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ABSTRACT

Using a perturbation argument based on a finite dimensional reduction, we find
positive solutions to the following class of perturbed degenerate elliptic equations
with critical growth

− div(|x|−2a(I + εB(x))∇u) − λ

|x|2(1+a)
u =

up−1

|x|bp
, x ∈ R

N

where −∞ < a < N−2
2

, −∞ < λ <
(

N−2a−2
2

)
2, p = p(a, b) = 2N

N−2(1+a−b)
, and

a ≤ b < a + 1.
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1. Introduction

We study the problem of existence of positive solutions to the following elliptic equa-
tion in R

N in dimension N ≥ 3

−div(|x|−2a(I + εB(x))∇u) − λ

|x|2(1+a)
u =

up−1

|x|bp
, u > 0 in R

N \ {0}, (1)

where

−∞ < a <
N − 2

2
, −∞ < λ <

(
N − 2a − 2

2

)2

,

p = p(a, b) =
2N

N − 2(1 + a − b)
, a ≤ b < a + 1,

(2)

and ε is a small real perturbation parameter. Concerning the perturbation N × N
matrix B(x) = (bij(x))ij , we assume

bij ∈ L∞(RN ) ∩ C(RN ). (3)

If (3) is satisfied, there exists a positive constant α such that, for any x ∈ R
N , there

holds ‖B(x)‖L(RN ) ≤ α and hence

|B(x)ξ · ξ| ≤ α|ξ|2 ∀ ξ ∈ R
N .

For λ = ε = 0 equation (1) is related to the following class of inequalities established
by Caffarelli, Kohn, and Nirenberg in [6],

‖u‖2
p,b :=

(∫
RN

|x|−bp|u|p dx

)2/p

≤ Ca,b

∫
RN

|x|−2a|∇u|2 dx ∀u ∈ C∞
0 (RN ), (4)

which can be considered as a generalization of both Hardy and Sobolev inequalities.
We refer to [7] for discussion on sharp constants and extremal functions associated
to (4).

The new feature in this work is the perturbation of the principal part, which is
singular or degenerate according with the sign of a. Previous results on this kind of
problems are the following ones. In [5] a small perturbation of a regular problem is
analyzed. In [8] problem (1) is studied in the case in which a perturbation appears not
inside the divergence operator but in the coefficient of the nonlinear term. Related
problems for a = b = 0 (hence p = 2∗) and 0 < λ < (N − 2)2/4 are treated in [1]
and [9].

The natural functional space to study (1) is D1,2
a (RN ) defined as the completion

of C∞
0 (RN ) with respect to the norm

‖u‖a :=
[∫

RN

|x|−2a|∇u|2 dx

]1/2

.
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Since Catrina and Wang [7] proved that for b = a + 1 the best constant in (4) is

C−1
a,a+1 = inf

D1,2
a (RN )\{0}

∫
RN |x|−2a|∇u|2∫

RN |x|−2(1+a)|u|2 =
(

N − 2 − 2a

2

)2

,

we obtain that for −∞ < λ <
(

N−2−2a
2

)2 an equivalent norm is given by

‖u‖ =
[∫

RN

|x|−2a|∇u|2 dx − λ

∫
RN

u2

|x|2(1+a)
dx

]1/2

.

We endow the Hilbert space D1,2
a (RN ) with the scalar product induced by ‖·‖

(u, v) =
∫

RN

|x|−2a∇u · ∇v dx − λ

∫
RN

u v

|x|2(1+a)
dx.

We will treat problem (1) via an abstract perturbative variational method dis-
cussed in [2]. The first step of this procedure is the study of the unperturbed problem,
i.e., of equation (1) with ε = 0, for which it was proved in [8] the existence of a one
dimensional manifold of radial solutions, which is non-degenerate in some sense we
will precise later. Hence a one dimensional reduction of the perturbed variational
problem in D1,2

a (RN ) is possible and reduces the problem to the search for critical
points of a function defined on the real line. Solutions of (1) can be found as critical
points in D1,2

a (RN ) of the perturbed functional

fε(u) := f0(u) + εG(u)

where

f0(u) =
1
2

∫
RN

|x|−2a|∇u|2 dx − λ

2

∫
RN

u2

|x|2(1+a)
dx − 1

p

∫
RN

up
+

|x|bp
dx,

G(u) =
1
2

∫
RN

|x|−2aB(x)∇u · ∇u dx,

and u+ := max{u, 0}. For ε = 0, it was shown in [8] that f0 has a one dimensional
manifold of critical points

Za,b,λ :=
{

za,b,λ
μ := μ−N−2−2a

2 za,b,λ
1

(x

μ

) ∣∣∣ μ > 0
}

,

where za,b,λ
1 is explicitly given by

za,b,λ
1 (x) =

[
N(N − 2 − 2a)

√
(N − 2 − 2a)2 − 4λ

N − 2(1 + a − b)

]N−2(1+a−b)
4(1+a−b)

·

·
[
|x|

(
1−

√
(N−2−2a)2−4λ

N−2−2a

)
(N−2−2a)(1+a−b)

N−2(1+a−b)
[
1 + |x| 2(1+a−b)

√
(N−2−2a)2−4λ

N−2(1+a−b)

]]−N−2(1+a−b)
2(1+a−b)

. (5)
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These radial solutions were computed in [7] for λ = 0, and in [10] in the case a = b = 0
and −∞ < λ < (N − 2)2/4. Moreover in [8] the following non-degeneracy theorem
was proved. We will denote by TzZa,b,λ the tangent space to Za,b,λ in Z.

Theorem 1.1 ([8]). Suppose a, b, λ, p satisfy (2). Then the critical manifold Za,b,λ

is non-degenerate, i.e.,

TzZa,b,λ = ker D2f0(z) ∀ z ∈ Za,b,λ, (6)

if and only if

b 
= hj(a, λ) :=
N

2

[
1 +

4j(N + j − 2)
(N − 2 − 2a)2 − 4λ

]−1/2

− N − 2 − 2a

2
∀ j ∈ N \ {0}. (7)

For the values of the parameters a, b, λ, for which nondegeneracy condition holds,
it is possible to follow the abstract scheme in [2] and construct a manifold

Zε
a,b,λ =

{
za,b,λ

μ + w(ε, μ)
∣∣ μ > 0

}
,

such that any critical point of fε restricted to Zε
a,b,λ is a solution to (Pa,b,λ). Since the

perturbed manifold we construct is globally diffeomorphic to the unperturbed one,
we can estimate the difference ‖w(ε, μ)‖ when μ → ∞ or μ → 0 (see also [4, 8]). In
particular we prove that ‖w(ε, μ)‖ vanishes as μ → ∞ or μ → 0 under the assumption
that the entries of the matrix B vanish at 0 and at ∞.

We will prove the following existence results.

Theorem 1.2. Suppose (2), (3), and (7) hold. Then problem (1) has a solution for
all |ε| sufficiently small if

bij(∞) := lim
|x|→∞

bij(x) exists for any i, j and bij(∞) = bij(0) = 0. (8)

Theorem 1.3. Assume (2), (3), (7), and

bij ∈ C2(RN ), |∇bij | ∈ L∞(RN ), and |D2bij | ∈ L∞(RN ). (9)

Then (1) is solvable for all small |ε| under each of the following conditions

lim sup
|x|→∞

bij(x) ≤ bij(0) and ΔB(0) is positive definite, (10)

lim inf
|x|→∞

bij(x) ≥ bij(0) and ΔB(0) is negative definite, (11)

where ΔB(0) is the matrix (Δbij(0))ij.
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Theorem 1.4. Suppose (2), (3), (7) hold, and that the functions bij are periodic,
i.e., for any i, j = 1, . . . , N there exists T ij = (T ij

1 , T ij
2 , . . . , T ij

N ) ∈ R
N such that

bij(x + T ij
k ek) = bij(x)

for any k = 1, 2, . . . , N , x ∈ R
N , where ek is the k-th vector of the canonical basis

of R
N . Let us denote by −

∫
B the matrix

−
∫

B =
(
−
∫
{x=(x1,...,xN )∈RN : 0≤xj≤|T ij

j |, ∀ j=1,2,...,N}
bij

)
ij

=
(

1
|T ij

1 ||T ij
2 | · · · |T ij

N |

∫
{x=(x1,...,xN )∈RN : 0≤xj≤|T ij

j |, ∀ j=1,2,...,N}
bij

)
ij

.

Then problem (1) has a solution for all |ε| sufficiently small if either

ΔB(0) is positive definite (12)

B(0) −−
∫

B is positive definite (13)

or

ΔB(0) is negative definite (14)

B(0) −−
∫

B is negative definite. (15)

2. The finite dimensional reduction

In this section we show that whenever the critical manifold is non-degenerated, i.e.,
if (7) holds, our problem can be reduced to a finite dimensional one through the
perturbative method developed in [2]. For simplicity of notation, we write zμ instead
of za,b,λ

μ and Z instead of Za,b,λ if there is no possibility of confusion. In the sequel,
we will use the canonical identification of the Hilbert space D1,2

a (RN ) with its dual
induced by the scalar product and denoted by K, i.e.,

K :
(D1,2

a (RN )
)′ → D1,2

a (RN ), (K(ϕ), u) = ϕ(u),

for any ϕ ∈ (D1,2
a (RN )

)′
, u ∈ D1,2

a (RN ).

Consequently we shall consider f ′
ε(u) as an element of D1,2

a (RN ) and f ′′
ε (u) as one of

L(D1,2
a (RN )). We recall the following lemma from [8].

Lemma 2.1 ([8]). Suppose a, b, λ, p satisfy (2) and v is a measurable function
such that the integral

∫
Rn |v|

p
p−2 |x|−bp is finite. Then the operator Jv : D1,2

a (RN ) →
D1,2

a (RN ), defined by

Jv(u) := K
(∫

RN

|x|−pbvu·
)
,
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is compact.

Lemma 2.1 immediately leads to the following result.

Corollary 2.2. For all z ∈ Z the operator f ′′
0 (z) : D1,2

a (RN ) → D1,2
a (RN ) may be

written as f ′′
0 (z) = id − J|z|p−2 and is consequently a self-adjoint Fredholm operator

of index zero.

Following [8], we introduce some notation. For all μ > 0 we define the rescaling
map

Uμ : D1,2
a (RN ) → D1,2

a (RN ), Uμ(u) := μ−N−2−2a
2 u

(x

μ

)
.

Invariance by dilations ensures that Uμ conserves the norms ‖·‖ and ‖·‖p,b and

(Uμ)−1 = (Uμ)t = Uμ−1 and f0 = f0 ◦ Uμ for every μ > 0 (16)

where (Uμ)t denotes the adjoint of Uμ. Differentiating twice the identity f0 = f0 ◦Uμ

yields for all h1, h2, v ∈ D1,2
a (RN )

(f ′′
0 (v)h1, h2) = (f ′′

0 (Uμ(v))Uμ(h1), Uμ(h2)),

namely
f ′′
0 (v) = (Uμ)−1 ◦ f ′′

0 (Uμ(v)) ◦ Uμ for all v ∈ D1,2
a (RN ). (17)

Differentiating (16) we get that U(μ, z) := Uμ(z) maps (0,∞) × Z into Z, hence

∂U

∂z
(μ, z) = Uμ : TzZ → TUμ(z)Z and Uμ : (TzZ)⊥ → (TUμ(z)Z)⊥. (18)

Moreover if Z is non-degenerated, the self-adjoint Fredholm operator f ′′
0 (z1) maps

the space D1,2
a (RN ) into Tz1Z

⊥ and f ′′
0 (z1) ∈ L(Tz1Z

⊥) is invertible. Consequently,
using (17) and (18), we obtain in this case

‖(f ′′
0 (z1))−1‖L(Tz1Z⊥) = ‖(f ′′

0 (z))−1‖L(TzZ⊥) ∀z ∈ Z. (19)

Lemma 2.3. Suppose a, b, p, λ satisfy (2) and (3) holds. Then there exists a
constant C1 = C1(‖B‖L∞(RN ,L(RN )), a, λ) > 0 such that for any μ > 0 and for any
w ∈ D1,2

a (RN )

|G(zμ + w)| ≤ C1

( ∫
RN

|y|−2aB(μy)∇z1(y) · ∇z1(y) + ‖w‖ + ‖w‖2

)
, (20)

‖G′(zμ + w)‖ ≤ C1

((∫
RN

|x|−2a|(B + Bt)(μy)∇z1(y)|2
)1/2

+ ‖w‖
)

, (21)

‖G′′(zμ + w)‖ ≤ ‖B‖L∞(RN ,L(RN )), (22)
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where Bt(x) = (bji(x))ij denotes the adjoint of B. Moreover, if (8) holds, then∫
RN

|x|−2a|(B + Bt)(μy)∇z1(y)|2 → 0,∫
RN

|y|−2aB(μy)∇z1(y) · ∇z1(y) → 0,

(23)

as μ → ∞ or μ → 0.

Proof. (20) is an easy consequence of the definition of G, Schwarz inequality and (3).
To deduce (21) we observe that by Schwarz inequality

‖G′(zμ + w)‖

= sup
‖v‖≤1

∣∣∣∣
∫

RN

|x|−2a
(B + Bt

2

)
(x)∇zμ · ∇v +

∫
RN

|x|−2a
(B + Bt

2

)
(x)∇w · ∇v

∣∣∣∣
≤ const

((∫
RN

|x|−2a|(B + Bt)(x)∇zμ(x)|2
)1/2

+ ‖w‖
)

whereas (22) comes just from (G′′(zμ+w)v, u) = 1
2

∫ |x|−2a(B+Bt)(x)∇v ·∇u. Under
the additional assumption bij(0) = bij(∞) = 0 estimate (23) follows by the dominated
convergence theorem.

Lemma 2.4. Suppose a, b, p, λ satisfy (2) and (3) and (6) hold. Then there exist
constants ε0, C > 0 and a smooth function

w = w(μ, ε) : (0, +∞) × (−ε0, ε0) −→ D1,2
a (RN )

such that for any μ > 0 and ε ∈ (−ε0, ε0)

w(μ, ε) is orthogonal to TzμZ (24)

f ′
ε

(
zμ + w(μ, ε)

) ∈ TzμZ (25)
‖w(μ, ε)‖ ≤ C |ε|. (26)

Moreover, if (8) holds then

‖w(μ, ε)‖ → 0 as μ → 0 or μ → ∞. (27)

Proof. Let H : (0,∞) ×D1,2
a (RN ) × R × R → D1,2

a (RN ) × R be defined by

H(μ, w, α, ε) := (f ′
ε(zμ + w) − αξ̇μ, (w, ξ̇μ)),

where ξ̇μ denotes the normalized tangent vector d
dμzμ. If H(μ, w, α, ε) = (0, 0) then w

satisfies (24), (25) and H(μ, w, α, ε) = (0, 0) if and only if (w, α) = Fμ,ε(w, α), where

Fμ,ε(w, α) := −
(

∂H

∂(w, α)
(μ, 0, 0, 0)

)−1

H(μ, w, α, ε) + (w, α).
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Note that

((
∂H

∂(w, α)
(μ, 0, 0, 0)

)
(w, β), (f ′′

0 (zμ)w − βξ̇μ, (w, ξ̇μ))
)

= ‖f ′′
0 (zμ)w‖2 + β2 + |(w, ξ̇μ)|2, (28)

where (
∂H

∂(w, α)
(μ, 0, 0, 0)

)
(w, β) = (f ′′

0 (zμ)w − βξ̇μ, (w, ξ̇μ)).

From Corollary 2.2 and (28) we infer that
(

∂H
∂(w,α) (μ, 0, 0, 0)

)
is an injective Fredholm

operator of index zero, hence invertible and by (19) and (28) we obtain

∥∥∥∥
(

∂H

∂(w, α)
(μ, 0, 0, 0)

)−1∥∥∥∥ ≤ max
(
1, ‖(f ′′

0 (zμ))−1‖)
= max

(
1, ‖(f ′′

0 (z1))−1‖) =: C∗.
(29)

Suppose that (w, α) ∈ B̄ρ(0) =
{

(x, β) ∈ D1,2
a (RN ) × R

∣∣ ‖x‖ + |α| ≤ ρ
}

with
ρ = ρ(ε) > 0 to be determined. From (17) and (29) we deduce

‖Fμ,ε(w, α)‖ ≤ C∗

∥∥∥∥(
H(μ, w, α, ε) −

( ∂H

∂(w, α)
(μ, 0, 0, 0)

)
(w, α)

)∥∥∥∥
≤ C∗‖f ′

ε(zμ + w) − f ′′
0 (zμ)w‖

≤ C∗
∫ 1

0

‖f ′′
0 (zμ + tw) − f ′′

0 (zμ)‖ dt‖w‖ + C∗|ε|‖G′(zμ + w)‖

≤ C∗
∫ 1

0

‖f ′′
0 (z1 + tUμ−1(w)) − f ′′

0 (z1)‖ dt‖w‖ + C∗|ε|‖G′(zμ + w)‖
≤ C∗ρ sup

‖w‖≤ρ

‖f ′′
0 (z1 + w) − f ′′

0 (z1)‖ + C∗|ε| sup
‖w‖≤ρ

‖G′(zμ + w)‖. (30)

Analogously we get for (w1, α1), (w2, α2) ∈ Bρ(0)

‖Fμ,ε(w1, α1) − Fμ,ε(w2, α2)‖
C∗‖w1 − w2‖ ≤ ‖f ′

ε(zμ + w1) − f ′
ε(zμ + w2) − f ′′

0 (zμ)(w1 − w2)‖
‖w1 − w2‖

≤
∫ 1

0

‖f ′′
ε (zμ + w2 + t(w1 − w2)) − f ′′

0 (zμ)‖ dt

Revista Matemática Complutense
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≤
∫ 1

0

‖f ′′
0 (zμ + w2 + t(w1 − w2)) − f ′′

0 (zμ)‖ dt

+ |ε|
∫ 1

0

‖G′′(zμ + w2 + t(w1 − w2))‖ dt

≤ sup
‖w‖≤3ρ

‖f ′′
0 (z1 + w) − f ′′

0 (z1)‖

+ |ε| sup
‖w‖≤3ρ

‖G′′(zμ + w)‖.

We choose ρ0 > 0 such that

C∗ sup
‖w‖≤3ρ0

‖f ′′
0 (z1 + w) − f ′′

0 (z1)‖ <
1
2

and ε0 > 0 such that

ε0 < min
{

1
8C1C∗‖B‖‖z1‖ ,

ρ0

8C1C∗‖B‖‖z1‖ ,
1

8C1C∗

}

and

3ε0 <
(

sup
z∈Z,‖w‖≤3ρ0

‖G′′(z + w)‖
)−1

C−1
∗ ,

3ε0 <
(

sup
z∈Z,‖w‖≤ρ0

‖G′(z + w)‖
)−1

C−1
∗ ρ0,

where C1 is given in Lemma 2.3. With these choices and the above estimates it is
easy to see that for every μ < 0 and |ε| < ε0 the map Fμ,ε maps B̄ρ0(0) in itself and is
a contraction there. Thus from the Contraction Mapping Theorem, Fμ,ε has a unique
fixed point (w(μ, ε), α(μ, ε)) in Bρ0(0) and it is a consequence of the implicit function
theorem that w and α are continuously differentiable.

From (30) we also infer that Fμ,ε maps B̄ρ(0) into B̄ρ(0), whenever ρ ≤ ρ0 and

ρ > 2|ε|( sup
‖w‖≤ρ

‖G′(zμ + w)‖)C∗.

Consequently due to the uniqueness of the fixed-point we have

‖(w(μ, ε), α(μ, ε))‖ ≤ 3|ε|( sup
‖w‖≤ρ0

‖G′(zμ + w)‖)C∗,

which gives (26) in view of (21). Let us now prove (27). Set

ρμ := 8ε0C∗C1

(∫
RN

|x|−2a|(B + Bt)(μy)∇z1(y)|2
)1/2

.

347 Revista Matemática Complutense
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Note that ρμ < min{1, ρ0}. In view of (21) we have that for any |ε| < ε0 and μ > 0

2|ε|C∗ sup
‖w‖≤ρμ

‖G′(zμ + w)‖ ≤ 1
4
ρμ + 2ε0C∗C1ρμ <

1
2
ρμ.

By the above argument, we can conclude that Fμ,ε maps Bρμ(0) into Bρμ(0). Conse-
quently due to the uniqueness of the fixed-point we have

‖w(μ, ε)‖ ≤ ρμ.

Since by (23) we have that ρμ → 0 for μ → 0 and for μ → +∞, we get (27).

Under the assumptions of Lemma 2.4 we may define for |ε| < ε0

Zε
a,b,λ :=

{
u ∈ D1,2

a (RN ) | u = za,b,λ
μ + w(μ, ε), μ ∈ (0,∞)

}
. (31)

For simplicity of notation, we will write Zε for Zε
a,b,λ if no confusion is possible. Note

that Zε is a one dimensional manifold parameterized by the rescaling variable μ.
Moreover arguing as in [8] we can prove that we may choose ε0 > 0 such that for
every |ε| < ε0 the manifold Zε is a natural constraint for fε, i.e., every critical point
of fε|Zε is a critical point of fε. Hence we end up facing a finite dimensional problem
as it is enough to find critical points of the functional Φε : (0,∞) → R given by fε|Zε .

3. Study of Φε

In this section we assume that (7) holds, in such a way that the critical manifold is
non-degenerate and the functional Φε is defined. To find critical points of Φε = fε|Zε

it is convenient to introduce the functional Γ given below.

Lemma 3.1. Suppose a, b, p, λ satisfy (2) and (3) holds. Then

Φε(μ) = f0(z1) + εΓ(μ) + o(ε), (32)

as ε → 0 uniformly with respect to μ ∈ (0,∞), where

Γ(μ) = G(zμ) =
1
2

∫
RN

|x|−2aB(x)∇zμ · ∇zμ =
1
2

∫
RN

|x|−2aB(μx)∇z1 · ∇z1. (33)

More precisely, there exists C > 0, independent of μ and ε, such that

|Φε(μ) − f0(z1) − εΓ(μ)| ≤ C
(‖w(ε, μ)‖2 + ‖w(ε, μ)‖p + |ε|‖w(ε, μ)‖). (34)

Consequently, if there exist 0 < μ1 < μ2 < μ3 < ∞ such that

Γ(μ2) > max(Γ(μ1), Γ(μ3)) or Γ(μ2) < min(Γ(μ1), Γ(μ3)) (35)

then Φε will have a critical point, provided |ε| is sufficiently small.
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Proof. Invariance by dilations yields for all μ > 0

f0(zμ) = f0(z1). (36)

Moreover since zμ solves the unperturbed problem we have that

‖zμ‖2 =
∫

RN

zp
μ

|x|bp
and

(
zμ, w(ε, μ)

)
=

∫
RN

zp−1
μ w(ε, μ)

|x|bp
. (37)

From (36) and (37) we deduce

Φε(μ) =
1
2

∫
RN

zp
μ

|x|bp
+

1
2
‖w(ε, μ)‖2

+
∫

RN

zp−1
μ w(ε, μ)

|x|bp
− 1

p

∫
RN

(
zμ + w(ε, μ)

)p

+

|x|bp

+
ε

2

∫
RN

|x|−2aB(x)∇(zμ + w(ε, μ)) · ∇(zμ + w(ε, μ))

and

f0(z1) = f0(zμ) =
1
2
‖zμ‖2 − 1

p

∫
RN

zp
μ

|x|bp
=

(
1
2
− 1

p

) ∫
RN

zp
μ

|x|bp
.

Hence

Φε(μ) = f0(z1) + εΓ(μ) +
1
2
‖w(ε, μ)‖2 + Rε(μ),

where

Rε(μ) = −1
p

∫
RN

(
zμ + w(ε, μ)

)p

+
− zp

μ − p zp−1
μ w(ε, μ)

|x|bp

+
ε

2

∫
RN

|x|−2aB(x)∇zμ · ∇w(ε, μ)

+
ε

2

∫
RN

|x|−2aB(x)∇w(ε, μ) · ∇(zμ + w(ε, μ)).

Using the inequality

|(a + b)s
+ − as

+ − sas−1
+ b| ≤

{
C(as−2

+ |b|2 + |b|s) if s ≥ 2,

C |b|s if 1 < s < 2,
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2005, 18; Núm. 2, 339–351



B. Abdellaoui/V. Felli/I. Peral Perturbed elliptic equations of Caffarelli-Kohn-Nirenberg type

where C = C(s) > 0, with s = p, and Hölder’s inequality, we have for some c2, c3 > 0

|Rε(μ)| ≤ 1
p

∫
RN

|(zμ + w(ε, μ))p
+ − zp

μ − p zp−1
μ w(ε, μ)|

|x|bp

+
|ε|
2
‖B(x)‖L(RN )

∫
RN

|x|−2a
(
|∇zμ||∇w(ε, μ)|

+ |∇w(ε, μ)||∇(zμ + w(ε, μ))|
)

≤ c2

[∫
RN

zp−2
μ w2(ε, μ)

|x|bp
+

∫
RN

|w(ε, μ)|p
|x|bp

+ |ε|(‖w(ε, μ)‖ + ‖w(ε, μ)‖2)
]

≤ c3

[‖w(ε, μ)‖2 + ‖w(ε, μ)‖p + |ε|‖w(ε, μ)‖]
and the claim follows.

In view of expansion (32), we have that critical points of Γ which are stable under
small uniform perturbations yield critical points of Φε and hence of fε. On the other
hand, although it is convenient to study only the reduced functional Γ instead of Φε,
it may lead in some cases to a loss of information, i.e., Γ may be constant even if B
is a non-constant matrix. In this case we have to study the functional Φε(μ) directly.

Proof of Theorem 1.2. By (8), (23), (27), and (34),

lim
μ→0+

Φε(μ) = lim
μ→+∞Φε(μ) = f0(z1).

Hence, either the functional Φε ≡ f0(z1), and we obtain infinitely many critical points,
or Φε 
≡ f0(z1) and Φε has at least a global maximum or minimum. In any case Φε

has a critical point that provides a solution of (1). The maximum principle applied
in R

N \ {0} ensures the positivity of solutions in such a region.

As in [3, Lemma 3.4], we can extend the C2-functional Γ by continuity to μ = 0.

Lemma 3.2. Under the assumptions of Lemma 3.1,

Γ(0) := lim
μ→0

Γ(μ) =
1
2

∫
RN

|x|−2aB(0)∇z1 · ∇z1

and

1
2

∫
RN

|x|−2a
(
lim inf
|y|→∞

B(y)
)∇z1 · ∇z1 ≤ lim inf

μ→∞ Γ(μ) ≤ lim sup
μ→∞

Γ(μ)

≤ 1
2

∫
RN

|x|−2a
(
lim sup
|y|→∞

B(y)
)∇z1 · ∇z1
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where lim inf |y|→∞ B(y) is the matrix (lim inf |y|→∞ bij(y))ij and lim sup|y|→∞ B(y) is
the matrix (lim sup|y|→∞ bij(y))ij. If, moreover, (9) holds we obtain

Γ′(0) = 0 and Γ′′(0) =
1

2N

∫
|x|2−2a(ΔB(0))∇z1 · ∇z1.

Proof of Theorem 1.3. We prove the theorem by showing that under assumptions (10)
and (11) the function Γ has a critical point. Condition (10) and Lemma 3.2 imply that
Γ has a global maximum strictly bigger than Γ(0) and lim supμ→∞ Γ(μ). Consequently
Φε has a critical point in view of Lemma 3.1. The same argument yields a critical
point under condition (11).

Proof of Theorem 1.4. To see that assumptions (12) and (13) give rise to a critical
point we use the functional Γ. Condition (12) and Lemma 3.2 imply that Γ is strictly
convex at 0. From periodicity of bij and Riemann-Lebesgue Theorem, it follows that

lim
μ→∞Γ(μ) =

1
2

∫
|x|−2a(−

∫
B)∇z1 · ∇z1.

Hence assumption (13) implies that Γ(0) ≥ limμ→∞ Γ(μ). Hence Γ must have a proper
maximum point and consequently Φε has a critical point in view of Lemma 3.1. The
same reasoning yields a critical point under conditions (14), (15).
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