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Qn pseudo-isotopy classes of homeomorphisms
of #, (s’ x Sn).

Alberto CAVICCHIOLI aud Friedrich HEGENBARTH

Abstract

We study self-homotopy equivalences and diffeomorphisms of
the (n + 1)-dimensional manifold x = #, (Sí x t) for any n =3.
Then wecompletely determine the group of pseudo-isotopy classes
of homeomorphisms of X and extend to dimension n well—known
theorems due to F. Laudenbach and y. Poenaru [10],[12]and 3M.
Montesinos ¡14].

1 Introduction

Through the paper we work in the piecewise—linear (resp. C~-
differentiable) category, so we shall omit the prefix PL (resp. DIFF).
Therefore the term homeomorphism means either PL homeomorphism
or diffeomorphism.

Let Mn+1 be a closed connected oriented (n+í)-manifold. Following
[3] , [19], we say that two homeomorphisms f,g : M —~ M are pseudo-
isotopic if there is a homeomorphism 9 : M x 1 —. Al x 1 (1 = [0, 1])
such that F(x, 0) = f(x) and F(x, 1) = g(x) for all x E M.

Let us consider the following groups:
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Aut(M) (resp. Auto(M)) the group of (resp. orientation-preserving)
self-homeomorphisms of M;

13(M) (resp. Vo(M)) the group of pseudo-isotopy classes of (resp.
orientation-preserving) homeomorphisms of M;

8(M) (resp. 8o(M) ) the group of homotopy classes of(resp. orientation-
preserving) homotopy self-equivalences of M;

Aut(H1) the group of automorphisms of the fundamental group fl~ =

flí(M) of M;
Out(flí) the outer automorphism group of fl~, Le. automorphisms

modulo inner automorphisms.
We have natural maps (base points are not required to be fixed)

Aut(M) —. 13(M) —* 8(M) —+ Out(fli)

Auto(M) —~ Do(M) —~ &o(M) —* Out(fli).

In [3], [7], ¡91 it was studied the pseudo-isotopy classes of homeomor-
phisms (and self-equivalences) of the manifold Mn+í — 571 for
n > 2. There it was shown that two homeomorphisms of ~i x S’~ are
homotopic if and only if they are pseudo-isotopic (resp. isotopic for the
case n = 2). Hence the natural map

13 (si x s~) —~ e (< x s”)

is an isomorphism for any u > 2.
We suinnarize the results proved in the quoted papen by the fol-

lowing statement.

Theorem 1. ([3],[7],[9])
Ifn>2 titen

y (s’ s”) ~e (sí x e e

By Theorem 1, it follows that there are at most two non equivalent
n-knots in the (u + 2)-sphere with diffeomorphic complements, u > 2
(see [3], [7], [9]).

The aim of our paper is to exteud Theorem 1 for the (u + 1)-
dimensional manifoid X — ~ >< s”), u =2, p =1, i.e. tite con-

nected sum of p copies of 51 x 5».
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More precisely, we prove the following result

Theorem 2. IfX — # (~i >< s”), u ~ 2, p =1, titen me liave short
exact sequences

e Z2—UJ(X)--.Out(W)-.4O,
p±1

0—. ex2—. Vo(X) ..-* Out(fIi) —.0,
p

where fl~ = fli(X) *Z is tite free group with p generators, p =1.

Observe that the group 13(X) (resp. Vo(X) ) is not a direct sum of
the other two terms of the sequence for p> 1. Indeed, diffeomorphisms
of X, which permute the p summands ~L x 5», also permute the p
rotations along n-spheres (compare section 4).

As a consequence of Theorem 2, we completely determine the group
Vo(X) of X as follows:

Theorem 3. If X #p (s’ >< 5»), n = 2, p > 1 titen tite qroup
Vo(x) Eo(x) is generated by sliding 1-handíes, twisting 1-handíes,‘so
perrnuting 1-handles and rolations.

The case u = 2 in the statement of Theorem 3 was proved by E.
Laudenbach (see [11]) aud 3.M. Montesinos (see [14]). The definitions
of the aboye generators can be found in ¡10] and [121. Because alí these
generators extend to the (n + 2)-handlebody y = #~ ~¿s’x Dn+ 1) i.e.
the boundary connected sum ofp copies of S~ ~<D~+l, we prove, following
[14], other two consequences of Theorem 3 about handle presentations
of manifolds.

Corollary 4. Leí Y be tite itandlebody ~ (s’ x fl»+1) witit boundary

a>.’ = x — ~ (s1~sn), u =
2,p >1. Givena connectedcom-

pací (u + 2)-manifold N»+2 with boundary ON X, tite smoolh closed
(u + 2)-manifold M = N Uh Y obtained by gluing N and Y via an arbi-
trarily citosen diffeomorpitism it 9N —. 8V is independení of tite way
of pasiing tite boundaries togetiter.

In particular, the closed (n+2)-manifold M = YUhY is diffeomorphic
to the (u + 2)-sphere ~n+2
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Corollary 5. Each closed orientable (n + 2)-manifold M»~2, n > 2
miiit itandle presentation

— U MB’ U... U U Jffl+2

25 completely determined by

H0UA
1H

1U...UA»H”.

Here II’ represenis an arbitrary handie of mcxi.

Using Corollary 4, we prove an extension to dimension u of a we]l-
known result due to F. Laudenbach and V. Poenaru (see ¡121).

Corollary 6. Let M”~2 be tite smooiit closed (u + 2)-manifold,
u >2, obtained by gíuing #p (si x D»±1) lo #,, (5» x D2), p > 1 via
an arbitrary diffeomorphism of titeir boundaries. Titen M is diffeomor-
phic to ,qn+2

Proof. Set Y = ~,, (s’ x D»+’) aud Z = ~ (3» x ¡>2) for u > 2 and
p =1.

Consider a diffeomorphism h : OY -~ ¿9Z and the smooth closéd
(u + 2)-manifold M = Y Uh Z.

One has canonical identifications

which will be given, one for alí. It is obvious that Y U~..loa Z =

Since the manifold M = Y Uh Z is independent of the way of pasting
the boundaries together (see Corollary 4), it follows that M = Y Uh Z
is diffeomorphic to Y U~—í

00 Z =

u

2 Homotopy equivalences and pseudo-isotopies
ofX=#~ (s’ x s»)

In this section we prove that the group 13(X) of pseudo-isotopy classes of
homeomorphisms of X — ~ (s’ >< u > 3 is isomorphic.to 8(X).
For this, we use the following results proved in [4] and [51.
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Theorem 7. Leí Mn+l, n > 4 be a closed connected PL (n + 1)-
manifold of tite same homotop¡, type as X = #t, (s~ >< 5»). Titen M
PL itomeomorpitic lo X.

Theorem 8. Any homotopy seíf-cquivaíence of x = #p (S~ x 5»),
n > 3 is homoiopic lo a PL homeomorpitism.

Theorem 7 extends the analogous result proved in ¡9] for p = 1 and
Theorem 8 represents an extension of Leinma 16.2 of [18], p = 1 and
n=3.

In order to prove our result we need the following proposition.

Proposition 9. If X = It,, (S~ x 5») n > 3 p =1, titen any PL
itomeomorpitism f : X — X, witicit is itomotopic lo tite identity, is
pseudo-isoiopic lo tite identitg.

Proof. Let Y be the (n + 2)-handlebody, i.e. Y is the boundary con-
nected sum Y = 4,, (.s~ x D»+í). Obviously we have 8Y = X. As
shown in ¡4], Proposition 3.1, the homeomorphism f : X —~ X extends
over Y. To make the reading clear, we skecth the construction aud refer
to [41for more details.

Form the closed (ti + 2)-manifolds M = Y UId Y and N = Y Uf Y.
Obviously M is PL homeomorphic to ~ (s’ >< 5»~’). Furthermore N
is homotopy equivalent to M since f is homotopic to the identity.

Let u : y —. M and ji : Y —. N (resp. i2 : Y —. M aud i2 : Y —. N)
be the canonical inclusions of Y into the first (resp. second) copy of it.
For simplicity we identi~’ Y = i1(Y) c M with Y = ji(Y) C N so that
MflN=Y.

Note that
f= (i2IxY’oiíLx.

Because ti > 3 Theorem 7 implies that there is a PL homeomorphism

it : ~.4

ny the tubular neighborhood theorem and the Whitney embedding
theore¡n we may assuíne that it is the identity on the first sununand
Y = i1(Y). Then the restriction of it to the second copy i2(Y) of Y in
M provides the required extension of the map f. Thus, let g : y —.+ Y be
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a PL homeomorphism which extends f to Y. One has the commutative
diagram

ji,

l1i(Y) j7 111(Y)

where the inclusion-induced homomorphism i~ : IIi(X) —+ fli(Y) ~ * Z
7,

isbijective. Since f~ = identity, it follows that g, = identity.
Let 5~ be the canonical i-th S

1-factor of Y = #,, (S~ >< Dn*1) for
£1 _ ¡2 1,2,.. .,p. Then the 1-sphere — g ~s~) is homotopic to s~ be-

cause g. = identity. Hence they are also isotopic as dim Y > 5. Then we
isotope g to a map, also named g, which sends the 1-dimensional graph
a = v~b

1S (one-point union) in Y to itself via the identity. Then we
can also adjust the map g 50 that it is the identity on a regular neigh-
borhood of G in Y. Moreover we may choose these isotopies keepiug a
collar of the boundary X = OY lixed. In other words, there exist two
regular neighborhoods y aud W of G in Y which satisfy the following
properties:

1) V C intW ci intY
2) glv = identity
3) the previdus isotopies are fixed outside W.

By the regular neighborhood collaring theorein (see [16], p. 36), thc
complement Y\ mv can be identified with X >< 1 where 8?’ = X = A’ x O
and AV = X x 1(1 = [0,11).Then the restriction map

A’ x ¡ — Xx ¡

a pseudo-isotopy between glxxo = f aud glxxi = identity (use 2)
aboye). Thus the homeomorphism f : X —> X is pseudo-isotopic to the
identity as claimed.

u

Corollary 10. IfX = #~ (si x 5»), n =3, p =1, titen tite natural
map

V(x)—*8(x)
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is an isomorphism.

Proof. By Proposition 9 the map of the statement is injective. It is also
surjective because each homotopy self-equivalence of X is homotopic to
a PL homeomorphism by Theorem 8.

u
Theorem 11. If x = it,, (si ~<s”), ti =3, p > 1 then inc itave tite
following exact sequence

0—. KerB0 e Z2—Vo(X) Eo(X) 224 Out(l?11) —.0,7,
i.e. any tino orientation-preserving diffcomorphisms f, g : X —. X tvith

A = g. : fl1 —. lii

are pseudo-isotopic provided certain obstructions

a1 E fl1 (SO(n + 1)) ~

vanish, 1 =~ =p.

In order to prove Theorem 11 we need the following lemma.

Lemma 12. Let f,g : X — X be tino degree one mapa.
1ff. = y, :111 —. fl~, titen f. = y. : l19~

11q for alt q =ti.

Proof. Wc observe that 11
1(X) = O for 1 < i < ti, hence

A = y. : It Hq for all q < ti. By [121, p. 341, the Poincaré
duality and the relation deg(f) = deg(g) = 1, we have the following
coinmutative diagrams

H~(X;Z) = H~(X;Z) .~. H~(X;Z) — ¡li(x;z)
PD

fJ~(X;Z) = H~(X;Z) -z-. HftX;Z) = H2<X;Z)
PD

112(X;Z) = H2(X;Z) —a-. ~‘ (fl1;Z¡fl11) H’ (flí;Z[flíI)

1.4 4;. i:i lg:

112(X; Z) H~(X; Z) -fl.. H’ (fi; Z¡fli]) U’ (fi; Z¡fl1])
where J, ~ : X — X are the liftings of 1, g respectively.
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Since the hypothesis ft = g. : llí —~ ll~ directly implies f~ =

it follows that f. = : I1»(X; Z) —. Hn(X; z). rrhen the Hurewícz
somorphism

Hn(X; z) H»(k) fln(X)

implies that f~ = g. : II,, —* II,, as required.

u
Proof of Theorem 11. Here we prove that the sequence

®pZo —* 130(X) —~ Out(lIi) —~0

is exact. r1~he injectivity of the term ~1,,Z2into Vo(X) will follow froin
realizations of obstructions in section 4.

Suppose that 1 : X —~ X = #p(Sí >< 5»), r¿ ~ 3, is an orientatioíi-
preserving diffeomorphism such that Oo(f) = 1. Wc can choose a repre-
sentative (also named f) in the class of f which preserves the base point
of X and f~ = identity on fli(X). Lemma 12 implies that f. = identity
on Hq(X) for alí q =ti. By Proposition 9 it is enough to show that 1 is
homotopic (aud hence pseudo-isotopic) to the identity Idx : X -~ X.

We attempt to build up a homotopy F : X x 1 —. X between 1 and
Idx in steps, using a filtration of X by subcomplexes.

Consider the handle presentation

X = D»~
1 ~, ú (u: x Dr) u~, ú (u7 x DJ) u

t= 1

where D, E are (ti + 1)-celís aud x, 4’ are embeddings

p
x: IJ (OD.!) Dr — 8D”~1 —5»

1= i

4,: iii (OD7) >< nJ — a (Dn+i u~ (5 (De’ < nr)).
J=i

Oía filtration starts with D»~1, then we successively add
x 0, Dl >< Dj’, D7 >< O, D7 x D~ and finally B»~’.3
Now we regard f as a diffeomorphism of X >< 1 and seek to extend 1

on X x 1 aud the identity íd on X x O to a map F : X x 1 —. X, where
¡ = ¡0,11.
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Step 1. By the disc theorem 1 ID~+’ and íd ~ are homotopic. Thus
we choose a homotopy and define it

FIDn+íx¡:Dn+íxI~~4D»~~ cX.

Step 2. We next define F on x 1. Now FIO(DIx¡) is already given:

on 8D1 x 1 ci D»+í x 1 by Step 1, on D >~ O by the identity and on
DJ >‘ 1 by f.
Because 1. = identity on flí(X), we can extend to some map

x 1—. X.

Indeed, letSi bethei-th5’-factorofX — It (s~ x 5»), ti =3;thecon-
dition 1. = identity on fi implies that the 1-sphere f(sf) is homotopic
to SI (and also isotopic as dim X > 4).

Step 3. Wc now extend F to DI xD?x 1, i.e. to a tubular neighborlíood
of D¿ >c 1 in A’ x 1. By the tubular neighborhood theorem it suffices
to fiud a trivialisation of the normal bundle with tbe desired properties.
As in step 2 these turn out to be that a trivialisation is already given on
the boundary O (Dl >c i). The obstruction to extending this over Di x 1
(since this is contractible, the bundle certainly is trivial) is an element
(seo ¡‘71)

aj E fi (SO(n + 1))

(seo ¡il, ¡Sj for the stable homotopy of the orthogonal group, ti =3).
If a~ = 0, tben the extension of the framing and bence of F is

possible.

Step 4. We now assume that steps 1,2,3 have been successfully per-
formed, i.e. F has been already defined on

(DYt+i u~ ¡5 (Dl >< Dt) x 1.

Wc next extend F on D7 x 1. Now FIa<nnx¡> is already given:
7,

on ¿3D7 > íca(Dn+iu~~(DixD~))xIbystep2,onDx0by
1=1

the identity and on >< 1 byf.
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Because 1. = identity on fl»(X) (see Lemma 12) we can extend F
to some map

- D~xI—..X.

Indeed, let 57 (j = 1,2,... ,p) be thej-th 5»-factor of A’. The coíídition

f. = identity on fT,,(X) implies that the n-sphere 1 (57) is homotopic
to 55t

Step 5. We have now to extend F to D7 x D} x 1, i.e. to a tubular
neighborhood of D7 x 1 in A’ x 1. As remarked in step 3, the obstruction

to extending a trivialisation given on the boundary a (u; x i)

to 137 x 1 is an element of II» (50(2)) U (S’) O for ti > 3. Thus
the extension of the framing and hence of F is possible on the whole of
(X\ int(Bfl± i))x 1. Then we complete the extension of F to A’ >< ¡ by
using the Alexander theorem.

Finally we prove that the homomorphism Oo is surjective. Indeed,
for any ¿ E Qutiflí) there exists f E Aut(X) such that 1. = ¿ (see [12]).
If deg(f) = 1, then [fj E 130(X) and OoIfI = ~. Otherwise we compose
1 with the homeomorphism

= It,, (íd51 xr) : X —* X

where r : 3”— 5» is the reflection on the 1-st coordinate. Then
[fo PI e Vo(X) and Oo¡f o rl = ~. Thus tbe proof is completed.

u

In section 4 we will show that any obstructions can be realized.

3 Alternative proofs

We can give an alternative proof of Theorem 11 by applying the classical
obstruction theory (compare for example with [61).

Tu order to do this, we need some algebraic lemmas which are inter-
esting by itself.
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Lemma 13.
1) Let A = Z[ui] be tite group ring of fli(X). Let e1, eQ,

e7, E llí(X) be canonical generatora atid íd

u=(eí—l,e2—1 e,,—1) FeA.
7,

Titen tite A-module fl»(X) is A-isomorpitic to (SA)/aA.
7,

A
2) Tite A-module fl~±i(X) is A-isornorpitic ¿o ( e —) e (e z2),

p—i2A p
where A acta on Z2 via tite map naturally induced by tite augmentation
E: A — Z.

Praaf.
1) Lot X½) be the q-skeleton of the standard cellular decomposition

e
0 Upe Upe” Ue~~+l

of X. Since ~(~)= x<’~ for 1 =q .c n, we have

H,,(X) fl,,(X) H,,(X;Z) H»(X;A)

and H»(X;A) H’(X;A) by Poincar’e duality. Here X denotes the
universal covering space of X.

To calculate H1(X; A) we consider the exact sequence

o .—-. H
1 (k’, Ñ(0)) —.~ H0 (ko) ..-.....+ Ho (X0) ~ o

isoj isoj isoj

0 1(A) A —~-~ z

which gives the foflowing augmented A-chain complex

0—. Hom,~(Z, A) it HomÁ(A, A) it HomA(l}A), A) —-.0,

hence
II

1(X;A) cokeri# _ HoínÁ(J(A),A

)

_ Imi#

As A-module, 1(A) is isomorphic to

A(eí—1)eA(e
2—1)S...®A(e,,—1),
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where
e1,e2,...,epEfli(X)s=~*Z7,

are canonical generators. If p E HomÁ(A, A), then i#Qp) corresponds to
a9(1) c e A HomA(I(A), A),

7,
proving statement 1) of the lemma.

2) Let V be the CW-complex obtained from X — It (‘sí x
by attaching p — 1 (n + 1)-celís D”~’ along the n-spheres where the
connected sum is taken. Observe that X~ is homotopy equivalent to the
wedge y (s’ x

Furthermore one can easily verify the foflowing isomorphisms:

fl,1+1(x~) fl~.2(x) e Z27,

fl»±í(X*,X) e A fl»~2(x,x) e
7’—i

Thus the homotopy exact sequence of the pair (X,X) yields

—-÷ll»±dx)—-. ll».1.í(X) —*0.

Since j. is an epimorphism, we obtain the result.

u

(liven a A-module L, we denote by H}X; L) the cohomology of the
comnplex HomA(C.(X).L), where C~(X) =

Lemma 14.

1) J1’
t(X; H~(X)) Z

2) Hn+i(X;n»+í(X)) sg @Z
2.7,
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Proof.
1) By Poincar~ duality, we have H”(X;fl»(X)) sg H1(X;fl»(X))

(see [181).
Using fl,«X) sg (~ A)/aA, one obtains the following exact sequence

7,
Hí(X;A) —+ H,(X;eA) —* Hí(X;(eA)/aA)

7, 7,
—4z®AA—z®A(eA).

p
Now H1(X;A) sg I1;(X;SA) O aud Z®A A —* Z®A (eA) is the nulí

p 7,
homomorphism because a goes to zero. Hence we obtain

H”(X;lt(X)) sg Z®A A sg Z

as claimed (use also [15], Theorem 1.12).
2) We have

H”~’(X;fl»+1(X)) sg Ho(X;H~+1(X)) sg Hn+i(X)ri,cx~
Pr)

where fln+i(X)n1cx) is the maximal quotient module of rl»+í(x) (see
[151, p. 266), i.e.

flx = fl,,.1.,(X

)

fl+d)n«x {Ax: A E AAx E H,1+;(X)}

Because this quotient module is A-trivial (see [151), Lemma 13 implies
that

H~~
1 (X;fl,

1±í(X))sg ez2.
7,

Thus the proof is completed.

u
Theorem 11: second proof. Let f : X —. X = It,, (si >< Ti =3,
p =1, be a homotopy self-equivalence of degree one such that Oo(f) = 1.
As before, we can assume that f preserves the base point of X and that
1. = (Idx). on fl9(X) for all q ~ ti (see Lemma 12). We have to study
under that conditions f is homotopic to the identity Idx. We attempt
to build up a homotopy h : X x ¡ —. X between f and Idx in steps
using a filtration of X by subcomplexes.
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Let ~(q) be the q-skeleton of the standard cellular decomposition

X = e0 Upe1 UpJUe’»~’.

Because 1* = (Idx). on H~, there is a homotopy

between 1 1XU2) aud ¡dx 1r2.

The equalities ~(~> = X(í> for 1 =q < ti imply that

H~(X;fl~(X)) sg O

for alí 1 =q < ti. Thus the first obstruction lies in

H”(X;TI,,(X)) sg

(see Lemma 14). Let it : X(~~í) x 1 —* A’ be a homotopy between
flxe.-o aud ¡dx lxi”..’» The obstruction to extetid it to X<»~ is the
honíotopy class of the map

fU it U Idx : X x O U X<”1> x LUX >< 1 —4

i.e. foranyi= 1,2,...,pwehave

A~(f, it,Idx) = [í u it U Idx Ie?xOUOe?X¡U<¼<1]E TT,t(x).

In other words, the difference cochain is defined as follows:

d(f,h,Idx) : Cn(X) 4 fl»(x)
4’ —+ A

1(f, it, Idx)

hence the obstruction is the cohomology class

7,

¡<1(f, it, hly)j [>3á~IE ¡1” (A; H»(x)) sg Z.
1=i

I~et it’ X(»í) ~c1 X he a homotopy of íd ~<,~—í> to íd ¡y(’.-í). It iS

well-known that

A(f, it, ¡dx) + A(Idx, it’, ¡dx) = A(f, it + it’, Idx)
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where it + it’: X(~í) >< 1—. X is defined by

(h+it’)(x,t) = it(x,2t)

Indeed, for eacli i = 1,2,... ,p, we take a small bali in the centre of
the n-cell e? and cut off it. Next we attach to its place a spheroid
representing the value in ll~(X) of the cochain d at e?. rrhus we can
always cheose an it’ such that

d(Idx, it’, Idx) = —d(f,h,Idx),

i.e. it + it’ extends to a homotopy x(”> >< i —. x between 1 j,<~ and
Idx Ix<n~. Now the only obstructions he in

H~~’ (X;ll~+í(X)) sg ~ Z2.
7,

This proves Theorem 11.

u

4 Realizing obstructions

Now we are going to prove Theorem 3.
Lot {e1}, i = 1,2,... ,p, be a free basis of lli(X) *Z where7,

X = It,~ (sí ~< 5»), ~> =1, ti > 3. Obviously ej is the homotopy class of

the i-th S’-factor 5~ of X. As proved in [lO] and [12], Aut(l1i) is gener-
ated by sliding 1-handíes, twisting 1-handles and permuting 1-handíes.
More precisely, for i = 2,3,... ,p (p> 1) define ~ E Aut(fl,) by setting
~1(ei) = ej, 4~í(e~) = eí and 4~(e~) = ej for eac.h j ~ i, j ~ 1. Permuting
the 1-handies e1 aud ej corresponds to the automorphism 4j o ~j o ~¿1•

It follows that ~ — 1 and by [10], [12] there exist diffeomorphisms
fi : X —-. X (permuting 1-handles) such tbat f~, ~. Then define
a E Aut(lli) by setting o}ei) = ej’ and a(e1) = e1 for i # 1. Twisting
the 1-handie ej corresponds to the automorphism ~jo a o ~ Obvi-
onsly a

2 — 1 Furthermore there exist diffeomorphisms of X (twisting
1-bandles) which realize a and ~ o a o ~7’ for 1 > 2. Finaily we define
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4’ 6 Aut(lls), p > 1, by setting 4’(ei) = e1e~~ and 4’(e1) = ej for i =2
(sliding 1-handíes).

LetE~ =S?bethei-th5»-factorofX = #~(s’ x 5»),p =~n >3.
Following ¡10], we show that rotatiotis of X parallel to E~ generate the
obstruction subgroup

KerO0 sg ®fl1 (SO(n ±1)) sg e Z2.
7, 7,

Let
a: (S’,l)—* (SO(n+fl,id)

bealooprepresentiíígahomotopyclassoffl, (SO(n + 1)) sg Z2 (ti >3).
Then a induces a diffeomorphism

ha : 5» x 1 — 5” x 1

defined by
ha(x,t) = (a(t)x,t)

for al] x E 5» and t ~ 1 = [0,1]. Obviously it0 is the identity on the
boundaryb(5»xI)=S”xou5»x 1.

Now let M”~
1 be a closed oriented (ti + 1)-manifold and let E» be

an oríented n-sphere embedded in M. Suppose ~ : 5” x 1 —* M is an
orientation-preserving embedding such that w(5» x 0) = E. Because
it<,, = identity on 8(5»>< 1), one obtains a diffeomorphism

itE: M M

defined by

it~(x)= fx if xEM\Imp1. woho<’(x) if xEIm<p.

We calI the diffeomorphism h~ the cx-rotation ofM paralící toE (brietly,
a rotation). Obviously the pseudo-isotopy class of it~ depends only on
the homotopy (resp. isotopy) class of a (resp. E).

IfMi~± í=X=#,}Síxs7¡),p=í,ri>3 thenletE~=57be
the i-th S»-factor of A’. We set

= 1I~
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for i = 1,2,... ,p aud [al E II~ (SO(n + 1)) sg Z2. Que can choose
¡ita to be the identity on the union U~Q, S1. Because (it10), = identity
on flq(X) for alí q = n, we have that it1,0 e KerOo, i = 1,2 p.

Moreover hj,~-, o h~,0 = h~,g o itj,~-, (i # J)~ each ~ commutes with the
generators of Aut(Hi) and h~4 is pseudo-isotopic to the identity if aud
only if [a] = 0. Thus we have shown that the rotations ~1 = it1,0 of
X parallel to the n-spheres E1 generate Ker O~ if [a] is the generator
of [I~ (SO(ti + 1)) Z2. In particular, this shows that the term ez2p
injects into 13o(X).

More precise]>’, we can interpret our results in the following way
(which is related to Lemma 5.4 of (10]):

Corollar>’ 15. LetX = It,,(Sí x5»)>p =1,» >3 andletf :X —x
be an orientation-preserting diffeomorphism such that Oo(f) = 1, i.e.
1~ = identity on fi. Titen diere exist loops (‘obsiructiotis)

al: (5’, 1) -4 (SO(n + 1), Id)

(i = 1,2,... ,p) such that f is pseudo-isotopic ¿o tite product

it1,01 0 h2,a~ 0... 0 lLp,%~.

Moreover, the pseudo-i.sotopy can be citosen kecping tite union
fixed.

In otiter words, rotatiotis it~ = it~ (i = 1,2,... ,p) is a free basis of

KerO0 sg en, (SQ(n + 1)) sg ex27, 7,
inhere [a] is ¿he generator of 11, (SO(n + 1)) sg Z2.

5 Concluding remarks

Following ¡12], let C(n, A) denote the class of smooth (ti + 1)-manifolds
of the form

— HOUpHAUPH>±í

such that N is contractible n > 3 1 < A < ti — 1. The h-cobordism
theorem of Smale implies that if N E C(n, A), then N is an (u 1- 1)-disc
provided that ti > 5 aud 1 < A < ti — 3 (see for example [161). Qn
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the other hand C(n, ti —2) contains elements with non-simpí>’ connected
boundary (see [12]).

Now one might ask the following question:

NEC(n,n—1)=z*N sg
diff

We can apply (brollar>’ 6 to give a positive answer in the particular case

sg It,, (s”-’ x D9.

Indeed, we have the following result.

Proposition 16. Let N»~’ be ¿he manifold obtained by attaciting p
itandies of índex ti ¿o #~ (Sn1 x n =3.IfH~,(N;Z) = 0, titen
8N is diffeomorphic ¿o tite n-sphere 3».

Praof. We simpí>’ follow the proof of Lemma 5 [12], settled for n = 3.
First of all, the hypotbesis H»..i(N;Z) = O implies that N is con-
tractible, i.e. N E C(n,n — 1).

Let 4’, be the attaching map of the i-th handle H~ = D~ >c Dl
of index ti, i = 1,2,... ,p. The same argument as in [12] shows that
~4(anr ~ 4) are disjoined homologicaliy independent (ti — 1)-spheres
embedded in

a (It,,(r1 x D2)) = #,,(5»1 x 51).

Let Sr’ be the i-th (ti — 1)-factor of It,, (5»—’ >< 51)~ Cutting

it,, (5»’ s’) along the (ti — l)-spheres 4 (an~’ x )) (resp. 57’)
yields a punctured n-disc P» (resp. Qn), where

sg Qn sg D”\{2p — lopenn — cells}.

A diffeomorphism P» — Qn which preserves the boundary compo-
nents induces a diffeomorphism between the pairs

(It,, (srt—í xs’),U4’t(aDr x

aud
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This implies the statement.

u
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