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On pseudo-isotopy classes of homeomorphisms
of #, (8" x 8").

Alberto CAVICCHIOLI and Friedrich HEGENBARTH

Abstract

We study self-homotopy equivalences and diffeomorphisms of
the (n + 1)-dimensional manifold X = #, (' x $") for any n > 3.
Then we completely determine the group of pseudo-isotopy classes
of homeomorphisms of X and extend to dimension n well-known
theorems due to F. Laudenbach and V. Poenaru [10},{12] and J.M.
Montesinos [14].

1 Introduction

Through the paper we work in the piecewise-linear {resp. C°°-
differentiable) category, so we shall omit the prefix PL (resp. DIFF).
Therefore the term homeomorphism means either PL homeomorphism
or diffeomorphism.

Let M™! be a closed connected oriented (n+1)-manifold. Following
[3] , [19], we say that two homeomorphisms f,g: M — M are pseudo-
isotopic if there is a homeomorphism F : M x I — M x I (I = {0,1])
such that F(z,0) = f(z) and F(xz,1) = g(z) for all z € M.

Let us consider the following groups:
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Aut(M) (resp. Autg(M)) the group of (resp. orientation-preserving)
self-homeomorphisms of M;

D(M) (resp. Do(M)) the group of pseudo-isotopy classes of (resp.
orientation-preserving) homeomorphisms of M ;

E(M } (resp. Eg(M ) ) the group of homotopy classes of (resp. orientation-
preserving) homotopy self-equivalences of M;

Aut(il;) the group of automorphisms of the fundamental group 1Ty =
I (M) of M;

Out(Il,) the outer automorphism group of Iy, i.e. automorphisms
modulo inner automorphisms.

We have natural maps (base points are not required to be fixed)

Aut(M) — D(M) —= E(M) — Out(I1,)

Autog(M) — Dp(M) — Eo(M ) — Out(Il)).

In [3), 7], |9] it was studied the pseudo-isotopy classes of homeomor-
phisms (and self-equivalences) of the manifold M"! = §' x §" for
n > 2. There it was shown that two homeomorphisms of §* x $” are
homotopic if and only if they are pseudo-isotopic (resp. isotopic for the
case n = 2). Hence the natural map

D(SIXS")—»S(SIXS")

is an isomorphism for any n > 2,
We summarize the results proved in the quoted papers by the fol-
lowing statement.

Theorem 1. ([3],{7],{9])
If n > 2, then

D(slxs"):e(slxs")zzgezgezg

iso iso

By Theorem 1, it follows that there are at most two non equivalent
n-knots in the (n + 2)-sphere with diffeomorphic complements, n > 2
(see [3], {7], {91).

The aim of our paper is to extend Theorem 1 for the (n + 1)-
dimensional manifold X = #, (Sl X S"), n22 p>1 te the con-

nected sum of p copies of §* x ™
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More precisely, we prove the following result

Theorem 2. If X = #, (S1 X S'"'), n>2 p>1, then we have short
exact sequences

0 & Zy— D(X) — Out(lly) — 0,
r+l

0— & Zy— Dy(X) - Out(il) — 0,
P
where IT) = II;(X) ~ ;s;Z is the free group with p generators, p > 1.

Observe that the group D(X) (resp. Do(X) ) is not a direct sum of
the other two terms of the sequence for p > 1. Indeed, diffeomorphisms
of X, which permute the p summands S' x 8%, also permute the p
rotations along n-spheres (compare section 4).

As a consequence of Theorem 2, we completely determine the group
Do(X) of X as follows:

Do(X) =~ Eo(X) is generated by sliding 1-handles, twisting 1-handles,
150
permauting 1-handles and rolations.

Theorem 3. If X = #,(S' x8"), n > 2, p > 1, then the group
P

The case n = 2 in the statement of Theorem 3 was proved by F.
Landenbach (see [11]) and J.M. Montesinos (see [14]). The definitions
of the above generators can be found in [10] and [12]. Because all these

generators extend to the (n + 2)-handlebody Y = #, (Sl X D”‘H), i.e.
the boundary connected sum of p copies of S x D™, we prove, following

(14], other two consequences of Theorem 3 about handle presentatjons
of manifolds.

Corollary 4. Let Y be the handlebody #, (51 x D™1) with boundary

Y = X = #, (S1 XS“), n>2 p>1 CGiven ¢ connected com-
pact (n + 2)-manifold N™+2 with boundary 8N ~ X, the smooth closed
(n+ 2)-manifold M = N Up Y obtained by gluing N and Y via an arbi-
trarily chosen diffeomorphism h : 9N — 8Y is independent of the way
of pasting the boundaries together.

In particular, the closed (n4-2)-manifold M = Y U,Y is diffeomorphic
to the (n + 2)-sphere §72,



148 Alberto Cavicchioli and Friedrich Hegenbarth

Corollary 5. Each closed orientable (n + 2)-manifold M™2, n > 2,
with handle presentation

M2 = HOUMH U, Ul HPTL U HPF2
is completely determined by
HOUMHIU...UMHE™

Here H' represents an arbitrary handle of indez 1.

Using Corollary 4, we prove an extension to dimension n of a well-
known result due to F. Laudenbach and V. Poenaru (see [12]).

Corollary 6. Let M™?2 be the smooth closed (n--2)-manifold,
n > 2, obtained by gluing #, (Sl X D”‘H) to #p (S™ x D%, p>1, via

an arbitrary diffeomorphism of their boundaries. Then M is diffeomor-
phic to S"2.

Proof. Set Y = #, (Sl X D“‘H) and Z = #, (8" x D?) for n > 2 and
p=>1l

Consider a diffeomorphism h : 8Y — 8Z and the smooth closed
(n + 2)-manifold M = Y Uy, Z.

One has canonical identifications

ay&X:#p(slxsﬂ)f—az

which will be given, one for all. It is obvious that Y Ug-1,, 2 = smte,

Since the manifold M = Y Uy Z is independent of the way of pasting
the boundaries together (see Corollary 4), it follows that M = Y Uy Z
is diffeomorphic to Y Ug-104 Z = sne,

2 Homotopy equivalences and pseudo-isotopies
of X = #, (8' x 8")

In this section we prove that the group D{X) of pseudo-isotopy classes of
homeomorphisms of X = #, (Sl X S"), n > 3, is isomorphic to £(X).
For this, we use the following results proved in [4] and [5].
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Theorem 7. Let M™', n > 4, be a closed connected PL (n + 1)-

manifold of the same homotopy type as X = #, (Sl X S") Then M 1s
PL hemeomorphic to X .

Theorem 8. Any homotopy self-equivalence of X = #, (Sl X S"),
n > 3, 15 homotopic to ¢ PL homeomorphism.

Theorem 7 extends the analogous result proved in [9] for p = 1 and
Theorem 8 represents an extension of Lemma 16.2 of (18], p = 1 and
n=3.

In order to prove our result we need the following proposition.

Proposition 9. If X = #, (sl x s") n>3 p>1, then any PL
homeomorphism f : X — X, which i3 homotopic to the identity, is
pseudo-isotopic to the identity.

Proof. Let Y be the (n + 2)-handlebody, i.e. Y is the boundary con-
nected sum Y = i, (S1 X D"‘H). Obviously we have Y = X. As
shown in 4], Proposition 3.1, the homeomorphism f : X — X extends
over Y. To make the reading clear, we skecth the construction and refer
to [4] for more details.

Form the closed {n + 2)-manifolds M =Y UygY and N =Y Uy Y.
Obviously M is PL homeomorphic to #, (S1 X S"H). Furihermore N
is homotopy equivalent to M since f is homotopic Lo the identily.

Letiy: Y = Mandj;:Y — N (resp. ip: Y — M and jo: Y — N)
be the canonical inclusions of Y into the first (resp. second) copy of it.
For simplicity we identify ¥ = {1(Y) C M with Y = j;(Y) C N so that
MMON=Y,

Note that

£ = (olx) " odilx

Because n > 3, Theorem 7 implies that there is a PI. homeomorphism

B MU Ly NTH2

By the tubular neighborhood theorem and the Whitney embedding
theoremn we may assume that k is the identily on the first summand
Y = i1(Y). Then the restriction of k to the second copy i2(Y) of ¥ in
M provides the required extension of the map f. Thus,let g: Y — Y be
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a PL homeomorphism which extends f to Y. One has the commutative
diagram

m(x) £ mx)

ic } 14,

IL(¥) o ILh(Y)

where the inclusion-induced homomorphism 7, : II;(X) — M (Y) ~ ;Z
is bijective. Since f, = identity, it follows that g, = identity.
Let S} be the canonical i-th §'-factor of Y = #, (Sl X D”H) for

i = 1,2,...,p. Then the l-sphere &} = ¢ (S,l) is homotopic to S} be-
cause g, = identity. Hence they are also isotopic as dimY > 5. Then we
isotope g to a map, also named g, which sends the 1-dimensional graph
G = VvP.,S! (one-point union) in ¥ to itself via the identity. Then we
can also adjust the map g so that it is the identity on a regular neigh-
borhood of G in Y. Moreover we may choose these isotopies keeping a
collar of the boundary X = 8Y fixed. In other words, there exist two
regular neighborhoods V and W of G in Y which satisfy the following
properties:

1) VCintW CintY

2) glv = identity

3) the previous isotopies are fixed outside W.

By the regular neighborhood collaring theorem (see [16], p. 36), the

complement Y\ int V can be identified with X x/ where Y = X = X x0
and 8V = X x 1 (I =[0,1]). Then the restriction map

gl X x T - XxI

is a pseudo-isotopy between glxxo = f and g|xx1 = identity (use 2)
above). Thus the homeomorphism f : X — X is pseudo-isotopic to the
identity as claimed.

Corollary 10. If X = 4, (Sl x S"), n >3, p>1, then the natural
map

D(X) — £(X)
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1$ an isomorphism.

Proof. By Proposition 9 the map of the statement is injective. It is also
surjective because each homotopy self-equivalence of X is homotopic to
a PL. homeomorphism by Theorem 8.

n
Theorem 11. If X = #, (Sl X S"'), n >3, p>1, then we have the
following exact sequence

0-— Kerfy~ @ Zo— Dy(X) = Eo(X) b, Out(It;) — 0,
P

i.e. any two orientation-preserving diffeomorphisms f,g: X — X with
fo=go: =T
are pseudo-isolopic provided certain obstructions
a; €I (SO(n+ 1))~ Z2
vanish, 1 <i <p.

In order to prove Theorem 11 we need ihe following lemma.

Lemma 12, Let f,g: X — X be two degree one maps.
If fa=gs: 11y = I, then fo = g4 : Iy — g for all g < n.

Proof. We observe that Tli(X) =0 for 1 <i<n  hence
fo = ge : Iy — IIg for all ¢ < n. By [12], p. 341, the Poincare
duality and the relation deg(f) = deg(g) = 1, we have the following
commutative diagrams

Ho(X:2) — Ha(X;2) = HNX;Z) — H)NX;2)
fol 13 £l 15"
Ho(X;Z) — Ha(X;Z) P—"-;; HYX;Z) — HNX;Z%)
HYX;2) = H}X;Z) = H'(IZ[ML) — #'(I;20L)
g 1y il La:
HYX;2) — HMX;2) = H'(I;Z[M]) — H'(Th; Z|]N))

where f,§: X — X are the liftings of f, g respectively.
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Since the hypothesis f, = g, : II} — II; directly implies f} = g2,
it follows that f, = Gs : Hn(f(;Z) — Hn()Z’;Z). Then the Hurewicz
isomorphism N N

Ho(X; Z) = Tp(X) ~ Ta(X)

implies that f, = g, : II, — Il, as required.

Proof of Theorem 11. Here we prove that the sequence
@pZo — Do(X) — Out(M;) — 0

is exact. The injectivity of the term @,Z 2 into Dg(X) will follow from
realizations of obstructions in section 4.

Suppose that f : X — X = a\E;E,,(S1 x 8™), n > 3, is an orientation-
preserving diffeomorphism such that 6g(f) = 1. We can choose a repre-
sentative (also named f) in the class of f which preserves the base point
of X and f, = identity on I1;(X). Lemma 12 implies that f, = identity
on IT4(X) for all ¢ < n. By Proposition 9 it is enough to show that f is
homotopic (and hence pseudo-isotopic) to the identity Idx : X — X.

We attempt to build up a homotopy F : X x I — X between f and
Idx in steps, using a filtration of X by subcomplexes.

Consider the handle presentation

P P
X =Dp"u, | (D} x D;‘) uy (D;‘ X D:}) u B!
i=1 =1
where D, B are (n + 1)-cells and x, 1 are embeddings

p
x: (BD}) x DF — gDl = §"
i=1

p P
v: U (aD;-‘) x D} =2 (D"“ uy J (D} x D;‘)) .
Jj=1 i=1
Our filtration starts with D™, then we successively add
D} x 0, D} x D}, D¥ x 0, DT x D} and finally B™+1.
Now we regard f as a diffeomorphism of X x 1 and seek to extend f
on X x 1 and the identity Id on X x 0 to a map F : X x I — X, where
I=10,1}
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Step 1. By the disc theorem f}pn+1 and ld|pn+: are homotopic. Thus
we choose a homotopy and define it

Flpntixy : D" x 1 — D"l c x.

Step 2. We next define F on D} x I. Now FIB(D!xI) is already given:
on 8D} x I € D! x I by Step 1, on D} x 0 by the identity and on
D,-l x1by f.

Because f. = identity on I1;(X), we can extend to some map

D} xI—X.

Indeed, let S} be thei-th St factor of X = #p (Sl X S"), n > 3; the con-

dition f, = identity on II; implies that the 1-sphere f(S!) is homotopic
to S} (and also isotopic as dim X > 4).

Step 3. We now extend F to D} x DPx I, i.e. to a tubular neighborhood
of D} x I in X x I. By the tubular neighborhood theorem it suffices
to find a trivialisation of the normal bundle with the desired properiies.
As in step 2 these turn out to be that a trivialisation is already given on
the boundary 8 (D} x I). The obstruction to extending this over Dix1r
(since this is contractible, the bundle certainly is trivial) is an element
(see [17)
ai € [T (8O(n + 1))~ Zq

(see [1], {8] for the stable homotopy of the orthogonal group, n > 3).
If @; = 0, then the extension of the framing and hence of F is
possible.

Step 4. We now assume that steps 1,2,3 have been successfully per-
formed, i.e. F' has been already defined on

P
(oo Y (D,* x D})) x 1.
i=1
We next extend F on D} x I. Now Fla(n;}x]) is already given:
P
on 9D} x IC a(prttu, U (D,1 X D:’)) x I by step 2, on D7 x 0 by

t=1
the identity and on D} x 1 by f.

153
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Because f, = identity on II,,(X) (see Lemma 12) we can extend F
to some map

D} xI— X.

Indeed, let 87 ( = 1,2,...,p) be the j-th §"-factor of X. The condition
f.+ = identity on II,,(X) implies that the n-sphere f (S-’:) is homotopic
to S7.
Step 5. We have now to extend F to D} x D} x I, i.e. to a tubular
neighborhood of D} x I in X x I. As remarked in step 3, the obstruction

to extending a trivialisation giver on the boundaryB(D;-‘ X I)

to D} x I is an element of I, (SO(2)) ~ I,(S!) ~ 0 for n > 3. Thus
the extension of the framing and hence of F' is possible on the whole of
(X\int(B"*1)) x I. Then we complete the extension of F to X x [ by
using the Alexander theorem.

Finally we prove that the homomorphism 8 is surjective. Indeed,
for any £ € Out(Il;) there exists f € Aut(X) such that f, = ¢ (see [12]).
If deg(f) = 1, then [f] € Do(X) and 8y[f] = ¢. Otherwise we compose
f with the homeomorphism

v = #p (Idsx xr) X = X

where r:8" — 8" is the reflection on the l-st coordinate. Then
[f or'] € Do(X) and fy|f o #’| = €. Thus the proof is completed.

In section 4 we will show that any obstructions can be realized.

3 Alternative proofs

We can give an alternative proof of Theorem 11 by applying the classical
obstruction theory (compare for example with [6]).

In order to do this, we need some algebraic lemmas which are inter-
esting by itself.
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Lemma 13.’
1) Let A = Z[Ily] be the group ring of 1(X). Let ey, e, ...,
ep € II1(X) be canonical generators and let

og=(e1—lLen—1,...,ep~1) € BA.
P

Then the A-module I,(X) is A-isomorphic to (& A)/cA.
P

2) The A-module 11,11 (X) is A-isomorphic to ( éBl %) & (6 Z2),
. P

where A acts on Zo via the map naturally induced by the augmentation
e:A— Z.

Proof.
1) Let X(@ be the g-skeleton of the standard cellular decomposition

e’ Upe1 Upe™U et
of X. Since X(@ = X for 1 < ¢ < n, we have
n(X) =~ Hn()?) ~ Ho(X; Z) = Hn(X;A)
and H,(X;A) ~ H'(X;A) by Poincaré duality. Here X denotes the
universal covering space of X.

To calculate H1(X;A) we consider the exact sequence

0 — H; ()n('(l), )}'(O)) —+ Hyg (f(ﬁ)) —s Hg (X~(1)) — ]
iso | iso | iso |
0 — I(A) -5 A — z  —

which gives the following augmented A-chain complex

0 — Homy(Z, A) <5 Homp (A, A) <2 Homy (T(A), A) — 0,

hence
Homp (J{A),A)

— Tmit

H'(X;A) = cokeri# ~
As A-module, I(A) is isomorphic to

AMey—1)BAlea—-1)® ... D Alep— 1),

155
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where
e1,€e2,...,ep € 1 (X) 2;!;2

are canonical generators. If ¢ € Homa (A, A}, then i* () corresponds to
op(l) € %A ~ Homp (I(A), A),

proving statement 1) of the lemma.

2) Let X* be the CW-complex obtained from X = #, (Sl X .Sm)

by attaching p — 1 (n + 1)-cells D"'! along the n-spheres where the
connected sum is taken. Observe that X* is homotopy equivalent to the

wedge g (S1 x S“)

Furthermore one can easily verify the following isomorphisms:

H11+1(X*) =~ Hn-!—?(x') = GE Zo
Mept(X* X) = @ A Ta(X* X) ~ o
n+1 ] — p1 n--2 y = ool 2]\
Thus the homotopy exact sequence of the pair (X*, X) yields
Hn-}-?(-x) 2 Hn+2(X‘) I HH+Q(X*1 X)
—+ M1 (X)) — I (X *) — 0.

Since j, is an epimorphism, we obtain the result.
[ |

Given a A-modul~e L, we denote by_H‘(X; Ll the thomology of the
complex Homa(C.(X), L), where C,(X) = H*(X(*),X(*_l)),

Lemma 14.
1) HYX; (X)) = Z

2) HYWHX M1 (X)) > & Zo.
P
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Proof.

1) By Poincaré duality, we have H®(X;I1,(X)) ~ H(X;,(X))
(see [18]).

Using I, (X) ~ (? A)/oA, one obtains the following exact sequence

Hy(X;A) — Hl(X;%A) — HI(X;(GI?A)/UA)

— ZRsA—Z ®4 (EEA).

Now Hi{X;A)~ Hi(X;®A)~0and ZQy A — Z @4 (& A) is the null
P P
homomorphism because o goes to zero. Hence we obtain
HY X Mp(X) 2 Z@psA=Z

as claimed (use also {15}, Theorem 1.12).
2) We have

H™ (X (X)) = Ho(X;Mnt1 (X)) 2 Tyt (X )my )

where IT,+1(X )1, (x) is the maximal quotient module of Il (X) (see
(15], p. 266), i.e.

Hn+1(X)
{xz: X € Ansedl, (X))}

M (X )myx) =

Because this quotient module is A-trivial (see {15]), Lemma 13 implies
that
H™ (X, 0(X)) = @ Zo.
P

Thus the proof is completed.

Theorem 11: second proof. Let f: X — X =4, (31 X S"), n>3,
p 2 1, be a homotopy self-equivalence of degree one such that 6p(f) = 1.
As before, we can assume that f preserves the base point of X and that
f+ = (Idx). on Iy(X) for all ¢ < n (see Lemma 12). We have to study
under that conditions f is homotopic to the identity Idx. We attempt
to build up a homotopy h : X X I — X between f and Idy in steps
using a filtration of X by subcomplexes.

1

7
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Let X he the g-skeleton of the standard cellular decomposition
X =P Upel Upe® ue™t,
Because f, = (Idx). on I1, there is a homotopy
R:XPxT1o X

between f|y and Idx |y ).
The equalities X (@ = X () for 1 < ¢ < n imply that

HI(X;Tla(X)) =0
for all 1 < ¢ < n. Thus the first obstruction lies in
HM"(X;Mp(X))~ Z

(sec Lemma 14). Let h : X x I — X be a homotopy between
flxn-1n and Idx |y-1. The obstruction to extend h to X™ s the
homotopy class of the map

FURUIdy : X x0UX® D xrUuXx x1— X,
Le. forany i = 1,2,...,p we have
Ai(f, b Tdx) = |fURUIdX Ie?xOU@e?xIUe’.-‘xl] € M (X).
In other words, the difference cochain is defined as follows:

d(f,h,Idx) : Cnp(X) — TIp(X)
e} — Ay(f, h,1dx)

hence the obstruction is the cohomology class
P
[(f, hTdx) = DA € N (X T(X)) > Z.
i=1

Let ' : X1 5 I — X be a homotopy of Id | -1 to Td [yee-n. Mt is
well-known that

A(fs h,Idx) + A(IdX1 h’? IdX) = A(f: h -+ h’! ldX)
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where h + h': X("=1) x | — X is defined by
) | h(z,21) 0<t<3
Indeed, for each i = 1,2,...,p, we take a small ball in the centre of

the n-cell el and cut off it. Next we attach to its place a spheroid
representing the value in I[,(X) of the cochain d at el'. Thus we can
always choose an k' such that

d(IdX: h’! IdX) = _d(.f: ha IdX):

ie. h+ k' extends to a homotopy X{™ x I — X between f|ym and
Idx | x(n). Now the only obstructions lie in

HY (X Mg (X)) 9 Zo.

This proves Theorem 11.

4 Realizing obstructions

Now we are going to prove Theorem 3.
Let {e;},i=1,2,...,p, be a free basis of II}(X) ~ ;Z, where

X=4%#p (S1 X S"), p > 1, n > 3. Obviously e; is the homotopy class of
the i-th §'-factor S} of X. As proved in [10] and [12], Aut(I1;) is gener-
ated by sliding 1-handles, twisting 1-handles and permuting 1-handles.
More precisely, for i = 2,3,...,p (p > 1) define ¢; € Aut(Il,) by setting
pi(e)) = ei, ¢ile;) = e and ¢i(e;) = ¢; for each j # i, j # 1. Permuting
the 1-handles e; and e; corresponds to the automorphism ¢; 0 ¢; 0 ¢; 1
It follows that ¢7 = 1 and by [10], {12] there exist diffeomorphisms
fi + X — X (permuting 1-handles) such that f;, = ¢;. Then define
o € Aut(Tl;) by setting o(e;) = e7! and o(e;) = e; for i # 1. Twisting
the 1-handle e; corresponds to the automorphism ¢; o o 0 ¢; 1 Obvi-
ously o2 = 1. Furthermore there exist diffeomorphisms of X (twisting
1-handles) which realize o and ¢;00 0 ¢i_1 for i > 2. Finally we define

159
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¥ € Aut(ll;), p > 1, by setting ¢(e;) = e1e9 and Y(es;) = e; fori > 2
(sliding 1-handles).

Let ¥; = ST be the i-th $™-factor of X = #,, (Sl X S'"), p>1,n2>3.
Following [10], we show that rotations of X parallel to ¥; generate the
obstruction subgroup

Kerég~ & 1I; (SO(n + 1)) ~ o Zs.
P P
 Let
a: (8 1) = (SO(n + 1),id)
be a loop representing a homotopy class of I1; (SO(n + 1)) ~ Z5 (n > 3).
Then o induces a diffeomorphism

ha:S"xIT —-8"x1

defined by

hal(z,t) = (alt)z, t)
foral z € $" and t € I = [0,1]. Obviously kg is the identity on the
boundary 8(S" x I) = 8" x 0US™ x 1.

Now let M™+1 be a closed oriented (n -+ 1)-manifold and let ™ be
an oriented n-sphere embedded in M. Suppose ¢ : S" x I — M is an
orientation-preserving embedding such that ¢(S™ x 0) = ¥. Because
hq == identity on 8(S™ x I), one obtains a diffeomorphism

RE:M — M
defined by

I PIR BE if z€ Mi\Imy
halz) = { pohop ) if z € Img.

We call the diffeomorphism k2 the a-rotation of M parallel to (briefly,
a rotation). Obviously the pseudo-isotopy class of h2 depends only on
the homotopy (resp. isotopy) class of a (resp. £J.

If M? = x = #,,(31 xS"), p>1,n >3 then let I; = 87 be
the i-th §™-factor of X. We set

hi,o: = hg :
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for i = 1,2,...,p and [a] € IT1; (8O(n -+ 1)) ~ Zo. One can choose
hio to be the identity on the union UJ_ ¥;. Because (hiq)s = identity
on 1I,(X) for all ¢ £ n, we have that h;o € Kerfp, i = 1,2,...,p.
Moreover hjq © hjg = hjpgo hio (i # j), each h; o commutes with the
generators of Aut(T1;) and hj, is pseudo-isotopic to the identity if and
only if {¢] = 0. Thus we have shown that the rotations h; = hiq of
X parallel to the n-spheres Z; generate Kerfy if |o] is the generator
of IT; (SO(n + 1)) ~ Z2. In particular, this shows that the term Gpa Zs
injects into Do(X).

More precisely, we can interpret our results in the following way
(which is related to Lemma 5.4 of {10]}):

Corollary 15. Let X = #, (Sl X S“), p2l,n>3, endletf: X - X
be an orieniation-preserving diffeomorphism such that 6o(f) = 1, i.e.
f+ = identity on II,. Then there exist loops (obstructions)

a; : (81, 1) = (SO(n + 1),1d)
(i=1,2,...,p) such that f is pseudo-isotopic to the product
hiag,ohoa,0...0 h,p‘ap.

Moreover, the pseudo-isotopy can be chosen keeping the union Uf=12i
fized.

In other words, rotations hi = hiq (i=1,2,...,p) is a free basis of

Kerfy~ @I, (SO(n+1)) > & Z»
P r

where [ is the generator of Il (SO(n + 1)) = Z».

5 Concluding remarks

Following [12], let C(n, A) denote the class of smooth (n + 1)-manifolds
of the form
Nn+1 — HO UPH'\ Usz\+1

such that N is contractible, n 23, 1 <A <n -1 The A-cobordism
theorem of Smale implies that if N € C(n, A), then N is an (n + 1)-disc
provided that # > 5 and } < A < n — 3 (see for example [16]). On



162 Alberto Cavicchioli and Friedrich Hegenbarth

the other hand C(n,n — 2) contains elements with non-simply connected
boundary (see |{12]).
Now one might ask the following question:

N €C(nyn—1)== N ~ p"l
dif f

We can apply Corollary 6 to give a positive answer in the particular case
HOUpH™™ = #, (5" x D%).

Indeed, we have the following result.

Proposition 16. Let N™! be the manifold obtained by attaching P
handles of index n to #, (S""l X DQ), n>3. IfH, 1(N;Z) =0, then
IN 1is diffeomorphic to the n-sphere 8™,

Proof. We simply follow the proof of Lemma 5 [12], settled for n = 3.
First of all, the hypothesis Hp-1(N;Z) = 0 implies that N is con-
tractible, ie. N € C(n,n — 1).

Let 4}, be the attaching map of the i-th handle H = DI x D}
of index n, i = 1,2,...,p. The same argument as in {12| shows that

Wi (BJID,Tl X %) are disjoined homologically independent (n — 1}-spheres
embedded in

8 (#p(8"™ x DY) = #,(5"1 x 8%).
Let £77! be the i-th (n— 1)-factor of #, (S"_1 X Sl). Cutting

#p (S"_l X Sl) along the (n — 1)-spheres y? (()D;‘ x %) (resp. L27Y)
yields a punctured n-disc P" (resp. @Q™), where

P~ Q" ~ D™\ {2p — lopenn — cells}.

A diffeomorphism P™ — Q" which preserves the boundary compo-
nents induces a diffeomorphism between the pairs

(e (571 x 8') U uwion] x )

and
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(#, (5" 81), Uz ).
i
This implies the statement.
]
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