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An example of degeneration on the noded
Schottky space.

Rubén A. HIDALGO

Abstract
In theae notes we construct explicit examples of degenerations

on the noded Schottky space [~Iof genus g =3. The particularity
of these degenerations is the invariance under the action of a dihe-
dral group of order 2g. More precisely, we find a two-dimensional
complex manifold in the Schottky space such that alí groups (in-
cluding the limit onea in the noded Schottky space) admit a fixed
topological action of a dihedral group of order 2g as conformal
automorphisms.

1 Preliminaries

The basic literature for this section is ¡11]. A conformal automorphism
of the Riemann sphere C is called a M5bius transformation and has the
following form

T(z)=r az + b
cz + d’

where a, b, c, d e C and ad — be ~ 0.
The set Al consisting of alí Mbbius transformations is a topological

group isomorphic to PSL(2, £), in particular, we can talk about discrete
groups of Móbius transformations.

A Kleinian group O is a group of Mébius transformations for which
there is a point x E Csatisfying the following:
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(1) 0(x) = {g E O : g(x) = x} is finite,

(2) there exists an ¿pen neighborhood U of x such that

(2.1) g(U) fl U = 0 for al] g E O — 0(x) aud

(2.2) g(U) = U for al] g E G(x).

The set of points of the Riemann sphere for which the aboye proper-
ties hold is cafled the region of discontinuity of O and denoted by fi(O).
Its complement A(O) is called the limit set of O.

A Kleinian group is in particular discrete, but the converse is false.
We are interested in a ver>’ particular type of Kleinian groups called
noded Schottky gréups, that is, geometricail>’ finite (see the definition
in ¡11J) discrete groups of Móbius transformations isomorpbic to a free
group of finite rank (the rank is also called the genus of the group). In
[7] we have observed that a noded Schottky group is in fact a Kleinian
group.

Example of Noded Schottky groups are br instance:

(a) Schottky groups: Purel>’ loxodromic Kleinian groups. These are
the nodal Schottky groups having no parabolic transformations
(M¿ibius transformations having exactí>’ one fixed point).

(b) Schottky-Type groups: These are Kleinian groups constructed
from Klein-Maskit first combination theorem using cycic groups
of either loxodromic or parabolie type.

(c) Torsion-free finitel>’ generated quasifuchsian groups with parabol-
ics elements (either of second or first kind): These are quasí-
fuchsian deformations of torsion-free finitel>’ generated Fuchsian
groups.

(d) Groups obtained combining the aboye ones using the Klein-Maskit
Combination theorems.

In the aboye, we that the groups in categor>’ (a) belong to categor>’
(b), those of category (b) belong.to categor>’ (c), and those in categor>’
(c) belong to categor>’ (d). It is interesting to note that there are more
complicated noded Schottky groups than the aboye examples.
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A marked noded Schottky group of genus g is by definition a (g + 1)-
tuple (O, T1, ..., Tg), where O is a noded Schottky group of genus g, and
T,,..., Tg is a set of free generators of O.

It is not hard to prove that if we have a marked noded Schottky
group of genus g > 2 as aboye, then we cannot have two different gener-
ators sharing a common fixed point (this will contradicts the discreteness
property of Kleinian groups).

Civen a noded Schottky group O of genus g, we denote by fl«Ét(O) its
regionofdiscontinuity, that is, f1aÉ(Q) = Q(G)uP(O), where fi(a) is its
region of discontinuity and P(G) is the set of fixed points~of the parabolic
transformations of O. We consider on fiat(a) the topolo~’ generated
by the usual open sets of fi(a) and the sets of the form fi, U 82 u {x},
where x E ¡‘(O) and Di and fi2 are disjoint open round discs inside
fi(O) both tangent at x. In this topology, the group O acts as group of
homeomorphisms, preserving each fi(a) and ¡‘(O), so that its restriction
to fi(O) is conformal. The quotient S — fiat(O)/O is a stable Riemann
surface of genus g (for g = 1 we means at most one node). We sa>’ that
the noded Schottk>’ group O uniformizes S and that the natural map
Q : fiat(o) S is the uniformizing map. Reciprocail>’, each
Riemann surface of genus g is uniformized by some noded Schottky
group (see retrosection theorem with nodes in ¡71).

In this work we are interested in finite normal extensions of nodal
Schottky groups, that is, stable Riematin surfaces with automorphisms
that are reflected by noded Schottky groups. In the particular case
of Schottky groups, Suite normal extensions have been studied, for in-
stance, in [Sj and ¡10].

2 A family of M8bius transformations and
noded Schottky groups

Let us consider for each integer g =3 the Mbbius transformations
2,rt 1

Ag(z) = e o z, and B(z) = —.
z

The group Fg, generated by A9 and fi, is isomorphic to the dihedral
group of order

2g, and

= fi2 = (BA )2 — 1.
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A fundamental domain for E’9 is given by the region D9 U P~, where

-Ir? si
= {z E <17: jz¡ < 1, — .c arg(z) = , aud

9 9

¡‘9= {zEC:IzI=1i 0=arg(z)=r}U{0}.

Denote by X the set of Mbbius transfor¡nations O $ B such that
BOR = 0.1 aud 0(0) # 0. Such a Mbbius trausformation O E X has
the form

0(z)— az + 1 ab+l#0.
—z+b

If we consider the two-dímensíonal complex manifold

W = {(a, b) E «Y : ab + 1 # 01,

then we have a bi-analytic map given by

~‘: W — X, (a,b) —.0(z) = az+ 1
—z + b

For each p = (a, b) E W, we consider the transformations

Do(p) = «p)~ D~(p) = A,Do(p)A7, i E {1 g — 1}.

Denote by a(p) the group generated by the aboye Móbius trausfor-
mations. We also denote by S (respectivel>’, NS) the set of points p E W
such that the group 0(p) is a Schottky [3] (respectivel>’, noded Schottky

[71)group of genus y, free generated by the aboye transformations.
Since ever>’ Schottky group is in particular a noded Schottky [7], we

have
8 ci NS ci W.

We have that 8 is an open and connected (consequence of quasi-
conformal deformation theor>’ [1]) subset of W and, in particular, a
connected complex manifold of dimension two. Moreover, the closure of
8 in 14’ contains (strictly) J’f8.

Proposition 1. Ifg is even, theniv’Sfl {(a,b) EW : a = b} =

Proof. flfwehavea = b, then both Do(p) and D&(p) havefixed points
ti. It fol]ows that 0(p) cannot have these two transformations as free
generators and to be discrete at the same time. u
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If we denote by S~ (respectivel>’, NS9) the Schottky space (respec-
tivel>’, noded Schottky space [7]) of genus g, then we have a natural
map

4>9 : NS - NS9 : p — [(0(p), Do(p) Dg—í(p))I
Its restriction to the manifold 5 (into S~) is holomorphic.

Propositian 2. Tite map 4,9 is ¿mo-to-one. Moreover, if4’g(p) =

titen q = —p.
Proal’. Let p and q two different points in NS. The equality 4’g(p)

asserts the existence of a Mábius transformation H ~ 1 such that
BH’fiH and HlAkHAk commute witb Do(p), for alí k = 1,..., g—1.

9 9
(1) Lot us assume first that HlA~.kHA~ ~ 1, for ah /v = 1, ...,g — 1.
The fact tbat Do(p) is not elliptic of order two ensures tbat the commu-
tativity conditions are equivalent to the equality of the fixed points of
the transformations Do(p) and JrlAkHAk for alí k = 1, ...,g — 1.9 9’

The equation of fixed points of Do(p) is given by ¿2 + (a — b)t + 1 = 0.
It follows that the two fixed points of Do(p) are inverse of each other.
In particular, u we write

HQz4~~U aud p=e~,
nl + in

then the aboye asserts tbe equality wy(p
2k —1) = 1, for /v = 1,..., g —1.

Since g =3, we have that this is impossible.

(2) If we have that HlAkHAk — 1 for some /v = 1 g — 1, then it
follows that H and A commute. Since A has no arder two, it follows that
H fixes the points O and oc, that is, ¡¡(u) = Att. On the other hand, we
now that fiH’fiH must commute with Do(p). Rut BJ.fl’BH(u) =

V~. IfA2 # 1, then the commutativity property and the fact that Do(p)
is not elliptic of order two assert tbat the fixed points of Do(p) must be
o and oc, a contradiction. It follows then that A = {t1}. Since we have
assumed H j~ 1, we have ¡¡(u) = —u and, it follows that q = —p.

u

ILet us consider the holomorphic involution ,~ : ¿ .—~ «9 defined by
«p) = —p. Set U tbe cyclic group generated by this involution. Tbe set
of fixed points of i~ is just the singleton {(O,0)}. It follows that W/U
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is a complex orbifoid with oní>’ one singular point. U we consider the
map ¿ : W — «Y defined by t(z,w) = (A, zw), then t(p) = t(q) if and
oní>’ ifp = ±q.The image of t is the the locus «Y — {(t, —1): t E 64. In
particular, W/U is a complex manifoid of dimension two.

The map 4>~ then produces a one-to-one map from NS/U into NS9,
with holomorphic restriction to S/U.

Remark 1. For each p E W, the group K(p) generated by 0(p), A9
and fi is a finite normal extension of 0(p). In particular,

(1) K(p) is Kleinian group if and oní>’ if 0(p) is Kleinian group.

(2) K(p) is geometricail>’ finite if and oní>’ if 0(p) is geometricalí>’
limite.

(3) The region of discontinuity of 0(p) aud K (p) are the same.

(4) K(p)/O(p) is isomorpbic to the dihedral group of order
2g.

3 Hyperelliptic noded Schottky roups

A (marked) noded Schottky group (O,Ai A
9) of genus g is called

hyperelliptic if there is a Mbbius transformation H such that H
2 = 1

andHAjH=A’,forallic{1 g}.
We denote by 1tNS

9 the locus in NS9 consisting of h>’perelliptic
noded Scbottky groups, and we set fl59 = 1-iNS9nS9 the set consisting
of the hyperelliptic Schottky groups. It was shown in ¡10] that lis9
parameterizes ah hyperelliptic Riemann surfaces of genus g.

Set UNS = tk;’t7hNS9) and liS = ip;’(fl59).
We have a natural involution on W defined b>’

r((a,b))=(b,a).

Praposition 3. If g is even, ¿hen nNS = 0. Ifg 18 odd, titen UNS =

{(a,b) ENS:a= b} =ir(Fix(r)).

Praof. A point y, = (a, b) E NS belongs to lt>.1S if and oní>’ if there is
a Mébius transformation H with ¡¡2 = ¡ and HD2(p)H = D1fri)’, for
ahí 1.
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1 ptThe fixed points of D~(p) are A~,(x) = p1x aud A~,(—) = —, where
x x

2,ri 1
p = e and the fixed points of Do(p) are x and —. It follows that

x

H(9x)=.— foieach i=0,1,...,g—1.
x

Rz+S
Using the fact that H(z) = TR’ with R + ST = —1 an(l the

aboye equation for i = 0,1,2, weobtain (after some minor computations)
that H(z) = —z. It follows that x = ti and, in particular, a = b. As a
consequence,

1-MIS = {(a, b) E NS: a = b} = ir(Fix(r)).

When g is even we have, from proposition 1, that 7INS = 0.

u

The aboye says that, for y odd, the hyperelliptic involution is repre-
sented in W by the involution r.

Remark. It is known that there are hyperelliptic Riemann surfaces of
genus y having automorphism gronp isomorphic to a dihedral group of
order 2g for which the group generated by such a group togetber the
hyperelliptic involution do not satisfy condition (A) of [8] as can be seen
in [2] and ¡9], in particular, cannot be uniformized by Schottky groups.

4 Boundary points of ~~(8) C J’/S~

Now we proceed to loolc at the boundary points of the two-dimensional
complex manifolds 4>~(S) in NS

9. These points are exactí>’ ik9(NS) —

Let us consider the following regions:

(—~k ~-), Oc ¡z¡ -c1Z~ = {z E 67: arg(z) E

1Z2 = {z E «7: arg(z) E (0,

—ir ir ‘1
1Z~ = E «7: arg(z) E (—, —) >{z

99)
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Rl4 = {z E «7: arg(z) e (~ — , +

aud the lines

Li = {z E «7: arg(z) = ZL}
= {z E «7: arg(z) =

= {z E «7: arg(z) = +

= {z E «7: arg(z) = —

1
Set

04z) = — the reflection on the unit circle.
z

If we consider a circle O ci Rl
3 such that E(O) nO = O (or O ci Rl4

for g odd as we do in degeneration 4.6), and e denotes the refiection on

O, then there exists a point p E 5 such that e4e = Do(p). In fact, if

is the center of such a circie and r is radius, then p = ~ r~)

In what follows, we proceed to approach the circie O to a limit circle
contained in the closure of the region Rls (or Rl4 for g odd as done in de-
generation 4.6). This procedure will produce points in NS representing
noded Riemann Schottky groups as limit of Schottky groups in 5.

4.1 Degeneration of type 1

Let us start with a circle O ci Rl1 and, by moving both the center and
the radius without getting out of the aboye region, we can obtain as
limit a circie Ci tangent to the unit circle at 1 and Ci — { I} ci Rl1. Let
e1 be the refiection of this limit circie.

In this situation, there is a point p~ E NS—S with e,e1 = Do(pi) a
parabolic transformation with fixed point 1. The group O(pi) isa noded
Scbottky group (in fact a Schottky-Type group) and it uniformizes (see
[7]) a stable Riemann surface topologically equivalent to the one in figure
1. The locus in NS — 5 obtained by this type of degeneration is given
by

{(a,b) EW :b=a+2, —(1+sin(
1)) < a< —1}.
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4.2 Degeneration of type 2

As is the aboye case, we can move the circle O ci Rl1 to obtain a li:nit
circie 02 tangent to the lines L1 aud L2, and contained in Rl1 (by ex-
ception of the tangencies). if 02 denotes the refiection on this circle,

then there is a point P2 E NS — 5 with 0*02 = DO(p2) a loxodromíc
transformation such that A;’Do(p2)’A9Do(p2) is parabolic with fixed
point ~2 fl L1. The group 0(P2) is a noded Schottky group obtained

from the free combination of two torsion-free finitel>’ generated Fuchsian
groups uniformizing spheres with punctures. This group uniformizes a
stable Riemann surface topologicaliy equivalent to the one of figure 2.
The locus in NS — 5 obtained by this type of degeneration is given by

{(a~b)EW:ab—cO5(—)~
9

4.3 Degeneration of type 3

Combining degenerations 1 aud 2, we can obtain a limit circle O~ tan-
gent to the unes L1, L2 sud the unit circle. If 0~ denotes the re-
fiection 011 such a circie, then there is a point p3 e NS — 5 with
0,0~ = Do(ps) a parabolic transformation with fixed point 1 such that

co.2L

A
1D

0(p3)
1AD

0(pa) is parabolic with fixed point O~ nti = e ~ ~9 .9

In this case, tlíe center of O~ is sud its radius is sin(~

)

1 + sin(~) 1 + sin(~’
It follows that

/.ircos
2(PN

The group O(pa) uniformizes a stable Riemann surface topologicalí>’
equivalent to the one described in figure 3.

4.4 Degeneration of type 4

We can start with a circle O ci Rl
2 and move it in this region to obtain a

‘ti

limit circle 04 tangení lo L1 at e u, aud contained in the aboye region.
If 04 denotes the refiection on 04, then Ihere is a point p~ E NS — 5
with B0*04 = DO(p4) a loxodromic trausformation such that AgDo(p4)



174 Rubén A. Hidalgo

is parabolic with fixed point e a. This group O(p~) is a torsion-free
Fuclisian group of the second kind acting on the unit disc E, freel>’
generated by g hyperbolic transformations with the product of them a
parabolic, witb H/G(p4) a spbere with 9 holes and one puncture. In
particular, it is a noded Schottlcy group uniformizing a stable Riemann
surface topologicalí>’ equivalent to the one of tbe figure 4. In this case,
the locus in NS — 5 obtained by this type of degeneration is given b>’

b) ~ — cosQ—0) e~
0 tan cos(E~0

)

_________ 2(1? o)+
1 e~ , b=— cosQ —0)

ir
—<0< fi.

4.5 Degeneration of type 5

As before, we can obtain a limit circle 0~, tangent to L
1 at e a , and

tangent to the real axis at 1. lf 05 denotes the refiection on 6%, theíí
there is a point p~ E NS — 5 with B0.~5 = Do(ps) a parabolic traus-
formation fixing 1 sucb that AgDe(ps) is parabolic with fixed point e

The group O(ps) is a torsion-free Fuchsian group freel>’ generated by
g parabolic transformations with the product of them also parabolic,
acting on the unit disc II so that E/G(ps) is an sphere with (g + 1)
punctures. In particular, it is a noded Schottky group that uniformizes
a stable Riemann síirface as described in figure 5. We also have

4.6 Degeneration of type 6

The next type of degenerations oní>’ work for g odd. We assume then
g =3 and odd. Lot r> O aud in > O be such that the circle O centered
at iw and radius r is contained in the region Rl4. Lot O be the refiection
on O, J(z) = —z and 3(z) = —z + 2iw.

We consider the transformation ie.ei = Do(p), wbere

,~ (ú—(w
2±r2)) EW.
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The famil>’ of circíes obtaiued by rotation of O by powers of A<,, are
disjoint if and only if r < wsin(~). If r = wsin(), then they are
tangent.

The circle O is disjoint from the famil>’ of circíes obtained by rota-
tions of fi(O) = Do(p)(O) ifand only if w4—2(r2+cos(~))w2+(r2— 1)2 >

0. Eqnality to zero is equivalent to tangency.
It follows that p E 5 if both inequalities aboye are satisfled at the

same time. We ma>’ try to approach to some points in NS—S by making
some of the aboye inequalities an equality. In fact, taking r = ir sin()

and ir4 — 2(r2 + cos(~))uA + (r2 — 1)2 > 0, we obtain the same type
of noded Schottky groups obtained in degeneration 2. In this case,

/—1
= k~r’ iw(1 + sin2(i))).

The another possibility is r <ir sin(~) and tu4 — 2(r2 + cos())w2 +
(r2 — 1)2 — O In this case, we obtain a point p6 E 1V 50 that the group
0(p6) is a quasifuclisian group of the first kind uniformizing a surface
of signature (212,2;oc, oc) and, in particular, a noded Schottky group
witb P6 E NS — 5. Figure 6 shows the topological type of the stable
Riemann surface Qttt(C(p

6))/G(p6). the locus in NS — 5 obtained by
this degeneration is given by

cW: tu
4 — 2(r2 + cos(i))w2 + 2 1)2 o{ 2W IV> 9

y < wsin(ZL)}.

For instance, if tu = 1, then r is the positive root of r4 — 4r2 + 2(1 —

cos(~)) = O with r < 1, that is, p6 = (i,i(3 — 2 + 2cos(~))). Another

particular case in this degeneration is to assume ir2 + r2 = 1. This gives
us a point p~6 E HNS — liS (the hyperelliptic involution is represented

1 + cos(5

)

by H(z) = —z). In this case, ir = 2
The group generated by G(ph6) and H uniformizes an stable Re-

mann surface as described in figure 7.

Questian: Are all points in ip
9(NS) — 4>~(S) described b>’ the aboye

degenerations?
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Ftom the viewpoint of algebraic curves and principalí>’ polarized
abelian varieties, some explicit degenerations have been constructed in
¡4], [5]aud [6].

Remark 2. rrhe sublocus Ni? = {(a, b) E NS : a, b E 14 represents
nodal Schottky groups admitting the symmetry 0,. We also have that
NRl fl U/VS = {(a, b) E NS: a = bE 14.
Remark 3. The ideas carried out for the group F9 can be used for any
finite Kleinian group to construct degenerations on the noded Schottky
space.

Acknowledge. The author would like to thank the referee for the com-
ments aud specially for pointing out a mistake in the original staternent
of Proposition 2.
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A stable Riemann surface of genus g with exactly one coxnponent and g
nodes.

Figure 1.
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A stable surface of genus g with exactí>’ two components and g nodes.
Que component is a g-pointed sphere and the other is a g-pointed torus.

Figure 2.
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An stahle Riemann surface of genus g with exactly (1 + g) components.
One of the components is a g-pointed sphere and the other are three-
pointed spheres.

Figure 3.
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A stable Riemann surface of genus g with exactí>’ one components and
one node. The component is a two-pointed Riemann surface of genus
(g—1).

Figure 4.
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A stable Rieinann siírface of genus g with exactí>’ two components and
(g + 1) nodes. Each component is a (g + 1)-pointed sphere.

Figure 5.
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A stable Riemanu surface of genus g with two coínponents and two
nodes. Each component is a two-pointed Riemaun surface of genus (g —

1) /2.

Figure 6.

Two Riemaun spheres touching at one node. Each component is a Rie-
mailn sphere with (g + 1) points of order two.

Figure 7.
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