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Mosco convergence of sequences of
homogeneous polynomials.

J. FERRERA*

Abstract

In this paper we give a characterization of uniform convergence
on weakly compact sets, for sequences of homogeneous polynomials
in terms of the Mosco convergence of their level sets. The result
is partially extended for holomorphic functions. I'inally we study
the relationship with other convergences.

Throughout this paper E will be a Banach space over K, K= R or
C. Results hold both for the real and complex cases unless one of them
is specified. E* will denote the dual space and Bg, Sg the unit ball
and the unit sphere respectively.

P(E) will denote the space of all k-homogencous polynomials on E.
P(¥E) is a Banach space endowed with the usual norm

1PIl = Sup{|P ()] : ||=]| < 1}

For a general reference on infinite dimensional polynomials see [Ll] or
[Mu].

If {zn}n is a sequence of elements of E and z € £, z = w — lim, z,
means that x is the limit of the sequence {zy}n in the weak topology,
meanwhile £ = lim,, £, means that the limit is in the norm topology.

We start with a definition:
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Definition. We will say that a sequence of nonemply closed subsets
of a Banach space E, {Ap}n, converges in the Mosco sense to a closed

subset A (An M A in short) whenever the following (wo conditions hold:

(i) For every x € A there ezists a sequence {Tn}n, norm convergent
to = such that z, € Ay, for every n.

(i) Given J C ZT cofinal, for every sequence {2n;}jea weakly conver-
gent to z, the condition xpn; € Ay, for every j, implies z € A.

This concept of convergence is closely related with Kuratowski conver-
gence which is defined in the same way changing weak convergence by
norm convergence in (ii). (See [K]).

Let us introduce two more concepts of set convergence. We will say
that a sequence of closed sets A, converges in strong (respectively Wijs-
man) sense to a closed set A, provided that the sequence {d,} converges
to d unifomly on bounded sets (respectively pointwise), where dy, and d
denote the distance functions to A,, and A respectively. ([M],[W],[B2]).

Kuratowski convergence may be defined in any topological space,
while Wijsmann and strong ones require metric spaces. We need duality
for Mosco convergence.

Remarks:

(1) It is assumed usually that the sets in the definition of Mosco con-
vergence are convex, and consequently weakly closed. By the mo-
ment we do not, but let observe that without that condition a
constant sequence may be non-convergent!

(2) Mosco convergence implies Kuratowski convergence. If E is a

Schur space (in particular a finite dimensional one) both conveg-
ences agree,

(3) If E is a reflexive space and we are dealing with convex sets, then
strong convergence implies Mosco convergence implies Wijsman
convergence (sec [T]). And F may be renormed in such a way that
Mosco and Wijsman convergence agree.

(4) If some sets A, are empty, and A # 0, we will say that {A,},
converges in the Mosco sense to A if there exists np such that
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Ap # 0 for every n > ng and {Ap}npn, converges in the Mosco
sense to A. If A = 0 the definition works even if some, or every,
Ay, are empty.

Given a P € P(X¥E) and a € K, we will denote {z € E : P(z) =

by V(P ~ a). Now, let us consider P, P, € P(*E), then V (P, — a)
V(P — a) reads as:

}
M

(i) For every = such that P(z) = « there exists {Tn}, such that
Pup(zyn) = a and = = limy, z,.

(i) ¥ Pp,(zn;) = a for evey j € J and z = w — lim; 7y, then

Plz)=«a
As in [F], the Mosco convergence of the level sets for @ = 1 (and
a = —1 in the real case if k is even) give us V(Pp — a) M V(P —a) for
every a # 0.

Definition. We will say that a sequence { Py }y of polynomials in P(*E)

converges to P € P(¥E) in the Mosco sense if V(Py, — &) M V(P - a)
for every a # 0

In [F] we define, in a similar way we do here, Kuratowski, Wijsman
and strong convergence of sequences of homogeneous polynomials, and
we characterize them. More precisesly, Kuratowski convergence is equiv-
alent to uniform convergence on compact sets and strong convergence
is equivalent to norm convergence. In order to characterize Wijsmann
convergence we need the following condition:

P,(B) - P(B) foreveryball BCE

For a previous study of the linear case see [B1].

As we noted above, if the sets are not convex (which in general is
the case for the level sets of a polynomial), we may have problems with
the Mosco convergence. The following easy example give us an idea of
what kind of problems may arise.

Example. P : I3 — R defined as P(z) = 332, x?. P is a 2-
homogeneous non-weakly sequentially continuous polynomial, and the
constant sequence V(P — 1) does not converge in the Mosco sense to
itself.
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Of course this pathology does not happen if the polynomial is weakly
sequentially continuous. The space of such polynomials will be denoted
by Pwsc(kE) .

Amazingly, weak sequential continuity is not only convenient but, in
some way, necessary.

Lemma. Let P, P, € P(*E). fV{P,—q) M V(P —o) forevery o # 0
then P € pwsc(kE).

Proof. Let us suppose that P ¢ Py.(¥E). Passing to a subsequence if
necessary and using boundness of weakly convergent sequences, we may
assume that there exists a sequence {xy}n converging weakly to z, such
that a, = P(z,,) converges to a # P(z).

First we consider the case a # 0. We may assume a, # 0 for every n
and therefore (2 )k:z:n € V(P —a) for every n; using the firsi condition
in Mosco convergence definition we have that: for every n there exists
{2n,m}m norm convergent to (2 )'t:z:n, and satisfying Pm(2n, m) = a. Let

us choose m(n} such that m(n) < m(nJrl ) and |z, mn)— (2 )kmn“ <5
and define yp = 2, m(n). For every z* € Sg-, we have

[2°) = 2" ()l < [*(@) = (Ve )] + I M) 5iom = wall <
<= (IF @)+ ()R (@) =2 ) 4 e ) R =yl <

<i- (;:)‘!Ilwll + (;;)?II*(E) —z"(za)| + %

which goes to 0 when n does. Therefore {y,}n converges weakly to x,
and Pp(n)(yn) = «. Renaming y, as 5, where jn = m(n}, we have that
z = w — limp ¥4,, Pj.(¥;,) = @ but P(z) # a, which is a contradiction.
Let us proceed with the case o = 0. That is lim,, P(z,) == 0 and P(z) #
0, where © = w — lim, z,. First let us observe that if x = w — lim, 2,
z = limy, yn aud z,, € [z,, ynl, then the sequence {z,}, converges weakly
to z.

If we denoted g = P(x), being 4 # 0, in the real case we may choose
2n € [Tp, | such that P(z,) = g (this is possible because limy, P(z,) = 0
and P(zx} # 0). The observation above says us that {z,}, is weakly con-
vergent to = and P(z,) = g, thus we are in the previous case. In the com-
plex case some small arrangement must be done. (See theorem proof be-
low). (]
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Now, we are able to give a characterization of Mosco convergence

of sequences of homogeneous polynomials when the limit belongs to
Pusc(*E).

Theorem. Given P, P, € P(*E), the sequence {P,}, converges to P
in the Mosco sense if and only if it does uniformly on weakly compact
subsets of E and P € P (*E).

Proof. Let us suppose first that V (P, — a) M V(P — a) for every
o # 0. If the sequence does not converge uniformly on weakly compact
subsets, then there exists an ¢ > 0, a X weakly compact, and a sequence
{zn}n C K such that |Py(z,) — P(2,)| > € for every n. Boundness of
both {||Pn||}n and {zn}n (see [F]), allow us to assume, passing to a
subsequence if necessary, that there exist o« # § such that

o = li’IInPn(a:n) 8= li'gl P(zy)

By Eberlein's Theorem, passing to a subsequence again, there exists =
such that z = w —limy, z,. Weak sequential continuity of P implies that
P(z)= 8.

If 8 # 0, condition (i) in Mosco convergence gives us a sequence {yn}n
norm converging to x, such that P,(yn) = 8. In the real casc a similar
argument that we used in the Lemma above says us that there exists
a sequence {zp}yn such that P,(z,) = O‘—}E (if %@ = 0, let choose any
other nonzero real number laying between o and #), and it converges
weakly to z. Then by condition (ii) in Mosco convergence, it follows
that P(zx) = % contradicting the weak sequential continuity of P.
In the complex case we may choose {z,}n such that {Pp(zn) — a| = =,
being 0 < rg < |oo — 8] and 79 # || By compactness of {w € C
i |[w — a| = g}, we may assume that there exists a subsequence, {zn,};
such that lim; Pn,(2n;) = & where |6 — a| = 7o and hence § # 0. The

sequence zp; = &% (Pnj (znj)) an,' works because Py, (2,,) = 6 # 3.
Now, if-8 = 0, we may assume that all the o, = Pp(zy) are different to
0, and defining &, as (&)¥zn, we have that Pu(¥n) = « and {Z.}n
converges weakly to x, hence P(z) = «a, which is a contradition again.
Conversely if {P,}, converges uniformly to P on weakly compact
subsets of E, it does on compact subsets and therefore il converges in
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the Kuratowski sense ([F]). Consequently we only have to check the
second condition in Mosco convergence definition.

So we consider a sequence z = w — lim, z,,, such that Pp(z,) = a. Let
us denote by K the sequence with its limit, K is a weakly compact set
and consequently lim,(P,(y) — P(y}) = 0 uniformly on y € K. Hence
for every j there exists n; such that |Pp (y) — P(y)] < % ify € K,
hence

1.
loe = Plany)| = |Pry(2n;) — Plany)l < 5 V5

And therefore P(x) = lim;P(zn;) = «, following the first equality from
the fact that P € Puec{¥E).

Alaouglou’s Theorem give us trivially the following

Corollary. Let E be a reflexive Banach space, P, € P(*E) and P €
Pwsc(kE). Then the sequence { Pp}n converges to P uniformly on bounded
subsets of E if and only if it converges in the Mosco sense.

Some authors define Mosco convergence of sequences of functions as
the Mosco convergence of their epigraphs. The convergence of the level
sets allow us to consider the complex case. In the real case, it is easy
to realize that Mosco convergence of the epigraphs follows from Mosco
convergence of the level sets,and it is stronger as the following example
shows.

Example. Let E = co, Pplz) = el(x)? + ()%, and P(z) = e}(z)
{Pyn}n does not converge uniformly on weakly compact sets to P, (be-
cause Pp(ep) = 1 and P(en) = 0 if n > 1), hence, by the Theorem
above, it does not converge in the Mosco sense (let us observe that
P e 'Pwsc(kE)). On the other hand it is clear that epiPn—A{cpiP, be-
cause if (z,a) € epiP then (x,a + e}(x)?) € epiP, and it is norm
convergent to (z,a). The other condition follows from the fact that if
z = w — lim, n, limp o, = @ and Pp(zn) € ap, then P(z,) < an too.
Taking limits we have that P(x) < a (we are using that P € Pusc(“E)
again).
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In the complex case we may prove a stronger result than Theorem
above. In fact we get a stronger conclusion with weaker hypotheses. Let
us denote by H(E) (respectively Hys.(E)), the space of all holomorphic
(respectively weakly sequentially continuous holomorphic) functions on
E. (See [Mu] for a general reference)

Theorem. Let f, € H(E) for every n and f € Hysc(E) non constant. If
f = lim, fy, uniformly on weakly compact subsets of E, then {V(fn)}n
converges in the Mosco sense to V (f).

Proof. Let us check the first condition, if f(z) = 0 and it is not true
that there exists a norm convergent sequence to z, {zn}n, such that
fr(zn) = 0 for every n, we may assume, passing to a subsequence if
necessary, that there exists ¢ > 0 such that V(f,)NB(z,¢) = @ for every
n. Let z € Sg such that f is not constant on L = {z + wz : w € C}.
Let us define g, gn : D(0,¢) — C by

glw) = flz+wz) gn(w) = fn(z +wz)

The sequence {gn} converges uniformly to g which is not identically zero,
and g, never vanish, hence g never vanish (by Hurwith’s Theorem), but
on the other hand we know that g(0) = 0, which is a contradition.

In order to prove the second condition, let us consider x = w —
lim; zy,; and fp; (:cnj) = 0. By uniform convergence on weakly com-
pact subsets it follows that lim; f(za;) = 0, and by weakly sequentially
continuity of f we have that f(x) = limy f(zy,;). Hence f(z) = 0.

The fact that the theorem hypotheses are stable by adition of a
constant, give us the following

Corollary. Let f, € H(E) for every n and f € Hyws(E) non constant.
If f = lim,, fy, uniformly on weakly compact subsets of E, then {V (f, —
a)}n converges in the Mosco sense to V(f — a) for every .

In the real case we cannot infer the convergence of the 0-level sets
even under stronger conditions as the following example shows.

Example. Let us suppose that k is odd (the even case is easier).
Let us take @1, w2 € E* linearly independent, (we are only assum-
ing that dimE > 1) let us define P and Py as o M1 + @2) and
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(0571 4 15T ) (g1 + ) respectively. P € Puso(FE), P = limy B,
but

V(P) = KergiUKer(p1 +¢2) V(Pa) = Ker(gy + 02)

and consequently the sequence {V (Pp)}y does not converge, even in the
Kuratowski sense, to V(P).

However, in the real case, we have the following

Proposition. If P € Pys(*E) and dP(x) = 0 only if x = 0, then the
uniform convergence on weakly compact sets of the sequence {Pp} to P,

implies V(Pn — o) M V(P - a) for every a.

Proof. The proof of the second coundition is similar to that of the
complex case. To establish the first condition we have to prove that for
every o and for every 2z € V(P — «), there exists a norm convergent to
z sequence {zn}n such that P,{(r,)} = o. If z = 0 (therefore a = 0) the
constant sequence z, = 0 works. Hence we may assume = # 0, let us
consider z € Sg such that dP(z)(z) # 0. The following one-dimensional
polynomials:

gn(t) = Pn(x +tz)  g(t) = Pz + t2)

verifies that {gn}n converges to g uniformly on the compact interval
{=1,1], ¢{(0) = a, and ¢'(0) = dP(z)(z) # 0. Consequently, therc cxists
a sequence {t,}n such that lim, t, = 0, and gn{tn) = a eventually. If we
define £, = x + iz, the sequence {z,}, fulfils the required conditions.

Mosco convergence is related with other convergences in the following
sense: it is implied by norm convergence (if the limit is weakly sequen-
tially continuous), and implies Kuratowski convergence. If the Banach
space F is a Schur space, then Kuratowski and Mosco convergences are
equivalent (P(¥E} = Pue(¥E) for Schur spaces). Moreover, for spaces
whose dual unit ball is w*-sequentially compact (WCG or I} ¢ E* for
example) this property is also necessary. In fact we have the following
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Proposition. If E is Banach space with w*-sequentially compact dual
unit ball, and it is not a Schur space, then there exists a sequence
{Pp}n C P(XE) which is Kuratowski convergent to a weakly sequen-
tially continuous polinomial P, but it does not converge in the Mosco
sense.

Proof. It is enough to consider a weakly null sequence {z,}n such that
llzn]] = 2 (that sequence exists if £ is not Schur), we may choose a
bounded sequence {z},}r, C Bg: such that z}(z,) = 1. Being the unit
ball of -E* w*-sequentially compact, we may assume that the sequence
is w*-convergent to a z*. Defining Pn(y) = z2,(»)*, and P(y) = z*(y)*
we have that the sequence {P,}n converges in the Kuratowski sense to
P. On the other hand it does not converge in the Mosco sense because
zn € V(Pp— 1) for every n, but 0 ¢ V(P - 1).

Let us observe that from an example for & = 1 it follows an example
for any k, because a finite type polynomial is allways weakly sequentially
continuous.

1f the Banach space is reflexive, then Mosco convergence and norm
convergence are trivially equivalent provided that the limit is weakly
sequentially continuous. On the other hand if I; C E we have that
there exists a normalized 7(E*, E)-null sequence (see [B-V]) and there-
fore norm convergence does not follow from Mosco convergence. In fact,
in the linear case this is a characterization; we do not know if it is true
in the general case.

With respect to the Wijsman convergence, the following two exam-
ples prove that there is not a general relation between Wijsman and
Mosco convergence.

Example 1. Let £ be a separable reflexive space such that the norm of
E* does not fulfil Kadec property (sec [B-F]). Norm and weak topology
does not agree on Sg., and therefore there exists a sequence, {z;,}n C
Sg+, w-convergent (equivalently w*-convergent) to a z* € Sg, which
does not converges for the norm. Let’s define:

Pn(z) = (e3())* P(z) = (=*(=))*



40 J. Ferrera

{Pn}n is Wijsman convergent to P because Pp(B{a,r})). = {(z}(a) —
r)¥, (z2(a) +7)¥) converges to P(B(a,r)) = [(z*(a) — ), (z*(a) + )% if
k is odd (if £ is even is similar). But {P,},, does not converge uniformty
on bounded sets to P, and hence neither in the Mosco sense because of
reflexivity of E.

Example 2. Let us consider the space {1, and define:
Pa(z) = e}(2)* - 3%e(z)*  P(z) = ei(x)*

Kuratowski convergence holds, and being I; a Schur space, Mosco con-
vergence too. But on the othe hand

P(Blen, ) = (515 (G 0 Pa(Bler, 3)

and consequently we do not have Wijsman convergence. Let us remem-
ber that Wijsman convergence is a metric property and for reflexive
spaces, throughout a renorming, it may agree with Mosco convergence
for convex sets (see [T}).
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