LA OLIMPIADA MATEMÁTICA

Sección a cargo de

María Gaspar

XXXV Olimpiada Matemática Española Granada, 11-13 de marzo

Granada ha sido este año la sede de la fase nacional de la Olimpiada.

En la primera fase –que se ha organizado en todos los Distritos universitarios— participaron 2358 estudiantes. Además de los 111 premiados, también lo hicieron, fuera de concurso, otros cuatro alumnos más. Según las bases, los participantes son alumnos de los dos últimos cursos preuniversitarios, pero la Olimpiada también está abierta a alumnos más jóvenes, siempre que estén avalados por algún profesor. Así, el benjamín de la reunión fué José Doval González, con 14 años.

Estudiantes, profesores acompañantes, colaboradores... 171 personas, cifra considerable. Los organizadores locales han trabajado duro y bien. Pascual Jara, Ceferino Ruiz y Salvador Villegas: ¡Gracias!

Las pruebas se realizaron en la Facultad de Ciencias en la tarde del viernes 12 y la mañana del sábado 13 de marzo, en sendas sesiones de cuatro horas. Estos fueron los problemas propuestos:

Primera sesión

Problema 1. Las rectas t y t', tangentes a la parábola de ecuación $y = x^2$ en los puntos A y B, se cortan en el punto C. La mediana del triángulo ABC correspondiente al vértice C tiene longitud m.

Determinar el área del triángulo ABC en función de m.

Media de todos los participantes: 2,44 Media de los premiados: 4,75 Media de los seis oros: 5,33

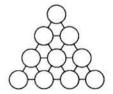
Problema 2. Probar que existe una sucesión de enteros positivos $a_1, a_2, \ldots, a_n, \ldots$ tal que

$$a_1^2 + a_2^2 + \dots + a_n^2$$

es un cuadrado perfecto para todo entero positivo n.

Media de todos los participantes: 1,09 Media de los premiados: 2,89 Media de los seis oros: 5,83

Problema 3. Sobre un tablero en forma de triángulo equilátero, como se indica en la figura, se juega un solitario. Sobre cada casilla se coloca una ficha. Cada ficha es blanca por un lado y negra por el otro. Inicialmente sólo una ficha, que está situada en un vértice, tiene la cara negra hacia arriba; el resto de las fichas tiene la cara blanca hacia arriba. En cada movimiento se retira sólo una ficha negra del tablero y se da la vuelta a cada una de las fichas que ocupan una casilla vecina. Casillas vecinas son las que están unidas por un segmento. Después de varios movimientos, ¿será posible retirar todas las fichas del tablero?



Media de todos los participantes: 1,91 Media de los premiados: 3,39 Media de los seis oros: 4,17

SEGUNDA SESIÓN

Problema 4. Una caja contiene 900 tarjetas, numeradas del 100 al 999. Se sacan al azar, sin reposición, tarjetas de la caja, y se anota la suma de los dígitos de cada tarjeta extraída. ¿Cuál es la menor cantidad de tarjetas que se deben sacar para garantizar que al menos tres de esas sumas sean iguales?

Media de todos los participantes: 4,86 Media de los premiados: 6.19 Media de los seis oros: 6,5

Problema 5. El baricentro del triángulo ABC es G. Denotamos por g_a, g_b y g_c las distancias desde G a los lados a, b y c respectivamente. Sea r el radio de la circunferencia inscrita. Probar que:

i)
$$g_a \ge \frac{2r}{3}, g_b \ge \frac{2r}{3}, g_c \ge \frac{2r}{3}.$$

ii)
$$rac{g_a+g_b+g_c}{r}\geq 3$$
 .

Media de todos los participantes: 0,52 Media de los premiados: 1,19 Media de los seis oros: 3,17 LA GACETA 341

Problema 6. Se divide el plano en un número finito de regiones N mediante tres familias de rectas paralelas. No hay tres rectas que pasen por un mismo punto. ¿Cuál es el mínimo número de rectas necesarias para que N > 1999?

Media de todos los participantes: 1,52 Media de los premiados: 3,19 Media de los seis oros: 5

Como viene siendo habitual, cada problema se califica sobre 7 puntos. Esta es la tabla de frecuencias de puntuaciones:

	P1	P2	P3	P4	P5	P6
0	44	75	28	21	86	59
1	9	10	33	5	6	11
1 2 3 4	3	3	26	2	8	10
3	26	5	3	3	2	8
	3	2	4	2	4	5
5	0	3	1	5	1	7
6	3	6	0	16	0	2
7	20	4	13	54	1	6

SOLUCIONES

Las soluciones que reproducimos son las que escribieron algunos de los alumnos durante las pruebas.

Problema 1. (Solución de Fernando Pedro Nájera Cano)

Las ecuaciones de las tangentes a la parábola $y=x^2$ en los puntos $A(a,a^2)\,$ y $B=(b,b^2)$ son respectivamente

$$y = 2xa - 2a^2 + a^2 = 2xa - a^2$$
, $y = 2xb - 2b^2 + b^2 = 2xb - b^2$

El punto C pertenece a las dos a la vez. Resolviendo el sistema, $C = (\frac{a+b}{2}, ab)$ Sea M el punto medio del segmento AB, $M = (\frac{a+b}{2}, \frac{a^2+b^2}{2})$. Como los puntos C y M tienen igual la primera coordenada, se deduce que están en la misma vertical, y que

$$m = |MC| = \left| \frac{a^2 + b^2}{2} - ab \right| = \left| \frac{a^2 + b^2 - 2ab}{2} \right| = \left| \frac{(a - b)^2}{2} \right|$$

(Longitud de la mediana en función de los puntos)

Como M es el punto medio de AB, los triangulitos ACM y BMC tienen igual área, y tienen igual base, $m = (a - b)^2/2$, luego $a - b = \sqrt{2m}$. La altura de ACM sobre la base m es

$$h = \frac{a+b}{2} - a = \frac{b-a}{2} = \frac{\sqrt{2m}}{2}$$

El área de ABC es el doble del área de ACM, es decir, $\sqrt{2m}/2$.

Problema 2. (Solución de Álvar Ibeas Martín)

Los cuadrados perfectos a partir de 9 son:

$$9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, \dots$$

Tomando $a_1 = 3$; $a_2 = 4$; $a_1^2 = 9$; $a_2^2 = 16$, tenemos

$$a_1^2 + a_2^2 = 25.$$

Si $a_3 = 12 \Rightarrow a_3^2 = 144$ y $a_1^2 + a_2^2 + a_3^2 = 169$.

Observo que, en estos casos,

$$a_n^2 = \left(\sqrt{\sum a_i^2} - 1\right)^2,$$

es decir, el cuadrado perfecto anterior a $a_1^2 + ... + a_n^2$. Entonces

$$a_n = \sqrt{\sum a_i^2} - 1 = \sqrt{a_1^2 + \dots a_{n-1}^2 + a_n^2} - 1,$$

y por tanto,

$$a_n + 1 = \sqrt{a_1^2 + \dots a_{n-1}^2 + a_n^2},$$

luego

$$a_n^2 + 2a_n + 1 = a_1^2 + \dots + a_{n-1}^2 + a_n^2$$

Despejando a_n ,

$$a_n = \frac{\sqrt{a_1^2 + \dots a_{n-1}^2} - 1}{2}.$$

Si llamo $a_1^2 + ... + a_{n-1}^2 = x^2$,

$$x^{2} + a_{n}^{2} = a_{1}^{2} + \dots + a_{n}^{2} = x^{2} + \left(\frac{x^{2} - 1}{2}\right)^{2} = \frac{4x^{2} + x^{4} - 2x^{2} + 1}{4}$$
$$= \frac{x^{4} + 2x^{2} + 1}{4} = \left(\frac{x^{2} + 1}{2}\right)^{2}$$

que es otro cuadrado perfecto.

LA GACETA 343

De esta forma, partiendo de $a_1 = 3$, $a_2 = 4$, para buscar los siguientes números de la serie basta con aplicar la fórmula

$$a_n = \frac{a_1^2 + \dots a_{n-1}^2 - 1}{2}.$$

La sucesión $3, 4, 12, 84, \ldots$ es solución.

Problema 3. (Solución de Javier Múgica de Rivera)

Asignamos a cada casilla un color. Si la casilla tiene ficha, el color asignado es es el de su ficha. Cuando se quita una ficha, ésta ha de ser de color negro, y el color que queda asignado a la casilla es el negro. A partir de ahí el color se cambiará cada vez que retiremos una de las fichas contiguas. De esta forma el color asignado a cada casilla al principio es el de su ficha, y cambiará cada vez que se retire una ficha contigua, haya o no ficha en la casilla.

Llamaremos a las casillas de las esquinas de tipo 1; de tipo 2, a las de los bordes, y de tipo 3 a las interiores al triángulo. Todas ellas están rodeadas por un número par de casillas (2, 4, y 6 respectivamente).

Si es posible retirar todas las fichas, el color de cada casilla habrá cambiado un número par de veces, con lo que todas quedarán como al principio y en consecuencia la casilla de la última ficha retirada quedará blanca, lo que es imposible, porque cada vez que se retira una ficha su color es negro, y el color que deja en la casilla después de ser retirada es el negro.

Es imposible retirar todas las fichas del tablero.

Problema 4. (Solución de Néstor Sancho Bejerano)

De las 900 tarjetas, la menor (100) suma 1, y la mayor (999), suma 27. Esto significa que en el peor de los casos sacaremos 27 tarjetas sin que haya dos sumas iguales.

Como hemos sacado las tajetas que suman 1 y 27, los posibles valores de la suma van de 2 a 26. Esto quiere decir que puedo sacar 25 tarjetas sin que dos de ellas sumen lo mismo.

Tendré en mis manos una tarjeta que vale 1, una que vale 27, y dos de cada valor entre 2 y 26.

El valor de la suma de cada una de las tarjetas restantes está comprendido entre 2 y 26. Al sacar una tarjeta más, tendré tres sumas iguales.

La menor cantidad de tarjetas que es necesario sacar es por tanto 27+25+1=53.

Problema 5. (Solución de Ramón José Aliaga Varea, Premio especial)

Parte (i)

Consideramos, en el triángulo ABC de lados a, b, y c los puntos M_A punto medio del lado a; H_A pie de la altura correspondiente a A, y G_A , proyección del baricentro G sobre el lado a. Llamaremos h_a a la altura correspondiente al vértice A, p al semiperímetro y S al área del triángulo ABC. Vemos que

$$g_a = |GG_A|$$
 y $h_a = |AH_A|$

Puesto que estos dos segmentos son perpendiculares a a, son paralelos, y resulta que los triángulos $M_AGG_A\,$ y M_AHH_A son semejantes.

Puesto que el baricentro divide a la mediana en segmentos en razón 2:1, resulta que $|AM_A|=3\,|GG_A|$, y por semejanza, $|AH_A|=3\,|GG_A|$, o sea, $h_a=3g_a$.

Consideremos la desigualdad triangular $b+c\geq a$, que se cumple. Sumando a

y dividiendo entre 2 obtenemos $p = \frac{a+b+c}{2} \ge a$, de donde $1 \ge a/p$.

Multipliquemos por h_a por lo anterior se tiene, $h_a \ge ah_a/p$. Como $h_a = 3g_a$, resulta que,

 $3g_a \geq \frac{ah_A}{p}$

y despejando,

$$g_a \ge \frac{ah_A}{3p}$$

Puesto que $ah_a = 2S$, se tiene que $g_a \ge 2S/3p$

Finalmente, recordando que S=pr se obtiene que r=S/p, y al sustituir resulta $g_a \geq 2r/3$.

Análogamente obtendríamos $g_b \ge 2r/3$, y $g_c \ge 2r/3$.

Parte (ii)

Empleamos la desigualdad $x + \frac{1}{x} \ge 2$, que se deduce de la obvia $(x - 1)^2 \ge 0$.

$$(x-1)^2 \ge 0 \Rightarrow x^2 + 1 \ge 2x \Rightarrow x + \frac{1}{x} \ge 2$$

(Consideramos siempre x positiva). Tenemos entonces,

$$\left(\frac{a}{b} + \frac{b}{a}\right) + \left(\frac{b}{c} + \frac{c}{b}\right) + \left(\frac{c}{a} + \frac{a}{c}\right) \ge 6$$

Sumando 3 y ordenando resulta:

$$1 + \frac{a}{b} + \frac{a}{c} + \frac{b}{a} + 1 + \frac{b}{c} + \frac{c}{a} + \frac{c}{b} + 1 \ge 9$$

$$a\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 9 \Rightarrow$$

$$(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 9$$

o también,

$$(a+b+c)\left(\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\right)\geq 3$$

La Gaceta 345

Como a + b + c = 2p, sustituimos:

$$\left(\frac{2p}{3a} + \frac{2p}{3b} + \frac{2p}{3c}\right) \ge 3$$

Como $3g_a = h_a$, $3g_b = h_b$, $3g_c = h_c$, obtenemos $3g_a = 3g_b = 3g_c = 2S$:

$$g_a \frac{2p}{3ag_a} + g_b \frac{2p}{3bg_b} + g_c \frac{2p}{3cg_c} \ge 3$$

o

$$g_a \frac{p}{S} + g_b \frac{p}{S} + g_c \frac{p}{S} \ge 3$$

Puesto que p/S = r resulta,

$$g_a \frac{1}{r} + g_a \frac{1}{r} + g_a \frac{1}{r} = \frac{g_a + g_b + g_c}{r} \ge 3$$

como queríamos demostrar.

Problema 6. (Solución de Álvaro Navarro Tovar)

Denomino a las familias de rectas A, B y C. El número de rectas de cada una de ellas será a, b y c respectivamente.

Para un número dado de rectas R=a+b+c, la situación en que hay un máximo número de regiones es cuando hay un máximo número de cortes. El número de cortes que se producen está dado por la función C=ab+ac+bc. Esta función alcanza valor máximo cuando a=b=c, ya que ab es máximo, para a+b dado, cuando a=b. Sólo podré alcanzarlo cuando a+b+c sea múltiplo de 3.

Voy a ir trazando las rectas de tres en tres, una de cada familia.

Una recta de la familia A corta a b+c rectas, y genera b+c+1 nuevas regiones. Si tenía N regiones, después de trazar una recta de A tendré

$$N_A = N + b + c + 1.$$

Al trazar ahora una recta de la familia B, tendré

$$N_B = N_A + (a+1) + c + 1,$$

y trazando una de ${\cal C}$ tendré,

$$N_C = N_B + (a+1) + (b+1) + 1 = N + 2(a+b+c) + 6.$$

Llamo N_x al número de regiones que se forman tras añadir x-1 veces una recta de cada tipo.

En el inicio,

$$N_1 = 1,$$
 $a = b = c = 0,$ $N_2 = 1 + 2(0 + 0 + 0) + 6 = 7$ $N_3 = N_2 + 2(1 + 1 + 1) + 6 = 19$

Demuestro por inducción que $N_x = 1 + 3x(x - 1)$. Es cierto para x = 1, 2. Si se cumple para x, para x + 1:

$$N_{x+1} = N_x + 2(a+b+c) + 6$$

$$= 1 + 3x(x-1) + 2 \cdot 3(x-1) + 6$$

$$= 3x^2 + 3x + 1 = 1 + 3(x+1)x$$

Considero la ecuación 1+3x(x-1)=1999, es decir, $x^2-x-666=0$, con solución $x=\frac{1\pm\sqrt{2665}}{2}$.

Obsérvese que $51^2 \le 2665$. Con $x = \frac{1+51}{2} = 26$, resulta que $N_{26} = 1+3.26.25 = 1951$ regiones $(a_{26} + b_{26} + c_{26} = 75)$ y que $N_{27} = 1 + 3.27.26 = 2107$ regiones (se pasa).

Si añado sólo una recta de la familia A, tengo

$$N' = N_{26} + b_{26} + c_{26} + 1 = 1951 + 25 + 25 + 1 = 2002.$$

Luego tengo que tener por lo menos 76 rectas, 26 de una de las familias y 25 de las otras dos.

Premios

Mientras el Jurado terminaba su labor de corrección, cada uno de los alumnos participantes recibió su Diploma y el premio que, como ganador de su Distrito, le correspondía. Después de la animadísima cena de clausura tuvo lugar la proclamación de los ganadores de la Olimpiada: seis medallas de Oro, doce de Plata y dieciocho de Bronce. Ellos fueron:

Medallas de Oro

Ramón José Aliaga Varea, de Valencia Andrés Tallos Tanarro, de Madrid Enrique Vallejo Gutiérrez, de Guecho, Vizcaya Álvaro Navarro Tobar, de Madrid Javier Múgica de Rivera, de A Coruña Néstor Sancho Bejerano, de Béjar, Salamanca

Medallas de Plata

Fernando Pedro Nájera Cano, de Valladolid Pablo José Mira Castelló, de Alicante Daniel Masa Bote, de Extremadura Darío Mora Portela, de Cataluña Carlos Domingo Mas, de Valencia Eduardo Jiménez Chapestro, de Zaragoza Luis Emilio García Martínez, de Valencia Ramiro Fernández-Alonso López, de Burgos Álvar Ibeas Martín, de Burgos Roberto Carlos Barreda Moriana, de Madrid Enoc Altabás Felipo, de Castellón Edgar González Pellicer, de Cataluña

Medallas de Bronce

Joaquim Molera Vidal, de Cataluña Alberto Suárez Real, de Asturias José Doval González, de Galicia Miguel Lázaro Gredilla, de Cantabria Sara Arias de Revna Domínguez, de Sevilla Manuel Pérez Molina, de Alicante Francisco Javier Torres Ramírez, de Almería María Pé Pereira, de Burgos Domènec Martín Martínez, de Cataluña Santiago Molina Blanco, de Castellón Marco del Rey Zapatero, de Asturias Pedro Antonio Toledo Delgado, de Santa Cruz de Tenerife Yago Antolín Pichel, de Galicia Pere Menal Ferrer, de Cataluña Jesús Pascual Moreno Damas, de Madrid Kang Da Zhan, de La Rioja Javier Álvarez Gama, de Cantabria Héctor Ciruelos de Ascanio, de Santa Cruz de Tenerife

Al terminar una edición de la Olimpiada se comienza a pensar en la siguiente. El próximo año la cita será en Baleares.

LISTA DE PREMIADOS

PRIMEROS PREMIOS

Torres Ramírez	Francisco	Andalucía (U. de Almería)
López Calzado	David	Andalucía (U. de Cádiz)
Fernández Peralta	Pedro	Andalucía (U. de Córdoba)
Olea Fernández	M ^a Asunción	Andalucía (U. de Granada)
Márquez Fernández	Francisco	Andalucía (U. de Huelva) .
Megías Cantero	Álvaro	Andalucía (U. de Jaén)
Blanco Elena	Juan Antonio	Andalucía (U. de Málaga)
Couce Molina	Elena M.	Andalucía (U. de Sevilla)

Jiménez Chapestro	Eduardo	Aragón (U. de Zaragoza)
Suárez Real	Alberto	Asturias (U. de Oviedo)
Pérez Zambrana	Víctor	Canarias (U. de La Laguna)
Fleitas Santana	Juan David	Canarias (U. de Las Palmas)
Lázaro Gredilla	Miguel	Cantabria
Torre Villar	Carlos de la	Castilla-La Mancha
Fernández-Alonso López	Ramiro	Castilla-León (U. de Burgos)
Guardiel Robles	Carlos	Castilla-León (U. de León)
Sancho Bejerano	Néstor	Castilla-León (U. de Salamanca)
Nájera Cano	Fernando	Castilla-León (U. de Valladolid)
González Pellicer	Edgar	Cataluña 1
Molera Vidal	Joaquim	Cataluña 2
Mora Portela	Darío	Cataluña 3
Mira Castelló	Pablo José	C. Valenciana (U. de Alicante)
Monterde Pérez	Ignacio	C. Valenciana (U. de Valencia)
Molina Blanco	Santiago	C. Valenciana (U. Jaume I)
Rodríguez Mayol	Alberto	C. Valenciana (U. Miguel Hernández)
García Martínez	Luis Emilio	C. Valenciana (U. Poli. de Valencia)
Masa Bote	Daniel	Extremadura
Doval González	José	Galicia 1
López Albín	Julio	Galicia 2
Múgica de Rivera	Javier	Galicia 3
Nedeltchev Tahtadmiev	Milen	Islas Baleares
Zhan	Kang Da	La Rioja
Barreda Moriana	Roberto	Madrid 1
Sanz Merino	Beatriz	Madrid 2
Martín Herrero	David	Madrid 3
Pardo Pertusa	Pedro	Murcia
Pérez Martín	Daniel	Navarra
Llarena Fernández	Javier	País Vasco

SEGUNDOS PREMIOS

Frías Ianez	Raúl	Andalucía (U. de Almería)
Gentil Sánchez	Ana	Andalucía (U. de Cádiz)
Pérez Ruth	Antonio	Andalucía (U. de Córdoba)
Morillas Romero	Leandro	Andalucía (U. de Granada)
Daza Rebollo	David	Andalucía (U. de Huelva)
Jódar Reyes	José	Andalucía (U. de Jaén)
Ballesteros Molina	Manuel	Andalucía (U. de Sevilla)
Esteban Martín	Paula	Aragón (U. de Zaragoza)
Rey Zapatero	Marco del	Asturias (U. de Oviedo)
Toledo Delgado	Pedro	Canarias (U. de La Laguna)
García Marco	Ignacio	Canarias (U. de Las Palmas)
García Roche	Cristina	Cantabria

Lucas Araújo	Javier de	Castilla-La Mancha
Ibeas Martín	Álvar	Castilla-León (U. de Burgos)
Villasclaras Fernández	Eloy David	Castilla-León (U. de León)
Curto Martín	Andrés	Castilla-León (U. de Salamanca)
Casas Cuadrado	Carlos	Castilla-León (U. de Valladolid)
Vinyes Raso	Marc	Cataluña 1
Menal Ferrer	Pere	Cataluña 2
Barenys García	Óscar	Cataluña 3
Pérez Molina	Manuel	C. Valenciana (U. de Alicante)
Domingo Mas	Carlos	C. Valenciana (U. de Valencia)
Altabás Felipo	Enoc	C. Valenciana (U. Jaume I)
Orts Rasero	Jesús	C. Valenciana (U. Miguel Hernández)
Rubio Núñez	Roberto	C. Valenciana (U. Poli. de Valencia)
Sánchez Matamoros	Juan	Extremadura
González Varela	Francisco	Galicia 1
Hisado Chamosa	Verónica	Galicia 2
Penedo García	Marcos	Galicia 3
Christie Oleza	Joseph	Islas Baleares
Rodríguez Iglesias	Juan Luis	La Rioja
Municio García	Diego	Madrid 1
Tallos Tanarro	Andrés	Madrid 2
García Cerdeño	María	Madrid 3
Gallego Castillo	Cristóbal J.	Murcia
Zubieta Andueza	Miguel	Navarra
Vallejo Gutiérrez	Enrique	País Vasco

TERCEROS PREMIOS

Carrillo Oller	Olga	Andalucía (U. de Almería)
Jiménez Teja	Yolanda	Andalucía (U. de Cádiz)
Fernández Montes	Sonia	Andalucía (U. de Córdoba)
Gollonet Tervel	Francisco	Andalucía (U. de Granada)
Álvarez Parralo	José Carlos	Andalucía (U. de Huelva)
Blanco Claraco	José Luis	Andalucía (U. de Jaén)
Arias de Reyna	Sara	Andalucía (U. de Sevilla)
López Plumed	Juan	Aragón (U. de Zaragoza)
Luengo Oroz	Miguel Ángel	Asturias (U. de Oviedo)
Ciruelos de Ascanio	Héctor	Canarias (U. de La Laguna)
Sanz Blanco	Enrique	Canarias (U. de Las Palmas)
Álvarez Gama	Javier	Cantabria
Adán Alonso	Miguel Ángel	Castilla-La Mancha
Pe Pereira	María	Castilla-León (U. de Burgos)
Valtuille Fernández	Eduardo	Castilla-León (U. de León)

Sánchez González	Raúl	Castilla-León (U. de Salamanca)
Calvo Marcos	Alejandro	Castilla-León (U. de Valladolid)
Llopart Miquel	Fèlix	Cataluña 1
Martín Martínez	Domènec	Cataluña 2
Urbina Luis	June	C. Valenciana (U. de Alicante)
Aliaga Varea	Ramón José	C. Valenciana (U. de Valencia)
Jiménez Ruiz	Ernesto	C. Valenciana (U. Jaume I)
García Cases	Agustín	C. Valenciana (U. Miguel Hernández)
Peris Celda	María	C. Valenciana (U. Poli. de Valencia)
Pérez Acosta	María	Extremadura
Antolín Pichel	Yago	Galicia 1
Fuentes García	Alberto José	Galicia 2
García Viaño	Marcos	Galicia 3
Bosch Torres	Sebastiá	Islas Baleares
San Casimiro Cenzano	Miguel	La Rioja
Moreno Damas	Jesús	Madrid 1
Navarro Tobar	Álvaro	Madrid 2
García Pañoso	Alberto	Madrid 3
Saorín Gómez	Eugenia	Murcia
Solana Bermejo	Francisco	Navarra
García Pereiro	Estela	País Vasco