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Abstract

Let K be an algebraically closed field, complete for an ultra-
metric absolute value, let D be an infinite subset of K and let
H(D) be the set of analytic elements on D [7]. We denote by
Mult(H (D),Up) the set of semi-norms v of the K-vector space
H(D) which are continuous with respect to the topology of uni-
form convergence on D and wich satisfy further ¥(fg) = ¥(f)v¥(g)
whenever f,g € H(D) such that fg € H(D). This set is provided
with the topology of simple convergence. By the way of a met-
ric topology thinner than the simple convergence, we establish the
equivalence between the connectedness of Mult(H (D),Up), the
arc-connectedness of Mult(H (D),Up) and the infraconnectedness
of D. This generalizes a result of Berkovich given on affinoid alge-
bras [2]. Next, we study the filter of neighbourhoods of an element
of Mult(H(D),Up), and we give a condition on the field K such
that this filter admits a countable basis. We also prove the local
arc-connectedness of Mult(H(D),Up) when D is infraconnected.
Finally, we study the metrizability of the topology of simple con-
vergence on Mult(H (D), Up) and we give some conditions to have
an equivalence with the metric topology defined above. The fun-
damental tool in this survey consists of circular filters.

Throughout this paper, K will denote an algebraically closed field
which is complete for a non-trivial ultrametric absolute value denoted
by |- |. We also denote by |- | the classical absolute value of R.

1 Preliminaries

Definitions and notation: Let a € K and r,7' > 0 with r < r’. We
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denote by d(a,r) the circumferenced disk {z € K | |a — z| < r}, by
d(a,r™) the non-circumferenced disk {z € K | |a — z| < r}, by C(a,r)
the circle {z € K | |a — z| = r}, by ['(a,r,7") the non-circumferenced
annulus {z € K | r < |a—z| < r'}, and by A(a,r,’) the circumferenced
annulus {z € K | r < |a — z| < r'}. We put [K| = {|z| | z € K} and we
denote by k the residue class field d(0,1)/d(0,17). The field K will be
said to be weakly valued if both |K| and k are countable. Else K will be
said to be strongly valued.

In any topological space E, the closure of a subset A is denoted by
4, and the interior is denoted by A. B

Let D be an infinite subset of K. We denote by D the smallest
circumferenced disk which contains D. We call holes of D the maximal
non-circumferenced disks of D\D. The set of holes of D forms a partition
of D\ D, [7]. We write R(D) the K-subalgebra of K of the rational
functions with no poles in D. We denote by H(D) the completion of
R(D) for the topology Up of uniform convergence on D. The elements
of H(D) are called the analytic elements on D [4], [T7].

We denote by A the set of the D C K such that H(D) is a K-algebra.
It is known that D € A if and only if D\ D € D and D\ D is bounded
(5, Th. IIL6)).

Let D C K. Then D is said to be infraconnected if, for all a € D, the
set {|z — a|;z € K} is an interval of R, [4], [5] and [7]. A closed bounded
infraconnected set B in K is said to be affinoid if it only admits finitely
many holes, if their diameters belong to |K| and if diam(B) € |K|. More
generaly, a bounded set D in K will be said to be affinoid if it is the
union of finitely many closed infraconnected affinoids [8].

Remark. It is known that the intersection of two infraconnected affi-
noids is always an infraconnected affinoid [8]. But it is known that
the intersection of two infraconnected sets may be a non-infraconnected
subset of K. However, we have the following lemma.

Lemma 1.1 Let D be infraconnected and B be an infraconnected affi-
noid. Then D N B is infraconnected.

Proof. We suppose that D N B is not infraconnected. Then, there
exist a,b € DN B and 71,7 € R with 0 < 7y < ry < |a — b| such that
I'(a,r1,72)NBND =0.

Since B is an infraconnected affinoid, there only exist finitely many
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p €]0, |a—b|[ such that the circle C(a, p) contains holes of B. So, clearly
there do exist p; and ps such that r; < p; < p < 72 and such that
['(a, p1,p2) C B. Since D is infraconnected, then I'(a, p1,p2) N D # 0.
This contradicts the hypothesis I'(a,71,72) N BN D = 0.

Definitions. A sequence (a,)nen in K is said to be an increasing dis-
tances sequence (resp. a decreasing distances sequence) if the sequence
|an+1 — @n| is strictly increasing (resp. decreasing) and has a limit
leR*,.

A sequence (an)nen is said to be a monotonous distances sequence
if it is either an increasing distances sequence or a decreasing distances
sequence.

A sequence (an)nen in K is said to be an equal distances sequence if
lan — am| = |am — aq| whenever n,m,q € N such that n # m # q.

We call a decreasing filter of diameter r on K a filter G on K that
admits for basis a sequence (Dy)nen in K of the form D, = d(an,m5) \
([ d(@am,rm)) With d(@n+1,7ns1) C d(@n,7n), Ta41 < 7n and
meN
lim r, =r. We call center of G each element of n it T

ﬂ d(@m,Tm) = 0 then G is said to be a decreasing filter with no center.
meN

According to such a notation the sequence (Dy)nen is called a canonical
basis of G.

Let a € K and r > 0. We call circular filter on K, of center a
and diameter r, the filter F on K which admits as a generating system
the family of the annuli I'(a,7’,r”) with a € d(a,r) and 7' < r < 7",
i.e: F is the filter which admits for basis the family of sets of the form

q
(T(u, i, r!) with o; € d(a,r) and rj <r <7/ (1<i<g,g€N). We
=1

call circular filter on K with no center any decreasing filter G with no
center.

The filter of neighbourhoods of a point @ in K is called circular filter
of center a and diameter 0 on K. It is also named Cauchy circular filter
of center a on K and will be denoted by F,.

Finally we will call circular filter on K all filters of one of those three
kind above. A circular filter on K will be said to be large if it has
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diameter different from 0. Given a circular filter F on K, its diameter
will be denoted by diam(F). As usual about filters, a filter F will be
said to be secant with a subset D of K if every element A of F is such
that AN D # 0. Two filters F and G are said to be secant if for every
A€ F and B € G, then ANB # 0.

Let G be a decreasing filter of center a (resp. with no center) and
diameter r. The circular filter F of center a (resp. G) and diameter r
is known to be the unique circular filter less thin than G (Proposition
3.13 [7]).

If two circular filters are secant, they are equal [7].

Remark. Every circular filter F on K admits a basis consisting of a

family of affinoid sets. Indeed, if F is the circular filter on K of center a
q

and diameter 7, then we clearly obtain a basis of the form nA(ai, i, ri)
with o; € d(a,r), rl, r! € |[K[* and 7} <r <7} (1<i< t;, 1q € N).

If F is a circular filter with no center, of canonical basis (D, )nen, we
can find a sequence of disks B, the diameter of which lie in |K]|, such
that B, ¢ B, € Dy_i:

If F is the Cauchy circular filter of center a, we just consider disks
d(a,r,) with r, € |[K| and nli}n;crn = 0.

Notation. We denote by Mult(K[X]) (resp. Mult(K(X))) the set of
multiplicative semi-norms on the K-algebra K[X] (resp. K(X)).

Given D C K, we denote by Mult(R(D),Up) the set of multiplicative
semi-norms on the K-algebra R(D) that are continuous with respect
to the topology Up. Furthermore, we denote by Mult(H (D),Up) the
set of continuous semi-norms v of the K-vector space H(D) satisfying
P(fg) = ¥(f)¥(g) whenever f,g € H(D) such that fg € H(D). We
notice that for defining Mult(H (D),Up) we don’t require H(D) to be a
K-algebra.

2 Distance on circular filters

This chapter is aimed at defining a distance on the set of circular filters
on KK, by the way of a partial order relation on this set.
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Definitions and notation. Let F be a circular filter of center a and
diameter 7. We denote by Q(F) the set of the centers of . The set
Q(F) will be called the heart of F. Here we have Q(F) = d(a,r). If F
is a circular filter without centers, we put Q(F) = 0.

Given two circular filters on K, F and G, we say that G surrounds F
if F is secant with Q(G) or if F = G. We put F < G when G surrounds
F. We say that G strictly surrounds F, if F < G and F # G; such a
filter G clearly posseses centers and we note F < G.

Remark. If F < G and diam(F) = diam(G) then F = G.

It is clearly seen that ” < ” is a partial order relation on the set of
circular filters on K. Given a circular filter F on K, we will call wire of
F the set W(F) of circular filters G on K such that F < G.

The following lemma is a direct adaptation of Lemma 41.2 of [7].

Lemma 2.1. Let F be a circular filter on K, of diameter r > 0. For
all s € [r,+o0|, there ezists a unique circular filter G of diameter s
surrounding F. Further, if s > r, then Q(G) # 0.

Proof. If s = r, we take G = F and the uniqueness is obvious. Now,
suppose s > r and let d(a,s) be a disk which belongs to 7. Then, the
circular filter G of center @ and diameter s surrounds F. Suppose that
an other circular filter G’ of center b and diameter s also surrounds F.
Since F is secant with both d(a,s) and d(b, s) and since r < s, we have
|a —b] < s, and therefore G = G'.

Lemma 2.2 is obvious.

Lemma 2.2. Let F, G be two circular filters with centers such that
Q(F) c Q(G). Then G surrounds F.

Lemma 2.3. Given any circular filter F on K, then W(F) is totally
ordered by <.

Proof. Let G and H belong to W(F) \ {¥}. By Lemma 2.1, both Q(G)
and Q(H) are not empty. So F is secant with both Q(G) and O(H).
Let d(a,r) € F such that d(a,r) C Q(G). Then, as d(a,r) N Q(H) # 0,
we have Q(H) N Q(G) # 0. Hence Q(H) and Q(G) are comparable for
the relation C and therefore H and G are comparable for <.

Definition. A family of circular filters on K will be said to be on the
same wire if their set is all ordered for <.
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Remark and definitions. Given a circular filter F on K, we may
define a distance ' on W(F) in this way: given G,H € W, we put
8'(G,H) = |diam(G)—diam(H) |-

The elements of W(F) are just characterized by their diameters and
then W(F), topologized with §’, is clearly isometrically homeomorphic
to the real interval [diam(F) , +oo[. Moreover this homeomorphism does
respect the order. Given G, H € W(F) with G < H, we will denote by
(G, H] the set of the circular filters X’ such that G < X < H. Then [G, H]
is isometrically homeomorphic to the real interval [diam(G) ,diam(#)].

We shall now generalize this distance to the set of circular filters.

Lemma 2.4. Let F and G be non comparable circular filters on K.
There ezist disks d(a,p) € F, d(b,o) € G such that d(a, p)Nd(b,o) = 0.

Proof. Suppose one can’t find d(a,p) € F, d(b,o) € G such that
d(a,p) Nd(b,o) = 0. Then the family S of circumferenced disks which
belong to F and G is totally ordered. Let A = N4ecsA and let H be the
decreasing filter admitting for basis the family {A \ A; A € S}.

If diam(F) = diam(G), we see that F = G.

Now let r = diam(F), let s = diam(G), and suppose r < s. Then
F contains a disk d(a,A) with 7 < A < s. Such a disk is included in
all disks d(f, u) € G, because . > s. Hence F is secant with Q(G) and
therefore G surrounds F, a contradiction to the hypothesis.

Theorem 2.1. Let F, G be circular filters on K. Let (D;)icr be the
family of circumferenced disks that belong to both F and G, and let A =
NMierD;. Let H be the decreasing filter admitting for basis the family
{D; \ A; i € I} and let M be the circular filter less thin than H. Then
M = sup(F,G) and W(M) = W(F) N W(G).

Proof. As the claims are immediate if 7 < G, we may suppose that
F and G are not comparable. By Lemma 2.4 there exist d(a,p) € F,
d(b,0) € G such that d(a,p) Nd(b,o) = 0. Let t = |a — b|. Both F, G
are secant with d(a,t). Therefore, the circular filter A of center a and
diameter ¢ surrounds F and G. We will show that A’ = inf(W(F) N
W(G)). Indeed, let £ € W(F) N W(G) and let u = diam(£). Let
| = max(p,o0,u) and suppose u < t. Then we have | < t and d(a,l) N
d(b,l) = 0. Let £ be the circular filter of diameter /, surrounding F.
Then £ and £ lie in the wire of . But since diam(L) > diam(£), then
L surrounds £. As a consequence £ € W(G). So, F is secant with d(a, )
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and G is secant with d(b,!). Hence a and b lie in Q(L), and therefore
la — b| < I, which contradicts ! < t. Thus u > f. As a consequence, N
and & are two elements of W(F) such that diam(N) < diam(&). Hence
N =< £. This proves N' = inf(W(F) N W(G)). Consequently we have
N = sup(F,G) and therefore W(N) = W(F) N W(G).

Finally, as d(a, p) € F, d(b,0) € G and d(a, p) Nd(b,0) = 0 we check
that A = d(a,t). Then, clearly A is equal to M.

Notation. For any two circular filters F and G on K, we will denote
by Mz ¢ the circular filter sup(F,G) whose existence has been shown
in the previous theorem, and by rr ¢ its diameter.

Remark 1. If F # G then Mg owns centers.

Remark 2. Let F and G be two circular filters on K such that F < G.
Then Mfrg =G.

Lemma 2.5. Let F and G be two circular filters on K, let H € W(F) \
W(G) and T € W(G) \ W(F). Then we have Mz g = My 1.

Proof. We have Mrg € W(F) N W(G). Since H € W(F) \ W(G) and
T € W(G) \ W(F), then Mxrg € W(H) N W(Z). Suppose that there
exists M' € W(H) N W(Z) such that M' < Mxrg. As M' € W(H),
then M’ € W(F) and as M' € W(Z), then M’ € W(G). Hence M’ €
W(F) N W(G), and then we have M' = Mzg. So Mrg is the lower
bound of W(H) N W(Z), hence Mxg = My 1.

Definition and notation. We are now able to extend &' to a distance
6 defined on all circular filters on K. Let F,G be two circular filters on
K. We put §(F,G) = (F,Mxg) +8(G,Mzg) =2rrg — diam(F) —
diam(G).

Theorem 2.2. The mapping § is a distance on the set of circular filters

on K, satisfying further §(F,G) = §'(F,G) when F and G are comparable
for <.

Proof. We first notice that if ¥ < G, then §(F,G) = 2rx g —diam(F) —
diam(G). But since §'(F,G) = diam(G) — diam(F) and rx ¢ = diam(G),
we obviously have §(F,G) = §(F, G).

It is clearly seen that 6(F,G) = 0 if and only if F = G and that
§(F,G) = 6(G, F) for all circular filters F and G.

We now have to check the triangle inequality. Let F, G, H be circular
filters on K whose diameters are respectivly A, ¢ and v. It is clearly seen
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that, if 7 and G are on the same wire, then the inequality is satisfied.
Suppose that F and G are not on the same wire.

If H € W(F)NW(G) then Mx g <H, hence rrg < v. So we have
0(F,G)=2rrg—A—p < (v—A)+(v—p) =0F H)+H,0).

If H € W(F)\W(G) then by Lemma 2.5, we have Mz g = My, g and
then 7rg = ryg. Hence §(F,H) =v—Aand 6(G,H) =2rrg — v — p.
So we have §(F,G) =2rrg — A —pu=06(F,H) + (G, H).

If H < F, then v < A, so =\ < —2v + A. Moreover, by Lemma 2.5
we have Mrg = Myg. Sod0(F,G) =2rrg—A—p< (A—v)+2rrg—
v—p=0UFH)+ G, H).

Finally, suppose H & W(F)UW(G). Of course Mx g and Mz 3 are
on the wire of 7. Put £ = Mz 4. First suppose Mz < Mxg, then
we have Mz € W(F) \ W(G), then by Lemma 2.5 Mgg = Mxg.
In the same way, as Mx 3 € W(H) \ W(G), we have Mg g = My g,
and then Mxrg = Myg. So, we have §(F,G) = 2rrgg — A —pu =
2r46 —A—pu < 2rpg—A—p+2rgy —2v = 6(F,H) + 4(G,H) (as
H =X Mz 3 we have 2rr 3 —2v > 0). Finally, if Mz g < Mx 3, we have
F,G)=2rrg—A—p<2rry—A—p<2rry—A—p+2rgy—2v=
0F,H) +6(G,H) (as H =X Mg 3 we have 2rg 3 — 2v > 0). This ends
the proof.

Remark. Cauchy circular filters on K are canonically identified with
the points of K. For a,b € K, let F and G be the Cauchy circular filters
whose centers are respectively a and b. We have §(F,G) = 2|a — b|.
Thus the usual distance on K, defined by the absolute value and the
restriction of § to K, are equivalent on K.

3 Topologies on Mult(K[X])

Notation and definitions. We will denote by ® the mapping from
the set of circular filters on K onto Mult(K[X]), defined as ®(F) = ¢
where ¢ is the multiplicative semi-norm on K[X] defined by ¢x(h) =
lijlt.'_n|h(x)|, Vh € K[X]. We know that ® is a bijection, [9] and [10].
This bijection allows us to consider an order relation and a distance
on Mult(K[X]), also respectively denoted by < and 4, and defined in

a natural way by ¢r < g if and only if F < G and by §(¢x,pg) =
0(F,G). So, we may consider Mult(K[X]) as a metric space.
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We will denote by S the topology of simple convergence on Mult(K[X])
and by T the metric topology defined by 6.

Given ¥ € Mult(K[X]), h € K[X], € > 0, we denote by V' (3, h,¢)
the set of the ¢ € Mult(K[X]) such that |p(h) — ¥(h) | < €.

Remark. We obtain a basis of neighbourhoods for the topology S of any
q

¥ € Mult(K[X]) by taking the sets of the form mV(d), hj,€3), g € N*,
j=1

Proposition 3.1. On Mult(K[X]), the topology Ts is strictly thinner

than the topology S.

Proof. For h € K[X], let £, be the mapping from Mult(K[X]) onto
R such that &,(pxr) = @r(h) = li}n|h(:::)|. It is known that S is the

least thin topology on Mult(K[X]) such that £, is continuous for all
h € K[X]. So, by proving that &, is continuous for T5, we will show that
Ts is thinner than §.

We denote by B(pr,) the open ball in Mult(K[X]) of center ¢r
and radius B with respect to the distance §. Given ¢ > 0, by definition
of pz(h), there exists an element A C K of the canonical basis of 7 such
that

(1) lpx(h) — |h(2)| | <€, Vz € A,

If F is large and admits a center (resp. F has no center or F is a
Cauchy circular filter), A is of the form N;erL(aj,ri,7) (resp. d(a,r))
with r > diam(F) and |a; —a;| = diam(F) if ¢ # j (resp. r > diam(F)).

Let A = sup(r;), @ = inf(r — diam(F),diam(F) — \) (resp. a =
el
r — diam(F)). For all ¢ € B(gr,a), the circular filter on K associated

to 1 is secant with A. Hence by (1), we have |[(h) — ¢r(h) |0 < €. As
1€n(¥) — En(pF) loo = |¥(h) — @7 (h) |0, for all ¢ € B(pr, ), we have
1€n(¥) — En(px) |0 < €. Hence &, is continuous for T5 and so, Ty is
thinner than S. Now, it rests to show that S is not thinner than Ts.
For this, let F be a large circular filter on K of center a € K and
let 8 €]0,diam (F)[. Now, the filter of neighbourhoods of ¢z, with
respect to S, admits a basis of the form ﬂg-:lV(cpf, hj,e;) with ¢ € N*,
h; € K[X]. In particular, we consider such a neighbourhood W =

r]?:lV((p]?,hj,Ej}. We put € = _i{lf (¢;)- For any j € {1,...,q}, there
j=1,-40
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exists an element A; of F such that |px(hj) — |hj(z)| |l < €, VZ €
Aj. We put A = NI_A; and then, we have Vj € {1,...,q}, Vz €
A, |ox(hj) — |hj(z)| | < €. Of course A is not empty because G is a
filter. Let G be a circular filter on K of center b € d(a,diam(F))N A and
of diameter v €0, diam(F) — B[ (which is obviously secant with A). Such
a circular filter exists because A is open. We have |pr(h;) —@g(h;) | <
e, Vj € {1,..,q}. Then g € W. But we clearly have d(¢r,pg) =
diam(F) — v > B. Hence ¢g & B(¢r,). And then, B(pr, 8) may not
be a neighbourhood of ¢ with respect to the topology S. In particular,
B(pr,B) does not contain images by ® of Cauchy filters on K i.e. it
only contains absolute values on K[X], [9]. This ends the proof.

Definitions. Given F and G two circular filters on K such that F < G,
we call segment [pr,pg] of Mult(K[X]) the image by ® of the interval
[F,G), ie. [pF,pg] = {pn € Mult(K[X]) | or < ou = ¢g}.

A continuous function v from an interval [a, b] of R into a topological
space F is called a path of E. A subset S of a Hausdorff topological space
FE is said to be arc-connected if for every A, B € S, there exists a path
v from [0, 1] into S such that v(0) = A and (1) = B.

Proposition 3.2. Ewvery segment of Mult(K[X]) is an arc-connected
set with respect to the topology Ts.

Proof. Given F and G two circular filters on K such that F < G,
we respectively denote by A and p their diameters and we consider the
segment [pr, pg] of Mult(K[X]).

For every t € [, u], we denote by F; the circular filter in W(F) of
diameter ¢, so F; € [F,G]. Let f be the path on Mult(K[X]) defined
from [\, p] into Mult(K[X]) by f(t) = ¢x,. Given € > 0 and tg € [A, ],
for all ¢ € [A, p] such that |t—tg | < €, we have 6(¢F, ,px) < €. Hence,
the path f is continuous with respect to the topology Ts5 on Mult(K[X])
and this ends the proof.

Theorem 3.1. Mult(K[X]) is an arc-connected space with respect to
the topology Ts.

Proof. Let ¢or and ¢g be two elements of Mult(K[X]) associated to the
circular filters F and G. By Proposition 3.2, both segments [pr, @Mf_g]
and [pg, pmy o] are arc-connected. Hence there exists a path f from
[0, 1] into Mult(K[X]) such that f(0) = F, f(1) =G and f(3) = Mrg.
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Corollary 3.1. Mult(K[X]) is an arc-connected space with respect to
the topology S.

Definitions and Notation. We denote by ®* the restriction of ® to
the set of large circular filters on K. Then, given a large circular filter
F on K, we may extend ®*(F) = ¢r to K(X). The mapping ®* is a
bijection from the set of large circular filters on K onto Mult(K(X)),
[9]. This bijection allows us to define the distance § on Mult(K(X)) by
putting again d(¢x,pg) = 8(F,G), for all large circular filters F and
G on K. We also denote by S the topology of simple convergence on
Mult(K(X)) and by T the metric one associated to the distance 4.

The same proof of the one of Proposition 3.1 holds on Mult(K(X)),
then we have the following proposition.

Proposition 3.3. On Mult(K(X)), Ts is strictly thinner than S.

Theorem 3.2. Mult(K(X)) is an arc-connected space with respect to
both topologies.

Proof. Let pr, ¢g € Mult(K(X)). Then F, G are large circular filter
on K and so is each element of [F, Mz g] (resp. [G,Mxg]). Put £ =
Mz g. Therefore [@r,pg] (resp. [pg,pe]) is included in Mult(K(X)),
so the conclusion comes from Theorem 3.1 and Corollary 3.1.

4 Topologies on Mult(H (D), Up).

Remark. If two circular filters F, G on K are secant with a set D and
satisfy pF = pG then F = G because F and G are secant.

Definitions and notation. Let D C K and let F be a large circular
filter on K secant with D. We denote by pF the filter F N D which
is called circular filter on D. The filter of neighbourhoods, in D, of a
point a € D is also called circular filter on D. This filter is the filter
Fa N D that we also call Cauchy circular filter on D, [7] and [9]. The
set of circular filters on D will be denoted by ©(D).

Remark. Let a € D\ D. The Cauchy filter F, is secant with D but it
is not a circular filter on D. If D is closed, then each circular filter on

K secant with D, large or not, induces on D a circular filter on D, [7]
and [9].
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By properties of the intersection, we may obviously define on ©(D)
a partial order relation, also denoted by < ie.: pF < pG if F < G.
In the same way, we may also define a distance on ©(D), denoted by §
again, as §(pF, pG) = 6(F,G).

Lemma 4.1. Let D be an infraconnected subset of K and let F and G
be two circular filters on K secant with D such that F < G. Then for
all H € [F,G), H is secant with D.

Proof. Let H € [F,G] and A = diam(#). Since A € [diam(F), diam(G)],
by Lemma 41.2 of [7] there exists a unique circular filter p&X on D of
diameter A satisfying pF < pX. But by Lemma 2.1, H is the unique
circular filter of diameter A surrounding F. So, we have H = X, hence
H is secant with D.

Lemma 4.2. Let D be an infraconnected subset of K and let F and G
be two circular filters on K secant with D. Then Mz is secant with

D.

Proof. If F < Gor G < F, Lemma 4.2 is obvious by Remark 2 of section
2. Else, by Lemma 2.4 there exist disks d(a,r) € F and d(b, s) € G such
that d(a,r)Nd(b,r') = 0. Since F and G are secant with D, without loss
of generality we may suppose a,b € D. Let H be the circular filter of
center a and diameter |a — b|. Since D is infraconnected, by Proposition
3.14 [7], H is secant with D and then we have F < H and G < H, so
Mzg <X H. Hence, by Lemma 4.1, Mg is secant with D.

Definitions and notation. Let D C K. Circular filters on D are
known to characterize the elements of Mult(H(D),Up) in the following
way. To each circular filter pF on D, we can associate an element pyr of
Mult(H(D),Up) such that Vf € H(D), ppr(f) = Iil}ltf(ﬂ:}l. The map-
ping p® : pF — per is a bijection from O(D) orfto Mult(H(D),Up)
(Theorem 4.14 [7]).

Then, as in Mult(K[X]), this bijection defines an order relation and
a distance on Mult(H (D),Up), also respectively denoted by < and §;
they are defined in a natural way as: ppr =< pyg if pF < pG and
d(per, ppg) = 6(pF, pG). Given two circular filters pF and pG on D,
we define in a natural way the segment [p@r, ppg] of Mult(H (D),Up)
as [pyr, ppg) = {peYn € Mult(H(D),Up) | ppr X pYu = peg}-
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As we did on Mult(K[X]), we will denote by S the topology of simple
convergence on Mult(H (D),Up) and by T; the metric one (defined by
J).

Proposition 4.1. On Mult(H(D),Up), the topology Ts is thinner than
the topology S.

Proof. The proof is similar to this of Proposition 3.1. For h € H(D),

let £, be the mapping from Mult(H(D),Up) onto R such that &, (pypr) =

ppr(h) = 1i1}__1|h(z)|. It is known that S is the least thin topology on
D

Mult(H (D),Up) such that & is continuous for all h € H(D). So, by
proving that &, is continuous for T5, we will show that T; is thinner
than §.

We denote by B(pyrx,3) the open ball in Mult(H (D),Up) of center
ppr and radius § with respect to the distance 4. Given € > 0, by

definition of pwx(h), there exists an element A C K of a canonical basis
of F such that

(1) lor(h) — [h(z)||loo <€, Vo€ AND.

If F is large and admits a center (resp. F has no center or F is a
Cauchy circular filter), A is of the form N;¢;T(ai, i, 7) (resp. d(a,r))
with 7 > diam(F) and |a; —a;| = diam(F) if i # j (resp. r > diam(F)).
Let A = S’.“?(T")’ a = inf(r — diam(F),diam(F) — A) (resp. a =

i€
r—diam(F)). For pyg € B(pyr,a), the circular filter pG is secant with
AND. Hence by (1), we have |ppg(h) — ppr(h) | < €. As [{n(Dpg) —
En(DPF) loo = IDPg(h) — pPx(h) |oo, for all ppg € B(pyr,a), we have
I€n(ppg) — én(DYr) o < €. Hence &, is continuous for T and so, Ty is

thinner than S.

Remark. Take care that, here, topologies S and T5 may be equivalent

in certain particular cases. See explanations and examples in Chapter
V.

Notation and definitions. As for Mult(K[X]), given ppr €
Mult(H(D),Up), f € H(D), € > 0 we will denote by V(pyzr, f,€) the
set of the pypg € Mult(H(D),Up) such that |per(f) — pee(f) o < €.
So, we have a basis of neighbourhoods of any pps € Mult(H(D),Up)
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q
for the topology S by taking the sets of the form nV(Dcp;,fj,ej),
i=1
g € N* that we call canonical neighbourhoods of pyr.
We will denote by W (py=, f,€) the set of the ppg € Mult(H (D), Up)
such that |pes(f) — pwg(f) | < €. Thus, we also have a basis of
neighbourhoods of pyx with respect to S by taking the sets of the form

q
(W (b=, fi:€5), g € N*.
j=1

Proposition 4.2. Let D be infraconnected. Then every segment in
Mult(H (D), Up) s arc-connected with respect to both topologies.

Proof. Let ppr, ppg € Mult(H(D),Up) such that ppr < pyg.
As F and G are secant with D, by Lemma 4.1, every circular filter of
[F,G] is secant with D. Further, as every circular filter H € [F, G] such
that F < H is large, we see that every circular filter in [F,G] induces
a circular filter on D. Hence we may consider the segment [¢r,¢g]
in Mult(K[X]) as a subset of Mult(H(D),Up). Then, by Theorem 3.1,
[@r, pg] is arc-connected with respect to Ts and therefore by Proposition
4.1, it is arc-connected with respect to S.

Definitions. An element u € H(D) will be called idempotent if u(z) =
0 oru(z) = 1 for every z € D. (This definition holds even when D ¢ A).
An idempotent u is said to be trivial if u =0 or u = 1.

Now we can prove the following theorem.
Theorem 4.1. Given D C K, the following properties are equivalent:
1) There does not ezist non-trivial idempotents on H(D).
1) D 1is infraconnected.
i11) Mult(H(D),Up) is arc-connected with respect to the topology S.
iv) Mult(H(D),Up) is connected with respect to the topology S.
Proof. Since it is known that 1) < 1) ( [5] and [7]) and since trivially
111) = iv), we only have to prove that 72) = ¢) and that iv) = 1).

We first show that 73) = 422). The proof is similar to this of Propo-
sition 3.2. Let pyr, pywg € Mult(H(D),Up). Then F and G are two
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circular filters on K secant with D. By Proposition 4.2, the circular filter
Mg is secant with D. Hence by Proposition 4.2, both [per, poas g
and [pyg, DYMmy ;) are arc-connected subsets of Mult(H(D),Up) with
respect to S. Hence, we may obviously construct a continuous path f
from [0, 1] into Mult(H (D),Up), provided with &, such that f(0) = ppr
and /(1) = peg.

Now we prove that 1v) = 7). Suppose that there exists a non-trivial
idempotent f in H(D). Then, for all ppr € Mult(H(D),Up), we have
either pr(f) = 0 or ppx(f) = 1. Let A and B be the subsets of
Mult(H (D),Up) defined as A = {ppr € Mult(H(D),Up) | per(f) =
0} and B = {p@r € Mult(H(D),Up) | pex(f) = 1}. We have AUB =
Mult(H(D),Up). Both A and B are not empty because for a € D such
that f(a) = 0, we have p®(F,) € A, and for b € D such that f(b) =1,
we have p®(F,) € B. So, we just have to check that A is closed. Let
peF € A, and 18t p¥g € V(per, f, 5)NA. Then |ppr(f)—ppg(f) oo =
Ipg(f) |oo < 1 and therefore pyp#(f) = 0. In the same way, so is B.
This ends the proof.

Remark 1. In general, in [10] B. Guennebaud proved that given a K-
Banach algebra, then Mult(A, || - ||) is connected if and only if A has
no non trivial idempotents. Here we get a link between this property,
arc-connectedness, and infraconnected sets.

Remark 2. According to [2], given an affinoid K-algebra A, if
Mult(A, || - ||) is connected then it is arc-connected.

According to [7, Th. 12.1], every element of Mult(R(D),Up) uniquely
extends to H(D) to an element of Mult(H(D),Up). Conversely, every
element of Mult(H (D),Up) defines by restriction to R(D), an element
of Mult(R(D),Up). Hence, since R(D) is dense in H(D) with respect to
Up, we clearly see that Mult(H(D),Up) and Mult(R(D),Up) are home-
omorphic with respect to the topology S. So, we have the following
theorem.

Theorem 4.2. Given D C K, the following properties are equivalent:
1) D 1is infraconnected.
it) Mult(R(D),Up) is arc-connected with respect to the topology S.

i11) Mult(R(D),Up) is connected with respect to the topology S.
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Notation. As noticed in the Remark following Theorem 2.2, there exists
a natural injection from K into Mult(K[X]) that, to each point a € K,
associates ¢,. In the same way, there exists a natural injection ¥ from
D into Mult(H(D),Up) that, to each point a € D, associates pp,. So,
every subset A of D may be considered as a subset of Mult(H(D),Up)
and we denote by A the closure of A in Mult(H(D),Up) with respect
to S.

If A is a subset of K, we denote by U4 the set of the pr € Mult(K[X])
such that the associated circular filter F on K is secant with A.

In the same way, if A is a subset of D, we denote by pUj4 the set of
the pps € Mult(H(D),Up) such that pF is secant with A.

Remark. Given two subsets A and B of D,. pUanp is included in
pUaN pUg.

Proposition 4.3. Let D C K. For every subset A of D, we have
A= pU,.

Proof. We first show that pUs C A. Let ppr € pUas. As F is secant

with A, there exists a sequence (Zp)nen in A thinner than F. Then,

for all f € H(D), we have por(f) = lim |f(z,)| = lim pes,(f).
n—oo n—oo

Hence the sequence (p@s, )nen converges in Mult(H(D),Up) to per

with respect to S. Since for all n € N, py,, lies in A, then pyr lies in

A.

Now, we will show that A C pUa. Let ppr € A and suppose that
F is not secant with A.

If F has no center, we denote by (Dy)nen = d(@n,Tn))nen a canonical
basis of F. So, there exists a disk D; in this basis such that AN D; = 0.
Hence, for all ¢ € A, we have |¢c — ai41| > 7 > ris1 and therefore
lor(z — air1) — @7.( — ait1) loo = ITiv1 — € = @it1] |oo > [7i — Tig1 oo
Hence, we have V(p@x, T —ai41,7i —Ti+1) N A = 0 and therefore ppr ¢
A, which contradicts the hypothesis.

If F has a center and is large, then, there exists an infraconnected
affinoid B, element of the canonical basis of F, whose holes are denoted
by T; = d(a;,r; ), ¢ = 1,...,n, such that |a;—a;| = diam(F) for i # j and
BNA = 0. Since r; < diam(F) < diam(B) for all ¢ = 1, ..., n, there exists
€ > 0 such that ¢ < diam(B) — diam(F) and € < l__i{lf (diam(F) — r3).

2ayTh

Let b € A. Then, since BNA =0, forall: € {1, ...,n}:' either |b—a;| < ;i
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or |b — a;| > diam(B), and therefore, we have either |diam(F) — |b —
ai| |oo > diam(F)—r;, or |diam(F) — |b—ai| |oo > | diam(B)—diam(F) |co-
In both cases, we have |diam(F) — |b — a;| |0 > €, hence, |ppy(z —a;) —
wr(z—a;) | > €. This last inequality is obtained for all b € A, hence, we

n
have ﬂV(Dtp}.-,x —ai,e)NA =0, and then ppr &€ A. This contradicts

the h;:i)lothesis.

Finally suppose that F is a Cauchy circular filter of center a. So,
there exists a disk d(a,r) in F such that d(a,7) N A = 0. Hence, for
r' €]0,r[ we have |[a—b| > r—r' for all b € A. Hence we have V (ppr,z—
a,v —r')N A = 0, which contradicts the hypothesis " pypr € A” and
completes the proof.

The two following lemmas are useful when proving Theorem 4.3.

Lemma 4.3. Let F be a circular filter on K, let a € K and let r =
vr(z —a).
Ifr > 0 then for all e €]0,7[ we have W(pr,x—a,€) = Up(ar—c,r+e)-
If r =0 then, for alle > 0, W(pr,z — a,€) = Uy(a,e)-

Proof. We notice that if r = 0 then F is the Cauchy circular filter of
center a. Let G be a circular filter on K secant with A(a,r —e,7 + €)
(resp. d(a,e)). There exists a sequence (an)nen in A(a,7 — &,7 + €)
(resp. d(a,¢)) thinner than G. So, we have ||a, —a| —7T|e <€ Vn € N.
But, since pg(z — a) = nHToola“ — al, we have |pg(z —a) — r|e < €.
Hence, ¢g € W(pr,z — a,€).

Conversely, let pg € W(pr,z — a,e) (where r may be equal to 0).
Then, we have |pg(z —a) — 7| < e. We first suppose that a € Q(G).
If opg(z —a) > r (resp. @g(z —a) < r, resp. @g(z —a) = r), we
consider an increasing (resp. decreasing, resp. monotonuous) distances
sequence (ap)nen C d(a,diam(G)~) (resp. (@n)nen C K) thinner than
G ([9, 7]). Since pg(z —a) = nHTmla" — al, there exists Ny € N
such that for all n > N;, we have pg(z — a) > |on — a| > r (resp.
pg(z —a) < |ap, —a|l < r, resp. |r — |, — a||eo < €). Now, for every
B € G, there exists N, € N such that a,, € B whenever n > N,. So, G
is secant with A(a,r — €,7 + €) (resp. d(a,€)). If a € Q(G), it is easly
seen that there exists B € G such that pg(z — a) = |y — a|, whenever
y € B. Hence B C A(a,r —&,7 +¢) (resp. B C d(a,e)) and then it
follows that G is secant with A(a,r —e,7 + €) (resp. d(a,¢)).
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Proposition 4.4. Fori € {1,..,n}, let a; € K and let r; > r; > 0. Let

n
E= ﬂA(ai,T;‘,?‘:). Then n?:lUA(a.-.r‘-,r;) = Ug.

=1

n
Proof. It is clear that Ug C ﬂUA(a,-.r,-,r;)- Let F be a circular fil-

=1

n
ter on K such that pr € nUﬁ{anra.ﬂ)' If E = 0, then the claim

i=1

n
is trivial. So we suppose E # (. Then md(ai,r;) # 0, hence we

i=1

n
may assume a; € ﬂd{ai,r;). Let p = 1én£ (r})). Then K\ E =
Sisn

i=1

n
(K \ d(a1,p)) U(U d(ai,;")). More precisely, There exists a set I C
i=1

{1,..,n} such that K\ E = (K\d(a,, p)) U(U d(ai,r;")) and d(a;, ;)N
i€l

d(aj,r;7) =0ifi,5 € I and 7 # j. Suppose that F is not secant with

E. Then either it is secant with K\ d(a;,p) or it is secant with one of
the d(a,r;™) (¢ € I) which are the holes of E.

Suppose first F is secant with K\ d(a1,p). Since it is not secant

with E, more precisely there does exist p' > p such that F is not secant

with d(a1,p’). And therefore F is not secant with A(ay,71,7]), which

contradicts the hypothesis px € Ua(a,r, r))-

Now suppose that F is secant with a certain d(a;,7;~) (7 € I). Since

F is not secant with E, we have diam(F) < r; and therefore F is not

secant with A(a;,7;,7). A contradiction with the hypothesis. As a

consequence F is secant with E, and therefore ¢ € Ug. This finishes
n

proving that nUL\.(a.-,r.-,r;) Cc Ug.
i=1

Theorem 4.3. Let D be infraconnected and let ppr € Mult(H(D),Up).
Then the set {pUa | A € pF} is a basis of the filter § of neighbourhoods
of ppr with respect to S.

Proof. It is clearly seen that {pU4 | A € pF} is a basis of a filter, since
=4 {DUA | Ae DF} and pUanp C pUa N pUpg for any A, B € pF.
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q
Let ﬂV(Dcpgr,fj,sJ-) be a canonical neighbourhood of pyr and let
i=1
e= inf (&). As por(fi) = lir};_1|fi(a:)|, for all : = 1,...,q, there exists
3 D

an infraconnected affinoid element B; of the canonical basis of F (in K)
such that |ppr(f:) = |fi(z)|l < & Yz € B;ND. Let E = NI_,B;.
Given pyg € Mult(H(D),Up) such that the circular filter pG on D
is secant with E, we have |pwr(fi) — pwg(fi)lo < &, V2 = 1,...,q.
Then pUr C NI_,V(p¢r, fj,€;). Hence NI_,V(pyr, fj,€;) belongs to
§ since § is a filter.

Now let A € pF. We first suppose that F is large and has a cen-
ter. So, there exists an infraconnected affinoid set B of the canoni-
cal basis of F in K such that BN D C A and such that the holes
T; = d(ai,r;) of B satisfy |a; — a;| = diam(F), Vi # j, i = 1,...,n.
Let » = sup (r;). It is clear that r < diam(F) < diam(B). Let

i=1l,..,n

A > 0 be such that A < inf(diam(F) — r,diam(B) — diam(F)). For
all ¢ € {1,..,n} we have ppr(z — a;) = diam(F). Put F =
Ni=1A(a;, diam(F) — A, diam(F) + A) N D and F; = A(a;,diam(F) —
A,diam(F) + A) N D for ¢« = 1,..,n. So, by Lemma 4.3 and Propo-
sition 4.4, we have N{_;V(pyr,z — a;,A) = N V(pr,z — a;, A) N
Mult(H (D),Up) C NI 1W (pF, z—a;, A)NMult(H (D), Up) = NI, pUF,
N Mult(H(D),Up) C pUr N Mult(H(D),Up) C pUpnp N Mult(H(D),
Up) C pUa.

Now, suppose that F is a Cauchy circular filter of center a. So,
there exists a disk d(a,r) such that d(e,7) N D C A. By Lemma 4.3
we see that W (pyr,z — a,7) = W(pr,z — a,r) N Mult(H(D),Up) =
Ud(a,r] N Mult(H(D),UD] C pUa.

Finally we suppose that F has no center. We denote by (Dp)nen
a canonical basis (d(an,rn))nen of F in K. There exists a disk D; =
d(ai, ;) of this basis such that D; N D € A. We may clearly suppose
that a; € Dit1 = d(@it+1,7i+1). Let A > 0 be such that A < |a;4+; — a;].
For all i € N, we put F; = A(a;+1,07(z — ai+1) — A, p7(z — ai41) + ),
then by Lemma 4.3, we have V(pyr, z —ait1,A) = V(er, 2 — ajr1,A) N
Mult(H(D),Up) C W(pr,z — ait1,A) N Mult(H(D),Up) = pUf, N
Mult(H(D),Up) C pUp,np N Mult(H(D),Up) C pUj.

So, in any case, pUy is a neighbourhood of pys and this ends the
proof.
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Corollary 4.1. Let D be infraconnected and let F be a circular fil-
ter on K secant with D. Let B(F) be a basis of F. Then, the set
{pUpnp | B € B(F)} is a basis of the filter of neighbourhoods of pyr
in Mult(H (D),Up) with respect to S.

Corollary 4.2. Let D be infraconnected. If K is weakly valued, then
the filter of neighbourhoods of any pyr € Mult(H(D),Up) admits a
countable basis.

Proof. This is a direct consequence of Corollary 4.1, since a circular
filter on K admits a countable basis when K is weakly valued, [7].

Proposition 4.5. Let D C K and let A be a closed subset of K such that
AND # 0. Then the mapping which to snppr € Mult(H(AND),Uanp),
associates its restriction pypr to H(D) is a continuous bijection from
Mult(H (A N D),Uanp) into pUanp, both provided with the topology of
simple convergence.

Proof. This mapping is denoted ¢. By Theorem 4.14 [7], ¢ is injec-
tive. Now, let por € pUanp. So, pF is secant with AN D. First,
suppose that pF is large, then it defines a circular filter on AN D and
consequently, anppr € Mult(H(A N D), Usnp) and ¢(anppr) = per.
On the other hand, if pF is a Cauchy circular filter on D of center
a, then by definition @ € D. Further, as A is closed in K and pF is
secant with A, we see that a € A. Therefore a € A N D and then
AnD®Pa € Mult(H(AN D),Uanp) and ¢(anp¥a) = DPF = DPa- S0, ¢ is
bijective.

Now, we will show that ¢ is continuous. Let ppr € pUanp and

g
let V = nV(Dgogr,fJ-,fj) (f; € H(D), g5 > 0 for all j € {1,..,q} and
i=1
q € N*) be a canonical neighbourhood of pyz with respect to topology
of simple convergence on pUanp. Then, obviously we see that

q
o H(V) = ﬂV(Ansz;,fj/AnD,sj) which is a canonical neighbour-
i=1
hood of snp@s with respect to topology of simple convergence on
Mult(H(A N D),Usnp)- This proves that ¢ is continuous.

Theorem 4.4. Let D be infraconnected. Then Mult(H(D),Up) is a
local arc-connected space with respect to S.
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Proof. We have to prove that, given any ppr € Mult(H(D),Up),
there exists a basis of neighbourhoods of pyr whose elements are arc-
connected. In chapter 0, we have shown that a such circular filter F
on K admits a basis B(JF) which consists of infraconnected affinoid sets.
Given B € B(F) secant with D, by Lemma 1.1, BN D is infraconnected.
Hence, by Theorem 4.1 Mult(H(B N D),Upnp) is arc-connected and
then by Proposition 4.5, pUpgnp is arc-connected too. This ends the
proof.

Remark. It is well known that a topological space which is connected
and locally arc-connected is arc-connected. Here, conversely, we have
shown that when Mult(H(D),Up) is connected, then it is locally arc-
connected. However, we notice that the proof is just based on Theorem
4.1. So, it does not seem easy to prove first the local arc-connectedness.

5 Metrizability of (Mult(H(D),Up),S).

In this chapter, we give some conditions for metrizability of the topology
S on
Mult(H(D),Up) and we look for equivalence between topologies S and
Ts. We need the following basic lemma in topology (see, for example
ex. 16A4 [13]).

Notation. Given any topological space E, countable intersection of
open sets is usually named G-set. Here, in order to avoid any confusion
with the distance § already defined, we will denote such a set a G,-set.

Lemma 5.1. Let (E,T) be a compact topological space and let z € E.
If {z} is a G,-set, then x admits a countable system of neighbourhoods.

Proof. Since {z} is a G,-set, there exists a decreasing sequence of open
sets (Un)nen such that {z} = NuenU,. Since E is a regular space, as
it is compact, there exists a decreasing sequence of open sets (V;,)nen
such that, foralln € N, z € V,, C V,, C U,. Let W be an open neigh-
bourhood of z, and suppose that, for all n € N, V,, is not included in
W. Then, the sequence (V,, \ W)nen is a decreasing sequence of com-
pact subsets of E. So, their intersection is not empty. This contradicts
the fact that {z} = N,enU,. Hence, there exists N € N, such that
Va C W and therefore, the sequence (V,)nen is a countable system of
neighbourhoods of z. This ends the proof.
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Theorem 5.1. Let D C K be closed and bounded. If Mult(H(D),Up)
is countable, then the topology S is metrizable.

Proof. By Tykhonov’s theorem, it is known that when D is closed and
bounded, then Mult(H (D),Up) is compact with respect to S, Theorem
1.11 [7]. Suppose that

Mult(H(D),Up) is countable. Given any ¢ € Mult(H(D),Up), it is
clearly seen that {¢} is a G,-set because it is the intersection of com-
plementaries of a countable family of finite subsets of Mult(H(D),Up)
which do not contain ¢. Then, by Lemma 5.1, every ¢ € Mult(H(D),Up)
admits a countable system of neighbourhoods. Hence, since
Mult(H (D),Up) is countable, there exists a countable basis of open
sets for the topology S. Then, by the Nagata-Smirnov Theorem [3], S
is metrizable.

Recall that ¥ denotes the injection from D into Mult(H (D),Up)
that, to each point a € D, associates pe,.

Definition. D will be said simple if there is no large circular filter on
D. i.e. if ¥ is a bijection onto Mult(H(D),Up).

Remark. If a closed simple set D lies in A, then it is bounded. In order
to simplify notation, when D is simple, we will identify every a € D with
¥(a).

Simplicity is not equivalent to countability as it will be shown in
Example 2.

Theorem 5.2. Let D € A be closed. The following propositions are
equivalent:

i) D 1is simple.
1) D is compact.
i11) U is a bijection.
iv) Topologies S and Ty on Mult(H(D),Up) are equivalent.
Proof. For convenience we identify D with ¥(D). The equivalence

between %) and #i¢) is obvious. We first show that i) < iv). Givene >0
and pyr € Mult(H(D),Up), we denote by B(pyx,e) the open ball in
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Mult(H (D), Up) of center pyr and radius € with respect to the distance
d.

1) = 1v). Suppose that D is simple. Given a € D and ¢ > 0, by
definition of the distance § it is seen that B(a,e) = {y € D | [y—a| < §}.
For any z,y € D, we define P, € H(D) by Py(z) = z —y. Then we see
that B(a,e) = V(a, Ps, §), and then B(a,¢€) is an open set with respect
to §. This shows that S is thinner than T, and then, by Proposition
4.1, topologies & and T; are equivalent.

iv) = 1). We suppose that D is not simple. Hence, there exists a
large circular filter pF on D. By Lemma 3.2 [7], there exists a sequence
(Zn)nen thinner than pF. Let 8 > 0 be such that f < diam (pF).
For all @ € K, we clearly have d(py@r, pws) > diam(pF) and then
B(pys,B) does not contain images by p® of Cauchy filters on D, i.e.
B(pyr, ) does not contain images by U of points of D.

Let us take a basic open set W of the topology S. It is of the form

q

ﬂV{DqJ;,hj,Ej), g € N*. We put ¢ = j_i{lf qu' Since the sequence
=

ifﬂn)neN is thinner than pF, there exists N € N such that, foralln > N
and for all j = 1,...,q, we have |ppx(h;j) — |hj(zn)||lo < €. Hence,
W contains all images by p® of Cauchy filters on D associated to the
Tn, n > N. So, B(pyr, ) may not be an open set for the topology S,
and therefore S and T are not equivalent.

w) = i1). We have seen that if topologies S and T on
Mult(H (D),Up) are equivalent, then D is simple. Since D is closed,
by the previous remark, it is bounded too. Hence, Mult(H(D),Up) is
compact with respect to § ([7, Th 1.11]). The mapping ¥, which is
a bijection, is here an homeomorphism because the distance § extends
that of D. Hence, D is compact.

Finally we show that 1) = ¢). Suppose that D is not simple. There
exists a large circular filter pG on D. It is known that there exists a
monotonous distances sequence (z,)neny C D, thinner than pG. But
such a sequence does not admit accumulation point with respect to the
metric topology of K. As a consequence, D is not compact. This shows
11) = 1) and completes the proof.

Example 1. In this example, we construct a set D closed, bounded
and not simple such that Mult(H(D),Up) is countable. By Theorem
5.1, S is metrizable, but by Theorem 5.2, topologies S and Tj are not
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equivalent. However, we are not able to construct a distance giving S.

Let (an)nen be an injective sequence in d(0,1) such that, Vp,q € N,
P # q, |lap — ag| = 1 (each ayp lies in a different class of d(0,1)). We put
D = Upen{an}. The only one large circular filter on K secant with D is
the circular filter G of center 0 and diameter 1. Then, Mult(H (D), Up) =
(UneND%®a,,) U Dpg is countable.

Example 2. In this example, we show a set D closed, bounded and sim-
ple but not countable. Hence, by Theorem 5.2, this shows that topologies
S and T are equivalent on Mult(H(D),Up) although D is not count-
able.

Let p be a prime number. We put K = C, and D = Z,. It is

well known that Z, is not countable, but since Z, is compact, then it is
simple. In particular, there is no large circular filter on C, secant with
L.
Remark. We have seen that countability of Mult(H(D),Up) is not a
necessary condition for metrizability of the topology S and that simplic-
ity of D is not sufficient. It seems difficult to find a convenient necessary
and sufficient condition for metrizability.
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