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GEOMETRIC GENERA FOR AMPLE
VECTOR BUNDLES WITH REGULAR
SECTIONS

Antonio LANTERI*

Abstract

Let X be a smooth complex projective variety of dimension
n > 3. A notion of geometric genus p,(X,€) for ample vector
bundles £ of rank 7 < n on X admitting some regular sections is
introduced. The following inequality holds: py(X,€) > h""0(X).
The question of characterizing equality is discussed and the answer
is given for £ decomposable of corank 2. Some conjectures sug-
gested by the result are formulated.

Introduction

Recently the notion of curve genus for an ample vector bundle on a pro-
jective manifold attracted the attention of several authors ([LMS], [M2],
(1] [FkI]). In particular, Ishihara [I] introduced the c,-sectional genus,
which generalizes at the same time several genera previously studied.
Let X be a smooth complex projective manifold of dimension n and
let £ be an ample vector bundle of rank 7 < n — 1 on X having a
regular section, i. e., there exists a global section s € I'(£) whose zero
locus Z = (s)g is a smooth submanifold of X of the expected dimension
n — r. For example this condition is certainly satisfied if £ is ample and
spanned. In the setting of pairs (X, ) as above another notion of genus
(also generalizing the curve genus) can be introduced: the geometric
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genus py(X,E), which is defined as py(Z) = A" "°(Z) (see Section 1).
Note that Z represents ¢.(£) and that the normal bundle of Z in X is
isomorphic to £z. Hence, if r = n — 1 adjunction gives

2y (X,E) — 2= (Kx + c1(E))en1(E),

showing that py(X, ) is simply the curve genus of (X,£), according to
the terminology of [LMS]. In particular, for r = n — 1 the character
pg(X, &) can be defined and analyzed without any assumption on the
sections of &; for interesting results in this direction see [M2]. On the
contrary, I would like to stress that the existence of a regular section
seems to be crucial for defining py(X,€) whenr <n —2.

Now, having defined p,(X,£) for any r < n — 1, it follows from the
Lefschetz—Sommese theorem that

(%) pe(X,€) > A" 0(X),

and it is natural to ask when (%) is an equality (see [LMS] for the case
r = n — 1). The same question for the similar inequality involving the
c,-sectional genus of an ample and spanned vector bundle of rank r on
X and the irregularity h%!(X) is answered in [I, Theorem 2.2]. Here the
situation looks much more difficult and rich.

The Koszul complex associated with £ and Z easily suggests a co-
homological adjunction theoretic condition for equality holding in (%)
(Proposition (1.1)). In general this condition is only sufficient, but for
line bundles having enough sections it is also necessary (Proposition
(2.1)). Relying on this condition, all decomposable ample and spanned
vector bundles £ of rank n— 2 on a projetive n-fold X for which equality
holds in (*) are classified (Theorems (3.2) and (3.3)). This is done by
combining techniques and results on ample divisors with Sommese’s re-
sult on the nonemptiness of suitable adjoint linear systems on a smooth
projective threefold. Finally, some conjectures arising from this classifi-
cation, in comparison with other results in the literature, are formulated
(Section 4).

I am very grateful to Enrique Arrondo for his helpful comments on
a preliminary version of this paper.
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1 The geometric genus and its lower bound

We work over the complex number field C and we use the standard
notation from algebraic geometry. Let X be a projective manifold of
dimension n. If £ is a vector bundle of rank r < n on X the integer
n — r is called the corank of £. The pull-back i*£ of the vector bundle
£ on X by an embedding ¢ : Y — X is usually denoted by £y. We
say that the vector bundle £ is spanned to mean that it is generated by
global sections. The canonical bundle of a smooth variety X is denoted
by Kx. Following current abuses, I do not distinguish between a line
bundle and the corresponding invertible sheaf and I freely switch from
the multiplicative to the additive notation for the tensor products of line
bundles.

Let £ be a vector bundle of rank r < n—1 on X. Let s € ['(£)
be a global section of £. Then s defines a homomorphism Ox — € by
sending 1 to s. Let n : €Y — Ox be its dual homomorphism. The
closed subscheme Z := (s)o of X defined by the ideal Z = Im(n) C Ox
is called the zero locus of s. A global section s of £ is called regular if
Z is a smooth subvariety of codimension r. If Z is the zero locus of a
regular section of £ we set py(Z) = k" "%(Z) = h°(Kz).

Throughout all the paper we assume that
(1.0) £ is an ample vector bundle of rank 7 < n — 1 on X admitting a
regular section.

Recall that ample and spanned vector bundles satisfy the latter con-
dition, due to the Bertini theorem.

Now note that Z being smooth, connected and of the expected di-
mension are all open conditions. Hence, under the assumption (1.0),
the regular sections of £ constitute an open dense (C*-invariant) subset
of I'(€). Then, by [H, p. 289, Example 12.9.3] we see that py(Z) =
h"~"(Oz) is constant on the open subset of P(I'(£)) parametrizing the
zero loci of regular sections. We can thus define the geometric genus
py(X, E) of the ample vector bundle £ on X as in (1.0) as follows:

Pg(ng) = PQ{Z),

Z being the zero locus of any regular section of £. Here is the first result
concerning py(X, £).

(1.1) Proposition. Let X be a smooth complez projective n-fold and
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let £ be an ample vector bundle on X as in (1.0). Then
(%) pg(X,€) > h*O(X).

Moreover equality holds if h'(Kx ® A" '€) =0 fori=0,...,7 — 1.

Proof. Let Z be the zero locus of a regular section of £ and consider
the Koszul complex associated to Z

05 0x 2E&NES ... 5detE = detEz — 0,

which is exact since Z is smooth of the expected dimension. Twisting
it by Kx and recalling that £z is the normal bundle of Z in X, by
adjunction we get the exact sequence

0 Kyp -+ KxOED K ® NP2 .. 88 Ky +d6tE 8B Ko-0,

Letting F; = Ker(p;), ¢ = 1, ... ,7 — 1, we have the following short
exact sequences:

0o F > Kx+detE 25 Kz >0,

03 F, -3 Kx®A e Fi 190,
0> Kx > Kx®E-Ly Frly 0.

Now consider the exact cohomology sequences they induce. By the Le
Potier vanishing theorem [SS, Theorem 5.71] we have

(1.1.1) HYKx ® ") =0 for g+p>r and1<p<r.

Thus, for (¢,p) = (1,7), (1.1.1) gives h}(Kx +det &) = 0, and so we get
from the first cohomology sequence

(1.1.2) pe(Z) = h’(Kz) > h'(F);

moreover this is an equality if h%(Kx + det£) = 0, as the same exact
sequence shows. Similarly, by using (1.1.1) for (¢,p) = (2,7—1),...,(r—
1,2), we obtain

(1.1.3) hY(F) 2 K(F) > ... > W N (Fo)
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and finally, the last exact cohomology sequence combined with (1.1.1)
for (¢,p) = (r,1) gives

(1.1.4) WY (Fror) 2 B (Kx):

Note that by Serre and Hodge duality h” (K x) = h"»7(Ox) = h*™0(X).
So, putting together all the above inequalities we get pg(Z) > h""0(X).
In view of the definition of py(X, &), this gives (*). Moreover we have
equality in (*) if (1.1.2), (1.1.4) and all inequalities in (1.1.3) are equal-
ities. Coming back to the exact cohomology sequences we used it is
immediate to see that these equalities are in turn implied by

HYKx QAN E)=H (Kx®AN 1) =...=H Y Kx®E) =0.
=]

Let things be as in Proposition (1.1). By the Lefschetz-Sommese
theorem [LM, Theorem 1.1] for every zero locus Z of a regular section
of £ the restriction homomorphism

Onro : H* X)) = H*"9(2)

is injective. This provides the alternative proof of (¥) mentioned in the
Introduction. As we said there, we are interested in pairs (X,€) as in
(1.0) for which () is an equality, or equivalently 6,_,¢ is an isomor-
phism. The following example will come up again later.

(1.2) Ezample. Let F be an ample vector bundle of rank r + 1 on a
smooth projective manifold Y of dimension n —7 > 1. Set X = Py (F),
let H be the tautological line bundle of 7 on X and denoteby 7 : X = Y
the projection. Finally let G be a spanned vector bundle of rank 7 on Y
and set £ := H @ n*G. Then £ is an ample and spanned vector bundle
of rank r on X. Note that £ = Op-(1)®" for every fibre F of w. Let
Z be the zero locus of a general section of £; then for every fibre F,
Z N F is a linear subspace of dimension > 0 of F. This shows that
nz + Z — Y is surjective. Moreover, since Z is irreducible, Z N F, is
a single point for all fibres F;, = m~!(y) with y outside an algebraic
subset of codimension > 2 of Y. Hence 7z : Z — Y is a birational
morphism. Since H*(Q}") = H®(Q}™") by construction, this shows
that the restriction homomorphism 6,_,9 : HO(Q% ") — HY(Q% ") is
in fact an isomorphism.
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2 Line bundles

Asking for which pairs (X, £) as in (1.0) equality holds in (*) is a nat-
ural, but hard question. This is already clear from the corresponding
situation for line bundles. Let L be an ample line bundle on X whose
complete linear system |L| contains a smooth element Z. For n = 2 and
L spanned, the answer is well known: in fact 6 is an isomorphism if
and only if (X, L) is either (P?, Op2(e)), e = 1,2, (P! x P!, O(1,1)), or a
scroll over a smooth curve. On the contrary, if L is not spanned, some
partial results are available ([L, Theorem 1.1}, [Fk, Theorem 4.2]), but
a complete answer is not yet known.

However in the case of line bundles, the sufficent condition given
by Proposition (1.1) becomes also necessary under a moderate further
assumption on L. In fact we have

(2.1) Proposition. Let L be an ample line bundle on X such that there
exists a smooth element Z € |L| and assume that either py(X) = 0 or
hO(L) > 2, Then 6,_1 is an isomorphism if and only if \°(Kx+L) = 0.

Proof. Consider the exact sequence
(2.1.1) 0— H%Kx) > H(Kx + L) » HY(Kz) 3 H(Kx) = 0.

By Serre and Hodge duality 8,_; o is an isomorphism if and only if § is
so and this in turn is equivalent to ¢ being an isomorphism, due to the
exactness of (2.1.1). Let py(X) > 0; then the existence of an obvious
finite morphism |K x| x |L| = |Kx + L| implies the inequality

RO (Kx + L) > h°(Kx) + h°(L) — 1.
In view of the assumption this prevents ¢ from being an isomorphism.

Therefore py(X) = 0 and then ¢ is an isomorphism if and only if h°(K x +
Lj=0.

When n = 3 and L is ample and spanned, by combining (2.1) with
the main result of [S1] and [S2, discussion after Theorem 1.9], we can
completely answer our question. In fact we have

(2.2) Theorem. Let L be an ample line bundle on a smooth projective
threefold X, whose complete linear system |L| contains a smooth surface
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Z. Assume that either pg(X) = 0 or h%(L) > 2. Then 69 is an
isomorphism if and only if (X, L) is one of the following pairs:

(1) (P3,08(1)), (@, 0Og(1)), or a scroll over a smooth curve;
(2) a Del Pezzo 3-fold (i. e. , —Kx = 2L);

(3) a quadric fibration over a smooth curve;

(4) a scroll over a smooth surface,

or (X, L) admits a reduction (X', L"), which is one of the following pairs:
(5) (P*,0p(3)), (Q* Oq(2)), or

(6) a Veronese bundle, i. e. there ezists a morphism ¢ : X' — B onto
a smooth curve B such that 2K x + 3L' = ¢*H for an ample line
bundle H € Pic(B).

In particular the assertion is true for L ample and spanned.

For the notion of reduction and all terminology of adjunction theory
I refer to [BS].

3 Decomposable vector bundles of corank 2

In this Section vector bundles of corank 2 as in (1.0), satisfying equality
in (%), are characterized in the decomposable case. For simplicity we as-
sume that the vector bundles we are dealing with are ample and spanned,
though the spannedness requirement could be relaxed to weaker condi-
tions enabling us to apply Theorem (2.2). Let us start by discussing the
simplest case of vector bundles of rank 2 on 4-folds.

So let £ = L ® M be a decomposable ample and spanned vector
bundle of rank 2 on a smooth projective 4-fold X. Since both summands
L, M are ample and spanned we can identify Z, the zero locus of a
regular section, with the transverse intersection of two general smooth
elements A, B in |£| and |M)| respectively. Set L := Lp, M := My
and note that both M and L are ample and spanned line bundles. By
factoring the inclusion of Z in X via Z C A C X, the homomorphism
f2,0 factors through the restriction homomorphisms

H2O(X) 24 H20(4) 24 g29(Z).
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Note that o 4 is an isomorphism by the Lefschetz theorem, since Z € | M|
is a smooth ample divisor on A. Therefore 8, is an isomorphism if and
only if 84 is so. By factoring the inclusion of Z C X via B and arguing
in the same way, we conclude that 65 is an isomorphism if and only if
both the restriction homomorphisms

H20(A) ¥ H?%(2)  and  H*(B) %% H?'(2)

are isomorphisms. Thus Theorem (2.2) applies to both pairs (A4, M),
(B, L) giving a precise list of possibilities for them. Now, by using known
results on ample divisors and the symmetric roles played by (A, M) and
(B, L), we can determine all possible triplets (X, £, M), i. e. , all pairs
(X,£) as above, for which 6,4 is an isomorphism. The argument goes
as follows.

First consider (A, M). Since it has to be as in Theorem (2.2) we
have to check all the possibilities listed there.

Case (1). Let (4,M) = (P3,0p(1)). Since A = P® it must be
(X, L) = (P*,0p(1)) and in this case of course we also get M = Op(1).
Let (A, M) = (Q?% 0g(1)). Since A = Q3 we have two possibilities:
(X, L) is either (P*,0p(2)) or (Q* Og(1)). Looking at M we thus get
M = Op(1) in the former case and Og(1) in the latter. Now let (A4, M)
be a scroll over a smooth curve, say C. Since A is a P2-bundle over C, a
known result of Badescu on ample divisors [BS, p. 118] says that (X, £)
is a scroll over C. Since M restricts as Op2(1) to the fibres of A we thus
see that Mp = Ops(1) for every fibre F of X.

Case (2). Let (A, M) be a Del Pezzo threefold. Then [LPS, Ap-
pendix| applies to determine (X, L) and M. Let d := d(A, M) = M3
be the degree of (A, M). First of all d > 2, since M is ample and
spanned. For 2 < d < 5 we get a Del Pezzo 4-fold (X, L) (i. e.
Kx = —3L) of the same type as A with £ = M, plus the 4 triplets
(X!‘C!M) = (IFA!C)P(z)sOP(l))! (Q4,OQ(1),OQ(1)), (W)oﬂ’(g)aoﬂ’(l))
and (Q* Og(2),0g(1)); note that the first two of them have already
been found in studying case (1). When d = 6 we get the Del Pezzo
4-fold X = P? x P2 with L = M = O(1,1). - Case d = 7 does not
lift to dimension 4. Finally for d = 8 we get the triplet (X,£, M) =
(P*, Op(1),0p(2)), which, up to exchanging £ with M, was already
found in studying case (1).

Case (3). Let (A, M) be a quadric fibration over a smooth curve
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C. Then the fibration f : A — C extends to a morphism f : X — C
[BS, Theorem 5.2.3], whose general fibre F' contains the general fibre
of f as an ample divisor. It thus follows that (F,Lr) = (P, Op(2))
or (Q? Og(1)). In the former case f : X — C is a P® fibration (at
this point I cannot yet say that it is a P3-bundle) and Mp = Op(1).
However, by using the same argument as in [F2, (3.3)] (see also [Z, Case
(I) at pp. 194-196]), we see that the existence of such a line bundle M
on X implies that (F, M) = (P?, Op(1)) for every fibre F; in particular
it turns out that X is a P3-bundle over C. In the latter case f gives to
(X, L) the structure of a quadric fibration and we also get Mp = Og(1).

Case (4). Let (A, M) be a scroll over a smooth surface S. Since A
is a P2-bundle over S, several results due to Fania-Sommese and Sato-
Spindler (see [BS, p. 118]) say that (X, £) is a scroll over S except when
A = P! x P2, in which case (X, £) is a scroll over P!. In this last case we
still have to determine M, which will be done in Lemma (3.1). In the
general case, looking at M, we immediately see that also M restricts to
the fibres of the scroll projection X — S as Op2(1).

Finally consider the case when (A, M) admits a reduction (A’, M’).
In this case there exist a smooth 4-fold X’ and an ample line bundle £’
on X’ such that X is obtained via a blow-up p : X — X' at a finite
set {z1,...2¢}, and £ = p*L' — (Ey + ... + E,), where E; = p~!(z;),
i = 1,...,t; moreover A’ = p(A) is a smooth element of |L'| [F1, pp.
60-61]. For the pairs in case (5) of Theorem (2.2) we immediately get

1) (Xf1£’) = (.[EM,OJP(I)),

if A’ = P3, while if A’ = Q® then
") (X’& .C") = (quo@(l)) or
iii) (X', £') = (P*, Op(2)).

On the other hand, in case (6), since (A’, M) is a Veronese bundle over
a smooth curve B, we have that
iv) (X', L') is a scroll over B

by the result of Badescu quoted before. In cases i), ii) and iv) there
exists a line [ of (X', L’) passing through z;; then, setting v = p~1(I)
we get

Ly=p*L'y—Ey=L1-Ey=1-1=0,

which contradicts the ampleness of £. So these cases do not occur. In
case iii), assuming that ¢ > 2 and letting ! denote the line through z;
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and zo we get in the same way
Ly=p'L'y— (BE1+ E)y=L1-2=0,

contradicting the ampleness of £. Therefore only case iii) with ¢ = 1
can occur and in this case from M’ = Og(2) we also get M = L =
p*Op(2) — E;.

Note that apart from a special situation arising in case (4) the struc-
ture of (A, M) has been sufficient to determine (X, £, M). The special
case when A = P2 x P!, M giving the structure of a scroll over P2, needs
to also consider the pair (B, L). This case is settled by the following

(3.1) Lemma. Let (A, M) = (P> xP!,0(a,1)). Then (X,L) is a scroll
over P! via a morphism m : X — P! extending the second projection of
A and M = a(L — bF) + F, where b is a positive integer, L4 = O(1,b)
and F is a fibre of X. Moreover a =1 or 2.

Proof. Let p; and p; be the first and the second projection of A = P? x
P!. We have M = O(a, 1) for some integer a > 1. Note that A = P(G),
where G = Op2(a)®? and M is the tautological line bundle of G. Actually
G = Op2 (a.)@(@?,?f), hence M is the tautological line bundle of the trivial
bundle 01%2 (which is O(0,1)) twisted by p}Op2(a) = O(a,0). Now the
first assertion in the statement follows from the already quoted result
of Bidescu [BS, p. 118]. So X = P(F’), where ' is an ample vector
bundle of rank 4 on P!, which £ is the tautological line bundle of. Let
F be a fibre of 7 and recall that 74 = pa. Set ¢ = deg(c1(F')). Then
the Chern—-Wu relation gives

(3.1.1) L' =cLF =c.

Now look at M. Since M4 = O(a, 1), M induces Opz(a) on the fibres
of ps, hence Mp = Opa(a). Since Pic(X) is generated by £ and F, we
thus get

(3.1.2) M =aL — AF,

for some integer A. In particular, if a = 1 this shows that (X, M)
is a scroll over P! as well. On the other hand, since A is a product
and (A, L4) inherits a scroll structure over P! from that of (X, L), we
also have A = P(F), with F = Op1(b)®3, for some integer b and we can
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assume that £ 4 is the tautological line bundle of 7. So b > 0. Moreover,
from (3.1.1), by using the intersection table of P? x P! we get

c= L= L3 = (0(1,b)® = 3b.
Similarly, since M3 = (O(a, 1))® = 342, recalling (3.1.2) we get
3a2 = M® = M*L = (aL — AF)’L = a®L* - 3o’ \C*F = adc — 3a?).

Since a > 0, this gives A = ab — 1, which in view of (3.1.2) proves the
assertion on M. Finally note that any smooth element B € |[M| is a
fibration over P!, whose general fibre ¥ is a smooth surface of P* of
degree a; moreover L = L4 induces the hyperplane section bundle on
every fibre of B. Since also (B, L) has to be one of the pairs listed in
Theorem (2.2), this immediately shows that a < 2. This is immediate
in cases (1) - (3). In case (4), X, which is a P3-bundle over P!, would
be at the same time a P2-bundle over a surface S, but this is impossible;
otherwise, computing the topological Euler-Poincaré characteristic we
should have 8 = x(X) = 3x(S), a contradiction. Thus B = P2 x P!, due
to a result of Fania-Sommese [BS, p. 118, discussion before Theorem
5.5.3]. This immediately shows that ¥ = P2, hence @ = 1. As to the
remaining cases, note that if (B, L) admits a reduction (B’, L'), then the
fibration of B induces a fibration on B’, since any exceptional divisor
has to be contained in a fibre of B. But in case (5) such a fibration
cannot exist, while in case (6) (2, Ly) should be a Veronese surface,
which clearly gives a contradiction. This concludes the proof.

Note that for all pairs (X, £ @ M) arising from the above discussion
02 is in fact an isomorphism. Actually when (X, L) is a scroll over a
smooth surface S (see case (4)) we noted that even (X, M) is a scroll
over S, hence this case fits into the more general situation described in
Example (1.2). On the other hand, in all the remaining cases we have
h*9(X) = 0 and looking at the surface Z, transverse intersection of two
general elements A € |£| and B € |M]|, it is immediate to check that
py(Z) = 0. In conclusion, we proved the following

(3.2) Theorem. Let £ = L& M be a decomposable ample and spanned
vector bundle of rank 2 on a smooth projective 4-fold X. Then 037 is an
isomorphism if and only if (X,£) is one of the following pairs:
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(1) (P, Op(1) ® Op(e)) withe =1, 2 or 3;
(2) (Q*,0g(1) ® Ogle)) withe=1 or 2;

(3) X = Pc(F), where F 1s an ample vector bundle of rank 4 over a
smooth curve C and Lr = Mp = Op(1) for every fibre F;

(4) (X, L) is a Del Pezzo 4-fold of degree d, 2 < d <6, and M = L;

(5) there is a morphism f : X — C onto a smooth curve C giving
structures of quadric fibrations to both (X, L) and (X, M);

(6) X = Pc(F), where F is an ample vector bundle of rank 4 over a
smooth curve C and Lp = Op(2), while Mg = Op(l) for every
fibre F';

(7) X = Ps(F), where F is a vector bundle of rank 3 over a smooth
surface S and L = Mg = Op(1) for every fibre F;

(8) X is P* blown-up at a single point x and L = M = p*Op(2) - E,
where p: X — P* is the blowing-up and E = p~(z).

By induction it is not hard to extend this result to the case of an
ample and spanned vector bundle £ = @], 12£,: on a smooth projective n-
fold X withn > 5. In fact passing from dimension 4 to higher dimensions
is much easier than passing from dimension 3 to 4. Actually consider
general smooth hypersurfaces A; € |£;], let

E=L10..0L;i®...0 Lo,

where ~ means suppression, and set E; = (£;)4,. By induction, the pair
(A;, E;) is known and by applying again the already quoted results on
ample divisors this allows us to determine (X, £;) and &;.

Note that if n = 5 and (A3, E3) is as in the last case of Theorem
(3.1), by applying again Fujita’s result quoted earlier we would get with
obvious notation: (X', £;) = (P Op(1)) and L3 = p*Op(1) — E, where
p: X — P° is the blowing-up at z and E = p~!(z). Then by taking the
inverse image of a line in P° through = we could immediately contradict
the ampleness of £3. This shows that case (8) of Theorem (3.2) does
not lift to higher dimensions. Recalling also that there are no Del Pezzo
manifolds of degree 6 for n > 5, the concluding result is the following
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(3.3) Theorem. Let & = @;‘:_12[,,- be a decomposable ample and spanned
vector bundle of rank n — 2 on a smooth projective n-fold X with n >
5. Then Op_20 is an isomorphism if and only if (X,E) is one of the
following pairs:

(1) (P, 0p(1)2(=3) @ Op(e)) with e = 1,2,3, or (P, Op(1)2»~4) g
Op(2)9?);

(2) (Q™,0g(1)®"=3) @ Og(e)) withe =1 or 2 ;

(3) X = Pc(F), where F is an ample vector bundle of rank n over a
smooth curve C and Ep = Op(1)®("=2) for every fibre F;

(4) (X,H) ts a Del Pezzo n-fold of degree d, 2 < d < 5, and € =
He(n—?};

(5) there is a morphism f : X — C onto a smooth curve C whose
general fibre F is Q"' and Ep = Og(1)®(~2);

(6) X =Pc(F), where F is an ample vector bundle of rank n over a
smooth curve C and, up to reordering the summands of £, Ep =
Op(1)2("=3) @ Op(2), for every fibre F;

(7) X =Pg(F), where F is a vector bundle of rank n—1 over a smooth
surface S and Er = Op(1)®(*=2) for every fibre F.

In particular, the above results provide the classification of decom-
posable ample and spanned vector bundles of rank n — 2 > 2 on a
projective n-fold X, with py(X,£) = 0. In fact if (X, £) is not as in case
(7) of Theorem (3.3) (and (3.2)) we have p,(X,€) = 0. This follows
immediately by identifying Z, the zero locus of a regular section of &,
with the smooth surface along which n — 2 general elements A; € ||
(¢ =1,...,n—2) intersect transversally. On the other hand, in case (7)
we have p,(X,£)=0 if and only if py(S) = 0, in view of the birational
morphism between Z and S induced by the P-bundle projection.

Another obvious consequence of Theorems (3.2) and (3.3) is the fol-
lowing corollary, which generalizes Corollary (3.3) in [S2].

(3.4) Corollary. Let X be a smooth complez projective n-fold, n > 3,
and let L; be an ample and spanned line bundle on X (i=1,...,n—2).
Set £ = @::12 L; and let Z be the zero locus of a regular section of £.
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If po(X,€) =0 and Z has nonnegative Kodaira dimension, then (X, &)
is as in case (7) of Theorem (3.3), with py(S) = 0.

Note that case (7) in Theorem (3.3) (and (3.2)) corresponds to the
situation described in Example (1.2) for n —r = 2.

4 Final remarks

It is worth comparing Theorem (3.3) with the classification of ample
vector bundles of rank n — 2 on X whose adjoint bundle is not nef
[M1, Theorem, pp. 74-75]. Checking both lists, we see some little
discrepancies.

First of all the list in [M1] contains the pair (Q*,£ := § ® 0g(2)),
where S is any of the two spinor bundles on Q*; of course such a bundle
£ is ample and spanned, but indecomposable. Identify Q* with the
grassmannian G(1,3) of lines of P, and consider the smooth surface
Z = (s)o, where s € I'(£) is general. Then Z, representing c(£), is a
congruence of type (2,3), up to exchanging the generators of H*(Q*,Z).
Thus Z is a Del Pezzo surface (e. g. see [AS, table at p. 203]), hence
pe(Z) =0 = h*°(Q*). So the pair (Q*,£) also satisfies equality in (x).

Furthermore, case (8) in (M1, Theorem, p. 75|, i. e. the case when
X contains a divisor E such that

(E,Og(E),€r) = (P*1, Op(-1), Op(1)®(=2),

does not appear in our lists (except the very special situation described
in (8) of Theorem (3.2)). However this discrepancy is reasonable: the
fact that X contains a (—1)-hyperplane E as above certainly prevents
the adjoint bundle Kx + det £ from being nef but, in principle, it does
not exclude the effectiveness.

The following conjecture arises naturally from this comparison.

(4.1) Conjecture. Let X and € be as in (1.0), with & ample and
spanned of rank r = n—2. Assume that X contains no (—1)-hyperplane
E such that Eg = Op(1)®("=2), Then On—2,0 is an isomorphism if and
only if Kx + det & is not nef.

Note that the corresponding sentence for r = n — 1 is true, as shown
in [LMS, Corollary 2.1}.

46 REVISTA MATEMATICA COMPLUTENSE
(2000) vol. XIII, num. 1, 33-48



ANTONIO LANTERI GEOMETRIC GENERA FOR AMPLE VECTOR . ..

Now come back to the case £ = @?:“12 L; and, as before, identify
Z with the smooth surface along which the general elements A; € |L;]
intersect transversally. Corollary (3.4) suggests the following conjecture.

(4.2) Conjecture. Let X, £ and Z be as in (1.0), with £ ample and
spanned of rank r = n — 2. If po(X,€) = 0 and Z has nonnegative
Kodaira dimension, then (X,&) is as in Ezample (1.2).

The lists in Theorems (3.2), (3.3) also show that if py(X,£) > 0 then
equality in (*) occurs only when (X,€) is as in case (7). So, at least
for r = n — 2, this provides an evidence for another conjecture, which I
state for any r < n — 1.

(4.3) Conjecture. Let X, £ and Z be as in (1.0), with £ ample and
spanned of rank r < n — 1 and suppose that py(X,€) > 0. Then 0,_rp
is an isomorphism if and only if (X,E) is as in Ezample (1.2).

Note that this is true for r = n — 1 [LMS, Theorem]. Conjecture
(4.3) could also be formulated in a stronger form, replacing the positiv-
ity of py(X,€) with the requirement that Z has nonnegative Kodaira
dimension.
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