal{F}\}\$ is a basis of the filter \mathfrak{F} of neighbourhoods of $D\varphi_{\mathcal{F}}$ with respect to S.

Proof. It is clearly seen that $\{DU_A \mid A \in D\mathcal{F}\}\$ is a basis of a filter, since $\emptyset \notin \{DU_A \mid A \in D\mathcal{F}\}\$ and $DU_{A \cap B} \subset DU_A \cap DU_B$ for any $A, B \in D\mathcal{F}$. Let $\bigcap_{j=1}^q V(D_{\mathcal{F}}, f_j, \varepsilon_j)$ be a canonical neighbourhood of $D_{\mathcal{F}}$ and let $\varepsilon = \inf_{i=1,\dots,q} (\varepsilon_i)$. As $D_{\mathcal{F}}(f_i) = \lim_{D\mathcal{F}} |f_i(x)|$, for all $i=1,\dots,q$, there exists an infraconnected affinoid element B_i of the canonical basis of \mathcal{F} (in \mathbb{K}) such that $|D_{\mathcal{F}}(f_i) - |f_i(x)||_{\infty} < \varepsilon$, $\forall x \in B_i \cap D$. Let $E = \bigcap_{j=1}^q B_i$. Given $D_{\mathcal{F}}(g) \in \operatorname{Mult}(H(D),\mathcal{U}_D)$ such that the circular filter $D_{\mathcal{F}}(g) \in \operatorname{Mult}(H(D),\mathcal{U}_D)$ such that the circular filter $D_{\mathcal{F}}(g) \in \operatorname{Mult}(H(D),\mathcal{U}_D)$ is secant with E, we have $|D_{\mathcal{F}}(f_i) - D_{\mathcal{F}}(f_i)|_{\infty} < \varepsilon$, $\forall i=1,\dots,q$. Then $D_{\mathcal{F}}(g) \in \operatorname{Mult}(H(D_i,\mathcal{F}_i))$. Hence $\bigcap_{j=1}^q V(D_{\mathcal{F}}(g),f_j,\varepsilon_j)$ belongs to \mathfrak{F} since \mathfrak{F} is a filter.

Now let $A \in {}_D\mathcal{F}$. We first suppose that \mathcal{F} is large and has a center. So, there exists an infraconnected affinoid set B of the canonical basis of \mathcal{F} in \mathbb{K} such that $B \cap D \subset A$ and such that the holes $T_i = d(a_i, r_i^-)$ of B satisfy $|a_i - a_j| = \operatorname{diam}(\mathcal{F}), \ \forall i \neq j, \ i = 1, ..., n$. Let $r = \sup_{i=1,...,n} (r_i)$. It is clear that $r < \operatorname{diam}(\mathcal{F}) < \operatorname{diam}(B)$. Let $\lambda > 0$ be such that $\lambda < \inf(\operatorname{diam}(\mathcal{F}) - r, \operatorname{diam}(B) - \operatorname{diam}(\mathcal{F}))$. For all $i \in \{1, ..., n\}$ we have $D_i \mathcal{F}(x - a_i) = \operatorname{diam}(\mathcal{F})$. Put $F = \bigcap_{i=1}^n \Delta(a_i, \operatorname{diam}(\mathcal{F}) - \lambda, \operatorname{diam}(\mathcal{F}) + \lambda) \cap D$ and $F_i = \Delta(a_i, \operatorname{diam}(\mathcal{F}) - \lambda, \operatorname{diam}(\mathcal{F}) + \lambda) \cap D$ for i = 1, ..., n. So, by Lemma 4.3 and Proposition 4.4, we have $\bigcap_{i=1}^n V(D_i \mathcal{F}, x - a_i, \lambda) = \bigcap_{i=1}^n V(\mathcal{F}, x - a_i, \lambda) \cap \operatorname{Mult}(H(D), \mathcal{U}_D) \subset \bigcap_{i=1}^n W(\mathcal{F}, x - a_i, \lambda) \cap \operatorname{Mult}(H(D), \mathcal{U}_D) \subset \bigcap_{i=1}^n D(F_i) \cap \operatorname{Mult}(H(D), \mathcal{U}_D) \subset D(F_i) \cap \operatorname{Mult}$

Now, suppose that \mathcal{F} is a Cauchy circular filter of center a. So, there exists a disk d(a,r) such that $d(a,r) \cap D \subset A$. By Lemma 4.3 we see that $W(D\varphi_{\mathcal{F}}, x-a,r) = W(\varphi_{\mathcal{F}}, x-a,r) \cap \operatorname{Mult}(H(D), \mathcal{U}_D) = U_{d(a,r)} \cap \operatorname{Mult}(H(D), \mathcal{U}_D) \subset DU_A$.

Finally we suppose that \mathcal{F} has no center. We denote by $(D_n)_{n\in\mathbb{N}}$ a canonical basis $(d(a_n,r_n))_{n\in\mathbb{N}}$ of \mathcal{F} in \mathbb{K} . There exists a disk $D_i=d(a_i,r_i)$ of this basis such that $D_i\cap D\in A$. We may clearly suppose that $a_i\not\in D_{i+1}=d(a_{i+1},r_{i+1})$. Let $\lambda>0$ be such that $\lambda<|a_{i+1}-a_i|$. For all $i\in\mathbb{N}$, we put $F_i=\Delta(a_{i+1},\varphi_{\mathcal{F}}(x-a_{i+1})-\lambda,\varphi_{\mathcal{F}}(x-a_{i+1})+\lambda)$, then by Lemma 4.3, we have $V(D_i\varphi_{\mathcal{F}},x-a_{i+1},\lambda)=V(\varphi_{\mathcal{F}},x-a_{i+1},\lambda)\cap Mult(H(D),\mathcal{U}_D)\subset W(\varphi_{\mathcal{F}},x-a_{i+1},\lambda)\cap Mult(H(D),\mathcal{U}_D)\subset DU_{i\cap D}\cap Mult(H(D),\mathcal{U}_D)\subset DU_A$.

So, in any case, ${}_DU_A$ is a neighbourhood of ${}_D\varphi_{\mathcal{F}}$ and this ends the proof.

Corollary 4.1. Let D be infraconnected and let \mathcal{F} be a circular filter on \mathbb{K} secant with D. Let $\mathcal{B}(\mathcal{F})$ be a basis of \mathcal{F} . Then, the set $\{DU_{B\cap D} \mid B \in \mathcal{B}(\mathcal{F})\}$ is a basis of the filter of neighbourhoods of $D\varphi_{\mathcal{F}}$ in $\mathrm{Mult}(H(D), \mathcal{U}_D)$ with respect to \mathcal{S} .

Corollary 4.2. Let D be infraconnected. If \mathbb{K} is weakly valued, then the filter of neighbourhoods of any $D\varphi_{\mathcal{F}} \in \operatorname{Mult}(H(D), \mathcal{U}_D)$ admits a countable basis.

Proof. This is a direct consequence of Corollary 4.1, since a circular filter on \mathbb{K} admits a countable basis when \mathbb{K} is weakly valued, [7].

Proposition 4.5. Let $D \subset \mathbb{K}$ and let A be a closed subset of \mathbb{K} such that $A \cap D \neq \emptyset$. Then the mapping which to $_{A \cap D} \varphi_{\mathcal{F}} \in \operatorname{Mult}(H(A \cap D), \mathcal{U}_{A \cap D})$, associates its restriction $_{D}\varphi_{\mathcal{F}}$ to H(D) is a continuous bijection from $\operatorname{Mult}(H(A \cap D), \mathcal{U}_{A \cap D})$ into $_{D}U_{A \cap D}$, both provided with the topology of simple convergence.

Proof. This mapping is denoted ϕ . By Theorem 4.14 [7], ϕ is injective. Now, let $_D\varphi_{\mathcal{F}}\in _DU_{A\cap D}$. So, $_D\mathcal{F}$ is secant with $A\cap D$. First, suppose that $_D\mathcal{F}$ is large, then it defines a circular filter on $A\cap D$ and consequently, $_{A\cap D}\varphi_{\mathcal{F}}\in \mathrm{Mult}(H(A\cap D),\mathcal{U}_{A\cap D})$ and $\phi(_{A\cap D}\varphi_{\mathcal{F}})=_D\varphi_{\mathcal{F}}.$ On the other hand, if $_D\mathcal{F}$ is a Cauchy circular filter on D of center a, then by definition $a\in D$. Further, as A is closed in \mathbb{K} and $_D\mathcal{F}$ is secant with A, we see that $a\in A$. Therefore $a\in A\cap D$ and then $_{A\cap D}\varphi_a\in \mathrm{Mult}(H(A\cap D),\mathcal{U}_{A\cap D})$ and $\phi(_{A\cap D}\varphi_a)=_D\varphi_{\mathcal{F}}=_D\varphi_a.$ So, ϕ is bijective.

Now, we will show that ϕ is continuous. Let $D\varphi_{\mathcal{F}} \in DU_{A\cap D}$ and let $V = \bigcap_{j=1}^q V(D\varphi_{\mathcal{F}}, f_j, \varepsilon_j)$ $(f_j \in H(D), \varepsilon_j > 0$ for all $j \in \{1, .., q\}$ and $q \in \mathbb{N}^*$) be a canonical neighbourhood of $D\varphi_{\mathcal{F}}$ with respect to topology of simple convergence on $DU_{A\cap D}$. Then, obviously we see that

$$\phi^{-1}(V) = \bigcap_{j=1}^{q} V(A \cap D\varphi_{\mathcal{F}}, f_j/A \cap D, \varepsilon_j)$$
 which is a canonical neighbour-

hood of $_{A\cap D}\varphi_{\mathcal{F}}$ with respect to topology of simple convergence on $\mathrm{Mult}(H(A\cap D),\mathcal{U}_{A\cap D})$. This proves that ϕ is continuous.

Theorem 4.4. Let D be infraconnected. Then $\operatorname{Mult}(H(D), \mathcal{U}_D)$ is a local arc-connected space with respect to S.

Proof. We have to prove that, given any ${}_D\varphi_{\mathcal{F}} \in \operatorname{Mult}(H(D), \mathcal{U}_D)$, there exists a basis of neighbourhoods of ${}_D\varphi_{\mathcal{F}}$ whose elements are arcconnected. In chapter 0, we have shown that a such circular filter \mathcal{F} on \mathbb{K} admits a basis $\mathcal{B}(\mathcal{F})$ which consists of infraconnected affinoid sets. Given $B \in \mathcal{B}(\mathcal{F})$ secant with D, by Lemma 1.1, $B \cap D$ is infraconnected. Hence, by Theorem 4.1 $\operatorname{Mult}(H(B \cap D), \mathcal{U}_{B \cap D})$ is arc-connected and then by Proposition 4.5, ${}_DU_{B \cap D}$ is arc-connected too. This ends the proof.

Remark. It is well known that a topological space which is connected and locally arc-connected is arc-connected. Here, conversely, we have shown that when $\text{Mult}(H(D), \mathcal{U}_D)$ is connected, then it is locally arc-connected. However, we notice that the proof is just based on Theorem 4.1. So, it does not seem easy to prove first the local arc-connectedness.

5 Metrizability of $(Mult(H(D), \mathcal{U}_D), \mathcal{S})$.

In this chapter, we give some conditions for metrizability of the topology ${\mathcal S}$

 $\operatorname{Mult}(H(D), \mathcal{U}_D)$ and we look for equivalence between topologies \mathcal{S} and \mathfrak{T}_{δ} . We need the following basic lemma in topology (see, for example ex. 16A4 [13]).

Notation. Given any topological space E, countable intersection of open sets is usually named G_{δ} -set. Here, in order to avoid any confusion with the distance δ already defined, we will denote such a set a G_{τ} -set.

Lemma 5.1. Let (E,T) be a compact topological space and let $x \in E$. If $\{x\}$ is a G_{τ} -set, then x admits a countable system of neighbourhoods.

Proof. Since $\{x\}$ is a G_{τ} -set, there exists a decreasing sequence of open sets $(U_n)_{n\in\mathbb{N}}$ such that $\{x\} = \cap_{n\in\mathbb{N}} U_n$. Since E is a regular space, as it is compact, there exists a decreasing sequence of open sets $(V_n)_{n\in\mathbb{N}}$ such that, for all $n\in\mathbb{N}, x\in V_n\subset \overline{V}_n\subset U_n$. Let W be an open neighbourhood of x, and suppose that, for all $n\in\mathbb{N}, \overline{V}_n$ is not included in W. Then, the sequence $(\overline{V}_n\setminus W)_{n\in\mathbb{N}}$ is a decreasing sequence of compact subsets of E. So, their intersection is not empty. This contradicts the fact that $\{x\} = \cap_{n\in\mathbb{N}} U_n$. Hence, there exists $N\in\mathbb{N}$, such that $\overline{V}_n\subset W$ and therefore, the sequence $(V_n)_{n\in\mathbb{N}}$ is a countable system of neighbourhoods of x. This ends the proof.

Theorem 5.1. Let $D \subset \mathbb{K}$ be closed and bounded. If $Mult(H(D), \mathcal{U}_D)$ is countable, then the topology S is metrizable.

Proof. By Tykhonov's theorem, it is known that when D is closed and bounded, then $\text{Mult}(H(D), \mathcal{U}_D)$ is compact with respect to \mathcal{S} , Theorem 1.11 [7]. Suppose that

Mult $(H(D), \mathcal{U}_D)$ is countable. Given any $\varphi \in \text{Mult}(H(D), \mathcal{U}_D)$, it is clearly seen that $\{\varphi\}$ is a G_{τ} -set because it is the intersection of complementaries of a countable family of finite subsets of $\text{Mult}(H(D), \mathcal{U}_D)$ which do not contain φ . Then, by Lemma 5.1, every $\varphi \in \text{Mult}(H(D), \mathcal{U}_D)$ admits a countable system of neighbourhoods. Hence, since $\text{Mult}(H(D), \mathcal{U}_D)$ is countable, there exists a countable basis of open sets for the topology \mathcal{S} . Then, by the Nagata-Smirnov Theorem [3], \mathcal{S} is metrizable.

Recall that Ψ denotes the injection from D into $\operatorname{Mult}(H(D), \mathcal{U}_D)$ that, to each point $a \in D$, associates $D\varphi_a$.

Definition. D will be said simple if there is no large circular filter on D. i.e. if Ψ is a bijection onto $\operatorname{Mult}(H(D), \mathcal{U}_D)$.

Remark. If a closed simple set D lies in A, then it is bounded. In order to simplify notation, when D is simple, we will identify every $a \in D$ with $\Psi(a)$.

Simplicity is not equivalent to countability as it will be shown in Example 2.

Theorem 5.2. Let $D \in A$ be closed. The following propositions are equivalent:

- i) D is simple.
- ii) D is compact.
- iii) Ψ is a bijection.
- iv) Topologies S and \mathfrak{T}_{δ} on $\operatorname{Mult}(H(D), \mathcal{U}_D)$ are equivalent.

Proof. For convenience we identify D with $\Psi(D)$. The equivalence between i) and iii) is obvious. We first show that i) $\Leftrightarrow iv$). Given $\varepsilon > 0$ and $D_{\varphi_{\mathcal{F}}} \in \text{Mult}(H(D), \mathcal{U}_D)$, we denote by $B(D_{\varphi_{\mathcal{F}}}, \varepsilon)$ the open ball in

 $\operatorname{Mult}(H(D), \mathcal{U}_D)$ of center $D\varphi_{\mathcal{F}}$ and radius ε with respect to the distance δ .

- $i) \Rightarrow iv$). Suppose that D is simple. Given $a \in D$ and $\varepsilon > 0$, by definition of the distance δ it is seen that $B(a,\varepsilon) = \{y \in D \mid |y-a| < \frac{\varepsilon}{2}\}$. For any $x,y \in D$, we define $P_y \in H(D)$ by $P_y(x) = x y$. Then we see that $B(a,\varepsilon) = V(a,P_a,\frac{\varepsilon}{2})$, and then $B(a,\varepsilon)$ is an open set with respect to S. This shows that S is thinner than \mathfrak{T}_{δ} , and then, by Proposition 4.1, topologies S and \mathfrak{T}_{δ} are equivalent.
- $iv) \Rightarrow i$). We suppose that D is not simple. Hence, there exists a large circular filter ${}_D\mathcal{F}$ on D. By Lemma 3.2 [7], there exists a sequence $(x_n)_{n\in\mathbb{N}}$ thinner than ${}_D\mathcal{F}$. Let $\beta>0$ be such that $\beta<\mathrm{diam}\,({}_D\mathcal{F})$. For all $a\in\mathbb{K}$, we clearly have $\delta({}_D\varphi_{\mathcal{F}},{}_D\varphi_a)\geq\mathrm{diam}\,({}_D\mathcal{F})$ and then $B({}_D\varphi_{\mathcal{F}},\beta)$ does not contain images by ${}_D\Phi$ of Cauchy filters on D, i.e. $B({}_D\varphi_{\mathcal{F}},\beta)$ does not contain images by Ψ of points of D.

Let us take a basic open set W of the topology \mathcal{S} . It is of the form $\bigcap_{j=1}^q V({}_D\varphi_{\mathcal{F}},h_j,\varepsilon_j),\ q\in\mathbb{N}^*.$ We put $\varepsilon=\inf_{j=1,...,q}\varepsilon_j.$ Since the sequence $(x_n)_{n\in\mathbb{N}}$ is thinner than ${}_D\mathcal{F}$, there exists $N\in\mathbb{N}$ such that, for all $n\geq N$ and for all j=1,...,q, we have $|{}_D\varphi_{\mathcal{F}}(h_j)-|h_j(x_n)||_\infty<\varepsilon.$ Hence, W contains all images by ${}_D\Phi$ of Cauchy filters on D associated to the $x_n,\ n\geq N.$ So, $B({}_D\varphi_{\mathcal{F}},\beta)$ may not be an open set for the topology \mathcal{S} , and therefore \mathcal{S} and \mathfrak{T}_δ are not equivalent.

 $iv) \Rightarrow ii$). We have seen that if topologies \mathcal{S} and \mathfrak{T}_{δ} on $\operatorname{Mult}(H(D), \mathcal{U}_D)$ are equivalent, then D is simple. Since D is closed, by the previous remark, it is bounded too. Hence, $\operatorname{Mult}(H(D), \mathcal{U}_D)$ is compact with respect to \mathcal{S} ([7, Th 1.11]). The mapping Ψ , which is a bijection, is here an homeomorphism because the distance δ extends that of D. Hence, D is compact.

Finally we show that $ii) \Rightarrow i$). Suppose that D is not simple. There exists a large circular filter ${}_D\mathcal{G}$ on D. It is known that there exists a monotonous distances sequence $(x_n)_{n\in\mathbb{N}}\subset D$, thinner than ${}_D\mathcal{G}$. But such a sequence does not admit accumulation point with respect to the metric topology of \mathbb{K} . As a consequence, D is not compact. This shows $ii) \Rightarrow i$) and completes the proof.

Example 1. In this example, we construct a set D closed, bounded and not simple such that $\operatorname{Mult}(H(D), \mathcal{U}_D)$ is countable. By Theorem 5.1, S is metrizable, but by Theorem 5.2, topologies S and \mathfrak{T}_{δ} are not

equivalent. However, we are not able to construct a distance giving S.

Let $(a_n)_{n\in\mathbb{N}}$ be an injective sequence in d(0,1) such that, $\forall p,q\in\mathbb{N}$, $p\neq q, |a_p-a_q|=1$ (each a_n lies in a different class of d(0,1)). We put $D=\cup_{n\in\mathbb{N}}\{a_n\}$. The only one large circular filter on \mathbb{K} secant with D is the circular filter \mathcal{G} of center 0 and diameter 1. Then, $\mathrm{Mult}(H(D),\mathcal{U}_D)=(\cup_{n\in\mathbb{N}}D\varphi_{a_n})\cup_D\varphi_{\mathcal{G}}$ is countable.

Example 2. In this example, we show a set D closed, bounded and simple but not countable. Hence, by Theorem 5.2, this shows that topologies S and \mathfrak{T}_{δ} are equivalent on $\operatorname{Mult}(H(D), \mathcal{U}_D)$ although D is not countable.

Let p be a prime number. We put $\mathbb{K} = \mathbb{C}_p$ and $D = \mathbb{Z}_p$. It is well known that \mathbb{Z}_p is not countable, but since \mathbb{Z}_p is compact, then it is simple. In particular, there is no large circular filter on \mathbb{C}_p secant with \mathbb{Z}_p .

Remark. We have seen that countability of $\operatorname{Mult}(H(D), \mathcal{U}_D)$ is not a necessary condition for metrizability of the topology \mathcal{S} and that simplicity of D is not sufficient. It seems difficult to find a convenient necessary and sufficient condition for metrizability.

References

- [1] Y. Amice, Les nombres p-adiques, P.U.F. (1975).
- [2] V.G. Berkovich, Spectral theory and analytic geometry over non archimedean fields, Mathematical Surveys and Monographs, vol. 33, Amer. Math. Soc. (1990).
- [3] J. Dugundji, Topology, Allyn and Bacon, Boston (1966).
- [4] A. Escassut, Algèbres d'éléments analytiques en analyse non archimédienne, Indag. Math., t.36, p. 339-351 (1974).
- [5] A. Escassut, Elements analytiques et filtres percés sur un ensemble infraconnexe, Ann. Mat. Pura Appl. t.110 p. 335-352 (1976).
- [6] A. Escassut, T-filtres, ensembles analytiques et transformation de Fourier p-adique, Ann. Inst. Fourier 25, n 2, p. 45-80, (1975).
- [7] A. Escassut, Analytic elements in p-adic analysis, World Scientific Publishing, Singapore (1995).
- [8] J. Fresnel, et M. Van der Put, Géométrie analytique rigide et applications, Birkhäuser, Boston-Basel-Stuttgart (1981).

- [9] G. Garandel, Les semi-normes multiplicatives sur les algèbres d'éléments analytiques au sens de Krasner, Indag. Math., 37, n4, p.327-341, (1975).
- [10] B. Guennebaud, Sur une notion de spectre pour les algèbres normées ultramétriques, thèse Université de Poitiers, (1973).
- [11] M. Krasner, Prolongement analytique uniforme et multiforme dans les corps valués complets. Les tendances géométriques en algèbre et théorie des nombres, Clermont-Ferrand, p.94-141 (1964). Centre National de la Recherche Scientifique (1966), (Colloques internationaux de C.N.R.S. Paris, 143).
- [12] Ph. Robba, Prolongement analytique et algèbres de Banach ultramétriques, Astérisque, n.10, p.109-220 (1973).
- [13] S. Willard, General topology, Addison-Wesley Publishing Company, (1968).

Boussaf Kamal and Maïnetti Nicolas Laboratoire de Mathématiques Pures Université Blaise Pascal (Clermont-Ferrand) Complexe Scientifique des Cézeaux F 63177 AUBIERE CEDEX FRANCE

Hemdaoui Mohamed Département de Mathématiques Pures Université Mohammed I OUJDA MAROC

E-mail address:

boussaf@ucfma.univ-bpclermont.fr mainetti@ucfma.univ-bpclermont.fr hemdaoui@sciences.univ-oujda.ac.ma

> Recibido: 12 de Abril de 1999 Revisado: 21 de Enero de 2000