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An example of degeneration on the noded
Schottky space.

Rubén A. HIDALGO

Abstract

In these notes we construct explicit examples of degenerations
on the noded Schottky space {7] of genus g > 3. The particularity
of these degenerations is the invariance under the action of a dihe-
dral group of order 2g. More precisely, we find a two-dimensional
complex manifold in the Schottky space such that all groups (in-
cluding the limit ones in the noded Schottky space) admit a fixed
topological action of a dihedral group of order 2g as conformal
automorphisms.

1 Preliminaries

The basic literature for this section is [11]. A conformal automorphism
of the Riemann sphere € is called a Mobius transformation and has the
following form

az+b

T =
(z) cz-+d’

where a,b,c,d € € and ad — be # 0.

The set B consisting of all Mébius transformations is a topological
group isomorphic to PSL(2, @), in particular, we can talk about discrete
groups of Mébius transformations.

A Kleinian group G is a group of Mébius transformations for which
there is a point = € E’satisfying the following:
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(1) Glz)={geG:g(x)= :c} is finite,
(2) there exists an open neighborhood U of z such that

(2.1) g(U)NU =B forall g € C — G(x) and
(2.2) g(U)=U forall g € G(.’E)

The set of points of the Riemann sphere for which the above proper-
ties hold is called the region of discontinuity of G and denoted by Q(G).
Its complement A(G) is called the limit set of G.

A Kleinian group is in particular discreie, but the converse is false.
We are interested in a very particular type of Kleinian groups called
noded Schottky groups, that is, geometrically finite (see the definition
in {11]) discrete groups of Mobius transformations isomorphic to a free
group of finite rank (the rank is also called the genus of the group). In
[7) we have observed that a noded Schottky group is in fact a Kleinian
group. .

Example of Noded Schottky groups are for instance:

(a) Schottky groups: Purely loxodromic Kleinian groups, These are
the noded Schottky groups having no parabolic transformations
(M6bius transformations having exactly one fixed point).

(b) Schottky-Type groups: These are Kleinian groups constructed
from Klein-Maskit first combination theorem using cyclic groups
of either loxodromic or parabolic type.

(c) Torsion-free finitely generated quasifuchsian groups with parabol-
ics elements (either of second or first kind): These are quasi-
fuchsian deformations of torsion-free finitely generated Fuchsian
groups.

{(d) Groups obtained combining the above ones using the Klein-Maskit
Combination theorems.

In the above, we that the groups in category (a) belong to category
(b), those of category (b) belong.to category (c), and those in category
{c) belong to category (d}). It is interesting to note that there are more
complicated noded Schottky groups than the above examples.



An example of degeneration on the noded Schottky space

A marked noded Schottky group of genus g is by definition a (g + 1)-
tuple (G, Ty, ..., Tg), where G is a noded Schottky group of genus g, and
Ty,..., Ty is a set of free generators of G.

It is not hard to prove that if we have a marked noded Schottky
group of genus g > 2 as above, then we cannot have two different gener-
ators sharing a common fixed point (this will contradicts the discreteness
property of Kleinian groups).

Given a noded Schottky group G of genus g, we denote by 2%(G) its
region of discontinuity, that is, Q@) = Q(G)UP(G), where Q(G) is its
region of discontinuity and P(G) is the set of fixed points'of the parabolic
transformations of G. We consider on Q%%(G) the topology generated
by the usual open sets of Q(G) and the sets of the form By U Ba U {z},
where z € P(G) and B; and By are disjoint open round discs inside
{}(G) both tangent at z. In this topology, the group G acts as group of
homeomeorphisms, preserving each (G} and P{G), so that its restriction
to (G) is conformal. The quotient § = Q%**(G)/G is a stable Riemann
surface of genus g (for g = 1 we means at most one node). We say that
the noded Schottky group G uniformizes S and that the natural map
Q : Q@) — S is the uniformizing map. Reciprocally, each stable
Riemann surface of genus g is uniformized by some noded Schottky
group (see retrosection theorem with nodes in [7]).

In this work we are interested in finite normal extensions of noded
Schottky groups, that is, stable Riemann surfaces with antomorphisms
that are reflected by noded Schottky groups. In the particular case
of Schottky groups, finite normal extensions have been studied, for in-
stance, in [8] and [10].

2 A family of Mobius transformations and
noded Schottky groups

Let us consider for each integer g > 3 the Mobius transformations

led

2mi 1

Ag(z)=e7 2z, and B(z)= ~

The group Fy, generated by Ay and B, is isomorphic to the dihedral
group of order 2g, and

A= B%=(BAg)’ =1

167
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A fundamental domain for Fy is given by the region Dy U Py, where

Dg = {z eC: |z <1, =< arg(z) < ﬂ}, and
g g

Py= {zEC:|z|= 1, 0<arg(z) 5-1;—1}U{0}.

Denote by X the set of Mobius transformations € # B such that
BCB = C7! and C(0) # 0. Such a Mébius transformation ¢ € X has

the form 1
Clz)= =——, ab+1#0.

If we consider the two-dimensional complex manifold
W = {(a,b) € €°: ab+ 1 # 0},
then we have a bi-analytic map given by

az +1
—z+b

¢: W — X, (a,b) - Clz) =

For each p == (a,b) € W, we consider the transformations

Do(p} = ¢(p), Di(p) = ADo(p)A,", i€ {l,...,g— L}.

Denote by G(p) the group generated by the above Méobius transfor-
mations. We also denote by S (respectively, N'S) the set of points p € W
such that the group G(p) is a Schottky [3] (respectively, noded Schottky
[7]) group of genus g, free generated by the above transformations.

Since every Schottky group is in particular a noded Schottky [7], we
have

SCNScCw.

We have that § is an open and connected (consequence of quasi-
conformal deformation theory [1}) subset of W and, in particular, a
connected complex manifold of dimension two. Moreover, the closure of
S in W contains (strictly) AS.

Proposition 1. If g is even, then NS N {(e,b) € W :a = b} = 0.

Proof. fIf we have a == b, then both Dy(p) and Dg_(p) have fixed points
+i. It follows that G(p) cannot have these two transformations as free
generators and to be discrete at the same time. |
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If we denote by S, (respectively, N8,) the Schottky space (respec-
tively, noded Schottky space [7]) of genus g, then we have a natural
map :

g : N8 = NS : p— [(Glp), Do(p), .-, Dg-1(p))]

Its restriction to the manifold § (into &) is holomorphic.

Proposition 2. The map 14 is two-to-one. Moreover, if ¥o(p) = ¥4(q),
then ¢ = —p.

Proof. Let p and ¢ two different points in AN'S. The equality ¥g(p} =
¥4(g) asserts the existence of a Mébius transformation H # I such that
BH 'BH and H™ lA kHAk commute with Dg(p), forallk = 1,...,9—1.

(1} Let us assume first that H"IA;"HAz £ forallk=1,..,9—- 1
The fact that Do(p) is not elliptic of order two ensures that the commu-
tativity conditions are equivalent to the equality of the fixed points of
the transformations Dg(p) and i~ IA ’”HAk forallk=1,..,9~- 1

The equation of fixed points of Do(p) is given by t2-+{a=b)t+1= 0.
It follows that the two fixed points of Do(p) are inverse of each other.
In particular, if we write

+y i

H(u)=m o and p=¢ec¥9,

then the above asserts the equality wy(p~%* -1} =1, fork=1,..,9— 1.
Since g > 3, we have that this is impossible.

(2) If we have that H 1A *H A¥ = I for some k = 1,...,9 — 1, then it
follows that H and A commute. Since A has no order two, it follows that
H fixes the points 0 and oo, that is, H(u) = Au. On the other hand, we
now that BH1BH must commute with Do(p). But BH !BH(u) =
A2u. 1£ A2 £ 1, then the commutativity property and the fact that Do(p)
is not elliptic of order two assert that the fixed points of Do(p) must be
0 and oo, a contradiction. It follows then that A = {%1}. Since we have
assumed H # I, we have H(u) = —u and, it follows that ¢ = —p.

Let us consider the holomorphic involution # : a? — EP defined by
n(p) = —p. Set U the cyclic group generated by this involution. The set
of fixed points of 7 is just the singleton {(0,0)}. It follows that W/U
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is a complex orbifold with only one singular point. If we consider the
map t : W — €° defined by t(z,w) = (2%, zw), then t(p) = t{q) if and
only if p = +¢. The image of ¢ is the the locus €° — {{t,—1) : t € C}. In
particular, W/U is a complex manifold of dimension two.

The map 1y, then produces a one-to-one map from A'S/U into N'S P
with holomorphic restriction to S/U.

Remark 1. For each p € W, the group K(p) generated by C(p), A,
and B is a finite normal extension of G(p). In particular,

(1) K (p} is Kleinian group if and only if G(p) is Kleinian group.

(2) K(p) is geometrically finite if and only if G(p) is geometrically
finite.

(3) The region of discontinuity of G{p) and K (p) are the same.

(4) K(p)/G(p) is isomorphic to the dihedral group of order 2g.

3 Hyperelliptic noded Schottky roups

A (marked) noded Schottky group (G, Ay, ..., Ag) of genus g is called
hyperelliptic if there is a Mébius transformation H such that H? = f
and HA;H = A{l, for all: € {1,...,9}.

We denote by HN' S, the locus in /S, consisting of hyperelliptic
noded Schottky groups, and we set HS; = HNS,NS, the set consisting
of the hyperelliptic Schottky groups. It was shown in [10] that HS,
parameterizes all hyperelliptic Riemann surfaces of genus g.

Set HNS = ¢ ;1 (HN'S,) and HS = Yy (HS).

We have a natural involution on W defined by

TiW =W 7((e,b) = (ba).

Proposition 3. If g is even, then HN'S = 0. If g is odd, then HN'S =
{(a,b) E NS : a = b} = n(Fiz(r)).

Proof. A point p = (e,b) € 'S belongs to HA'S if and only if there is
a Mdbius transformation H with H2? = I and HD;(»p)H = D;(p)™, for
all 7.
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i i
The fixed points of D;(p) are Ai(z) = p'z and A;(l) =2 where
x

T
2mi 1
p=e7 and the fixed points of Do(p) are z and —~. It follows that
xT

{

H(p'z) = i, foreach i=10,1,..,9— 1.
T

Using the fact that H(z) = TR with R2 4 ST = —1 and the
Z — Il

above equation for ¢ = 0, 1,2, we obtain (after some minor computations)

that H(z) = —z. It follows that = i and, in particular, a = b. As a

consequence,
HNS = {{a,b) e NS : a = b} = n(Fix(7)).
When g is even we have, from proposition 1, that HAN'S = 0.

The above says that, for g odd, the hyperelliptic involution is repre-
sented in W by the involution 7.

Remark. It is known that there are hyperelliptic Riemann surfaces of
genus g having automorphism group isomorphic to a dihedral group of
order 2g for which the group generated by such a group together the
hyperelliptic involution do not satisfy condition (A) of [8] as can be seen
in [2] and [9], in particular, cannot be uniformized by Schottky groups.

4 Boundary points of ¥,(8) C NS,

Now we proceed to look at the boundary points of the two-dimensional
complex manifolds 4(8) in N'Sy. These points are exactly ¢4(NS) —
Pg(S)-

Let us consider the following regions:
Ry = {z € C: arg(z) € (==, 5), 0 < |2| < 1}
g9 g

Re= {z € €: arg(z) € (0, %)}

Ry = {z € C: arg(z) € (??%)}
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-

Ry = {zedl’:arg(z) e(g—§’§+g)}

and the lines

L= {z € C: arg(z) = E}
g
-

Lo = {z € C: arg(z) = —}
g

Ly= {zeC:arg(z;)z 12_r+zr_}

. T
Ly= {z € C: arg(z) = 2

Set ©,(z) =

If we consider a circle C C R3 such that B(C)NC =0 (or C C Ry
for g odd as we do in degeneration 4.6), and © denotes the reflection on

C, then there exists a point p € § such that ©,0 = Dg(p). In fact, if w

. . . . -1 w? -2
is the center of such a circle and r is radius, then p = [ —,
w

the reflection on the unit circle.

w -

i

In what follows, we proceed to approach the circle C to a limit circle
contained in the closure of the region Rz (or R4 for g odd as done in de-
generation 4.6). This procedure will produce points in A’S representing
noded Riemann Schottky groups as limit of Schottky groups in S.

4.1 Degeneration of type 1

Let us start with a circle € ¢ R, and, by moving both the center and
the radius without getting out of the above region, we can obtain as
limit a circle C; tangent to the unit circle at 1 and Cy — {1} C R;. Let
O, be the reflection of this limit circle.

In this situation, there is a point p; € N§—8 with ©,0; = Dg(p;) a
parabolic transformation with fixed point 1. The group G(p;) is a noded
Schottky group (in fact a Schottky-Type group) and it uniformizes (see
[7]) a stable Riemann surface topologically equivalent to the one in figure
1. The locus in A'S — & obtained by this type of degeneration is given
by

{(a,b) €W :b=a+2, —(1+sin(T))<a< —1}.
g
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4.2 Degeneration of type 2

As is the above case, we can move the circle ¢ C R to obtain a limit
circle Cp tangent to the lines L, and Lo, and contained in R (by ex-
ception of the tangencies). If ©2 denotes the reflection on this circle,
then there is a point po € 'S ~ § with 0,89 = Dg(p2) a loxodromic
transformation such that Ag—lDo(pg)—lAgDo(pz) is parabolic with fixed
point C2 M Lj. The group G(P2) is a noded Schottky group obtained
from the free combination of two torsion-free finitely generated Fuchsian
groups uniformizing spheres with punctures. This group uniformizes a
stable Riemann surface topologically equivalent to the one of figure 2.
The locus in /'S — S obtained by this type of degeneration is given by

: ——cosgq—r a < — SinE .
{(a,b)GW.ab— G, a<-1+ (g))}

4.3 Degeneration of type 3

Combining degenerations 1 and 2, we can obtain a limit circle C3 tan-
gent to the lines L;, Ly and the unit circle. If ©3 denotes the re-
flection on such a circle, then there is a point p3 € NS — & with
0,03 = Do(pa) a parabolic transformation with fixed point 1 such that

i pi
i vos
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L v "
Ag_lD{)(pg)_lAgDo(p3) is parabolic with fixed point CaN Ly = e ¢ "%,

. o
sin(Z)
and its radius is g

1
1+ sin(%) 1 Fsm(y)

1) cosQ(%) '
g’ 1+ sin(g)

In this case, the center of C3 is

It follows that

pa = (—l - sin(

The group G(p3) uniformizes a stable Riemann surface topologically
equivalent to the one described in figure 3.

4.4 Degeneration of type 4

We can start with a circle € C Rz and move it in this region to obtain a
limit circle C4 tangent to Ly at e%mmve region.
If ©4 denotes the reflection on Cj, then there is a point ps € N§ - §
with BO,04 = Do(pa) a loxodromic transformation such that AgDo(p4)
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is parabolic with fixed point e¥. This group G(p4) is a torsion-free
Fuchsian group of the second kind acting on the unit disc #, freely
generated by g hyperbolic transformations with the product of them a
parabolic, with H/G(ps) a sphere with g holes and one puncture. In
particular, it is a noded Schottky group uniformizing a stable Riemann
surface topologically equivalent to the one of the figure 4. In this case,
the locus in NS — S obtained by this type of degeneration is given by

cos(y — 6) e tan?(Z — 0) + cos(Z — 6)
(a,b)EW:a-:—‘—_..._g.a T b= — — 7 ,
et cos(-’;— )
m T
T <o< —}.

4.5 Degeneration of type 5

As before, we can obtain a limit circle Cs, tangent to L at elg", and
tangent to the real axis at 1. If ©5 denotes the reflection on C5, then
there is a point ps € NS ~ & with 80,05 = Dg(ps) a parabolic trans-
formation fixing 1 such that A,Dq(ps) is parabolic with fixed point e’.
The group G(ps) is a torsion-free Fuchsian group freely generated by
g parabolic transformations with the product of them also parabolic,
acting on the unit disc H so that H/G(ps) is an sphere with (g + 1)
punctures. In particular, it is a noded Schottky group that uniformizes
a stable Riemann surface as described in figure 5. We also have

( cos(3;) e%s tanQ(%) + cos(%))
pPs= |- -

[31 ?

edo cos(z;)

4.6 Degeneration of type 6

The next type of degencrations only work for ¢ odd. We assume then
g = 3 and odd. Let r > 0 and w > 0 be such that the circie € centered
at 7w and radius r is contained in the region R4. Let © be the reflection
on C, J(z) = —z and J(z) = —z + 2iw.

We consider the transformation J6,8J = Do(p), where

p= (:—1,—"(“’? * 1‘2)) e W.

w w
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The family of circles obtained by rotation of C by powers of A4, are
disjoint if and only if r < wsin(%). If » = wsin(7), then they are
tangent.

The circle C is disjoint from the family of circles obtained by rota-
tions of B(C) = Du(p)(C) if and only ifw4-—2(r2+cos(;i))wz-i-(rz—- 1)% >
0. Equality to zero is equivalent to tangency.

It follows that p € S if both inequalities above are satisfied at the
same time. We may try to approach to some points in 8§ —8 by making
some of the above inequalities an equality. In fact, taking » = w sin(%)
and w? — 2(r? + cos;(%))w2 + (r?2 = 1)2 > 0, we obtain the same type
of noded Schottky groups obtained in degeneration 2. In this case,

-1 . . 0,7
p= (-,—, iw(1+ sin (—)))
1w a

The another possibility is r < w sin(%) and w® - 2(r% + cos(%))w2 +
(r2 = 1)2 = 0. In this case, we obtain a point pg € W so that the group
G(pg) is a quasifuchsian group of the first kind uniformizing a surface
of signature (95—1,2;00,00) and, in particular, a noded Schottky group
with ps € NS — S. Figure 6 shows the topological type of the stable
Riemann surface 2%*(G(pg))/G{ps). the locus in NS — & obtained by
this degeneration is given by
{(—1 ~{r? + w?)

H

; JEW: w? - 2(7‘2 4 a::os(z))w2 4 (7'2 - 1)2 =0,
iw iw g

r<w sin(z)}.
g

For instance, if w = 1, then r is the pasitive root of r¢ — 472 + 2(1 —

cos(%)) = 0 with » < 1, that is, pg = (i,z’(3 -2+ 2cos(%))). Another

particular case in this degeneration is to assume w?+ r% = 1. This gives
us a point phg € HN'8 — HS (the hyperelliptic involution is represented
1 + cos(%)
by H(z) = —z). In this case, w = —2—
The group generated by G(phg) and H uniformizes an stable Rie-
mann surface as described in figure 7.

Question: Are all points in ¥4(NS8) — ¥4(S) described by the above
degenerations?
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From the viewpoint of algebraic curves and principally polarized
abelian varieties, some explicit degenerations have been constructed in
i4], [5] and [6].

Remark 2. The sublocus AR = {(e,b) € NS :¢,b € R} represents
noded Schottky groups admitting the symmetry ©,. We also have that
NRNHNS ={(a,b) e NS:a=b€ R}.

Remark 3. The ideas carried out for the group Fy can be used for any
finite Kleinian group to construct degenerations on the noded Schottky
space.

Acknowledge. The author would like to thank the referee for the com-
ments and specially for pointing out a mistake in the original siatement
of Proposition 2.
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A stable Riemann surface of genus g with exactly one component and g
nodes.

Figure 1.
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A stable surface of genus g with exactly two components and g nodes.
One component is a g-poinied sphere and the other is a g-pointed torus.

Figure 2.
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An stable Riemann surface of genus g with exactly (1 g) components.
One of the components is a g-pointed sphere and the other are three-
pointed spheres.

Figure 3.
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A stable Riemann surface of genus g with exactly one components and
one node. The component is a two-pointed Riemann surface of genus

{g—1).

Figure 4.
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A stable Riemann surface of genus g with exactly two components and
(g + 1) nodes. Each component is a (g -+ 1)-pointed sphere.

Figure b.
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- A

T el e =

\_ —/

A stiable Riemann surface of genus g with two components and two
nodes. Each component is a two-pointed Riemann surface of genus (g —

1)/2.

Figure 6.

Two Riemann spheres touching at one node. Each component is a Rie-
maiin sphere with (g + 1) points of order two.

Figure 7.
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