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Abstract

This paper is devoted to the Backus preblem, a boundary value
problem for the Laplace equation on the exterior of a bounded
open set with a fully nonlinear boundary condition. We get a new
uniqueness theorem for this problem and propose a way of proving
existence of solutions,

1 Introduction

In this paper we deal with the Backus problem:

Ay =40 outside 5,
V=g  onS, W)
u(z) =+ 0 as & —r 00,

where S is a closed surface in R?, Q denotes its exterior domain and g
is a given positive continuous function on 5.
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The physical motivation for this problem comes from Geodesy (see,
lor example, [2],[6],[11],{121,[L7], [30]) and Geomagnetism (see, [21,[3],[4]
and [19]). Assuming to be known the surface of the Earth 5, in Geodesy
it is posed the problem of whether the ezfernal gravitational ficld of
the Barth can be {or not) determined merely from measurements of
its intensity on the Earth surface. If by u we denote the gravitational
or newtonian polential of the Earth, and ¢ denotes the modulus of the
force of gravity on 5 (in Geodesy g is simply called gravity), then by well
known properties of u (see, for example, [13, Chapter 1]) the problem
posed above leads to a boundary problem like (1). {We observe that this
is only true if we do not take into consideration the Earth rotation as
we shall assume here; for & more complete model see, for example, [6]).
This geodetic problem is quite realistic since the gravity can be easily
measured both in land and sea, and by spatial positioning techniques the
hypothesis concerning the knowledge of S is not far from be realistic too
nowdays. In Geomagnetism we may formulate a completely analegous
problem for the external magnetic field of the Earth.

In IR?, a problem like (1), where now S is a simple closed curve,
can be essentially reduced to solve a Dirichlet problem {see [9] for a
physical motivation in dimengion two where however « is harmonic in the
interior of S). In fact, if without loss of generality by Riemann’s mapping
theorem, S is the unit circle and we replace the condition at oo in (1) by
u bounded in 2, then by the inversion defined by z = x4y = 27! where
7= a — 4y and (z,y) € R, the function @(z) := u(1/Z) is harmonic
in the interior D of the unit disk and, in addition, |Va&| = |Vu| on
|z| = 1. Now, the function f{z) = d4/dz — ida/0y is analytic in D and,
il f(z) # 0, then log f(z) is harmonic as well. The real part of log f(z) is
precisely log |Vii| and this proves that log [Vi| is harmonic in D. In this
way, if g is strictly positive, all we have to do is to solve the Dirichlet
problem '

Av=0 in D, wv=logg onlz|]=1

where v = log |V@|. By means of the Cauchy-Riemann equations we then
may determine log f(z) and hence f(z). This is the strategy to solve in
IR? the problem we are concerned with. Nevertheless the solution is not
unique, since there are infinitely many harmonic gradient vector fields
(04 0x,0t/dy) whose modulus take the same value on |z| = 1 (for more
details, see [2, Theorem 1] and [22]; in [22] the case where g may vanish
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is also considered).

In IR3 this approach is not feasible and neither the inversion map
preserves harmonicity nor log | Vu| is harmonic if « is harmonic. The first
drawback could be overcome by considering the Kelvin transformation
(see [1, Chapter 4]); but if we do so the boundary condition is not
preserved and it changes slightly. For example, if now v denotes the
Kelvin transform of u and

S ={x=(z1,22,23) € R® 1 23 + 25 4+ 2} = 1}, (2)

then it can be proved (see [24]} that (1) is equivalent to

Av=10 ingside S,
2 (3)
(v + ?ﬁ) LV = g2 on S,
dn

where @dv/8n is the outer normal derivative of v and Vv denotes the
tangential or surface gradient of v.
At this point it should be noted that the problem

Ay=0 inD, |Vul=gons¥, (4)

where D is the interior of a closed surface S has no special relevance in
Geodesy at best of our knowledge, and it is completely different to (1)
(see Remark 2.3 in Section 2). This interior problem has been studied
by some authors (see, for example, [20] and [21]).

* As far as the authors know there is not yet a global existence theorem
for (1). Some local existence theorems are known (see [6], [15] and
[29]): roughly speaking, if g is close enough (in a convenient Hélder
space of functions) to some go such that go = |Vug| en S, where ug
is @ given, reqular at infinity, harmonic function in Q, then there is a
Junction u close to ug solution of (1). (Hereafter, by a solution of (1) we
mean a function v € C%(Q)NCY(Q), vanishing at infinity, and satisfying
pointwise both the Laplace equation and the boundary condition).

The following uniqueness result for problem (1) is well known (see
[2], [17]): there is at most one solution of (1) whose normal derivative
is strictly negative (or strictly positive) at each point of S. In Section
2 of this paper we generalize this result to functions with nenpoesitive
(or nonnegative) normal derivative. Although our approach is the same
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as that followed by Backus (via the maximum principle}, our general-
ization comes from a slightly more careful examination of the boundary
condition.

In Section 3 we present a possible way of proving existence of so-
lutions of Problem (3). The key idea of the approach we propose is
based in the following simple remark: if (3) has a solution which satis-
fies v+ dv/0n > 0 then necessarily

v
v+ s Vgt —|V,vlt.

This leads to the consideration of the associated eblique nonlinear bound-
ary problem (see {7)). In Section 3 we state a uniqucness theorem for
this problem (7} and study the relationship between this problem and
the problem (3).

Throughout this paper we shall denote by H(2) the real space of
harmonic functions in an open subsel Q of IRN. For unbounded €,
Hoe (2) will denote the subset of #(2) consisting of functions vanishing
at infinity. If 9 is a closed surface in IR®, we shall use the notation

Ci(SYy={geC{S):glz) > 0¥z € S}.

2 Some results about the uniqueness of solu-
tions

In this Section we shall often use the lollowing

Lemma 2.1 Let S be a closed surface in R? and let 2 be the unbounded
connected component of R\ S. Let u € Hoo ((NCH(Q), u Z 0, be such
that lim o u(z) = 0. Then

min (e, 0) < w(e) < max{M, 0}, Yo € Q
where m = ming « and M = maxg u.

Proof. Without loss of generality we can assume that 0 € €. Let
B{0, R) denote an open ball centered at the origin of radius [2 and
containing S. Since Qg = QM B(0, R) is connected and v is not constant
in Qg by real analyticity of harmonic functions (see, for example, [1,
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Theorem 1.24], then by the maximum principle for harmonic functions
(see [7, §2.2, Corollaire 3]) we have

min v < u(z) < maxx V& € Qg,
5QR Bin

where Qg = SU 8B(0, R). In addition,

min ¥ = min{m, m(R)) and max v = max(M, M(R)),
Mg br

where
m(R)= min u and M(R)= max u.
8B(0,R) 2B(0,R)

Letting R — oo and observing that both m(#) and M (R} converge to
zero, we obtained the desired result. g
We also recall the Hopf boundary point lemma {see [10, Lemma 3.4])

Lemma 2.2 Let Q be a domain in RY and v € H(Q). Let 29 € 92 be
such that

(a) wu is continuous at xg ;
(b) u(xg) > u(z) for all x € Q ;
(c) O satisfies an interior sphere condition al g .
Then, the outer normal derivative of u at xo, if it exists, satisfies the
strict inequalily
Ju

E'I(EO) > 0 .

We are now in position of proving our first theorem. We shall assume
that S is regular enough as to apply Lemma 2.2, and by d/dn we shall
mean the derivative along the normal of § pointing to the exterior of S.

Theorem 2.3 Let u,v € Hoo () N CHS2) be such that
{a) Ou/dn,dv/6n < 0onS;
(b) |Vu|=|Vv|onS.

Then v = v.
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Proof. Since [Vu| = |Vv| on S, then on S we have
du? duv\*° Y
27 e () 4 e
(5e) +19a = (50) +I7wf
where V, u and Vv are the surface gradients of  and v respectively. Let
w = u — v, and define m = ming w and M = maxgs w. Let zg, g € S

be such that M = w{xp) and m = wlFy). Since w € C'{Q) then V,w
must vanish at xg and Fg. Then at these points we have

(&)~ (2
om/  \dn/) ’
and since du/dn, dv/dn < 0, then at both zg and Zy we have

dw 0 (5)

dn

Now we can prove that @ = 0. If w does not vanish identically, then
by Lemma 2.1 we have

min{m, 0) < wiz) < max(M,0) Ve e 2.

If M > 0 then w(z) < w(zg) lor all @ € £, and by Hop[’s Lemma
we have dw/dn(xg) < 0, contradicting the hypothesis (5). If on the
contraty M < 0 then m < 0 and w(Zs} < w(z], so by Hopf’s Lemma
we infer that dw/On{Zy) > 0, contradicting again (5). o

Remark 2.1 Alternatively, we can prove that there is at most one so-
lution of (1) whose normal derivative is nonnegative. g

Remark 2.2 Compare this Theorem 2.3 with [25, Thearem 1{«)] and
(26, Corollary 1], where uniqueness results have been obtained for the
problems

Au=-2 in DCRY, |Vul=g>0onadD,

and )
Aw= f(u) in DCRY, |Vu=g>0o0ndD,

where D is a bounded domain in RY and f satisfies

flle) =0 (f{s)£0), F(0)=0. 0o
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Remark 2.3 Observe that for the interior problem (4) the assumption
u/dn < 0 on S for the solution has no sense, since if u € H(Q2)NC1 (£}
then

du

Sa—nds:ﬂ,

and so Ju/dn necessarily changes sign on S unless u is constant. o

Example 2.1 Let S be the unit sphere in IR®. Let ¢ be an arbitrary
positive constant. In this case, the functions =c/r, where r = {z|, are
the radial solutions of (1). Let u = ¢/r. Since du/dr = —c < 0 on
S, then by Theorem 2.3 this « is the unique solution of (1) with ¢ = ¢
which satisfies du/dn < 0. g

Without any restriction on the sign of the normal derivative of the
solution, it is clear that if w is a solution of (1) then —wu is a solution
as well. We then could wonder if these functions u and —u are the
only solutions of the problem. In general the answer is negative as it
was proved by Backus (see [3]). In fact, let #., () be the subset of
Hoo () N CHQ) consisting of fanctions z not vanishing identically and
such that the oblique boundary value problem

Aw =10 outside S,
(Vw,Vz) =0 on S, (6)
w(z) =0 as z — 00,

has a nontrivial C?(Q) N C(Q) solution. Since |[Vu| = |V if and only
it
(Vi ), Vut ) =0,

we then have the following

Proposition 2.4 H., () £ 0 if and only if there exist two functions
u,0 € Moo () NCHD) (u £ £v) sueh that |Vu| = |Vv| on S.

Proof. Let z € Hoo () and let w be a nontrivial solution of (6). Define
u=(w+2)/2and v=(w—2)/2. Then u,v € Heo () NCHL) and

1
Vuf* = 5 (1Vwl* + [V2[2) = [Vof?
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on S,
On the other hand, if v and v (w # $v) are such that [Vu| = [Vv]
on %, then u+ v € M. (Q). This completes the proof. ¢

In the case of a sphere, Backus proved (see [3]) that H..(R? \
B0, R)) # @. In fact he found non trivial solutions of (6) by choos-
ing 2 = 23/r® € Hoo(IR*\ {0}). See [16] for a related topic,

Remark 2.4 If S is smooth enough, it should be observed that if ¢ €
Hoo () then Vz is tangential to S in some sel 7 C §. Iu fact, if
T = @ then it follows that the only solution of (6} is w = 0 (see, for
example, [23]). In the above example of Backus the tangential set ' is
the equalor of the sphere. g

Remark 2.5 The following question, posed by Backus ([3]), seems to
remain open up to date: let u € Ho. () NCYQ); how many functions v
are there in H..(€2) N C'(Q) that have |[Vuv| = |[Vu|on §? o

3 ° A possible way of proving existence

As we-said in the Introduction, in this Section we propose an approach
to prove an existence result for (1). We shall restrict ourselves to the
simplest case of a sphere (2) and we consider the equivalent problem (3).
The basic idea we propose is to consider the boundary value problem

Av =10 in Q= B(0,1),
o0 _ — | 7
v+ 0 S Vel e,

where
(6> = IVoolt)s = max{(g® ~ |V,0l%), 0}

{Hereafter we shall exclude the case g = 0, since if g = 0, by Theorem
3.1, the only solution of Problem (7) is v = 0). Our first result in this
direction is the following uniqueness result for the problem (7):

Theorem 3.1 The problem (7) has at most one solution v € C*(Q) N

).
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Proof. Let v and w be two solutions of (7) and let z = v — w. Since
z € H(Q) N CH{Q), it takes its maximum value at some point zg € I
and its minimum value at some point 3o € d%2. Moreover, V,z = 0 at
zg and Zq, so it follows that at zp and &g we have

z+8z/0n=0.

Now we infer that z(zg) < 0 and z(Z4) > 0, and this of course implies
z = 0. In fact, if z(zo) > 0 then 8z/0n(zq) < 0 but this is not possible at
a maximum point; on the other hand, if z{#;) < 0 then 32/dn(&y) > 0
which is not possible at a minimum point. This completes the proof of
this Lemma. g

The relationship between the problems (7) and (3) is made clear in
the following

Lemma 3.2 Let v be the solution (assumed fo exist) of (7). If
[Vsv| < g on 092, (8)

then v is the unique solution of (3) such that v+ dv/dn > 0 on 0Q.
In addition, if v does not satisfy (8) then the boundary value problem
(3) has no solutions satisfying v+ dv/dn > 0 on Q. g

Remark 3.1 In the first part of this Lemma, the unigueness of v is
clear from Theorem 2.3. In fact, the function v in (3} is the Kelvin
transform of u, that is to say

v(z) = '—iTU ([—xll—;,a:') ;

g0 we have on 952
v+ dv/dn=—~0ufdn,

and then v+ dv/dn > 0 if and only if du/dn < 0. o

Remark 3.2 For an arbitrary positive constant ¢, if g(z) = ¢ then
v = ¢ is the unique solution of (7). Since V,v = 0, by Lemma 3.2
we then conclude that v = ¢ is the unique solution of {3) satisfying
v+ dv/dn > 0 on 0. Compare this result with Example 2.1. g

187
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Therefore, what we want to prove is that indeed the problem (7)
has a solution and we have (8) for the solution of (7). Then we could
conclude an existence theorem for (3). We have still not proved these
things but we state the following ,
Conjeture. The problem (7) has a unique solution v € Cz(Q) nciQ).
In addition, v satisfies (8).

This conjecture is based on the remainder results of this Section and on
some additional work of the authors (see [8]).
With respect to the condition (8) we have the following result:

Proposition 3.3 Let g € C..(09) and let v be a classical solution (as-
sumed to exist) of (7). Then

. {z€dN:|Vsv|<g}#0.
Proof. Assumed on the contrary that |[V,v| > g on 0Q2. Then we have
v+90v/0n=0 on 99.

With the same argument used in the proof of Theorem 3.1 we now
conclude that v = 0 in , and this would imply that ¢ = 0. The proof
is complete. g

Remark 3.3 If g > 0 the conclusion of this proposition directly follows
from the fact that if v € C1(f), as we are assuming, then the tangential
gradient of v vanish at the points of the boundary where the harmonic
function v reaches its maximum and minimum values. g

We now introduce the following sets
A_={z€0Q:|V,v| < g}

and

\

AL, ={z€0Q: |V >g}. -

In order to obtain some more information about these sets, we shall use
the following identity which can be infered from an integral identity due
to F.Rellich ([28]); see also [27, (2.14)]: | o
Proposition 3.4 Let v € H(Q) N CI(Q), where @ = B(0,1) in RN
(N > 2). Then, S
(N—2)/ |Vv|2dac—/ |V0]? - ot A P
Q _(?n
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Since by Green’s first identity we have

/vAz;dz+f]Vz']2d$:/ v@ds,
Q Q a0 On

if v € H(), then

/ U——ds—/ Vol dz > 0.
sa On

By Proposition 3.4 we then have (N > 2),

fanvgﬁds_ 2/ (IV

Since on the other hand we can write
Jv dv dv\? dv
—_— ds = - 2
/fm(van-f— ) 5 /89 {(U—f—an) ds — v U(’?n] ds
< ' Ju

on
(10)

combining (9) and {10), we have proved the following inequality:
Corollary 3.5 Let v € H(Q) NCYQ), where Q = B(0,1) in RN (N >

2). Then,
2
)dsgf (v-l—@—) ds. o
a6 dn

2/ (IV vt ‘a

If N =3 and v is a solution of (7}, then from (11) we get

/aﬂ ,VSUP ds é LQ(QQ _ !V515,2)+ ds.

Then
[ Wvelds+ [ \VoPds< [ (- 19efds,  (12)
A A4 A

2] lvsvlzds—f—/ stUIQaTSS/ g*ds.
A- Ay A_

and hence

189
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[ |\73v|2d$>/ gds,
JAy Ay

then we can state the following

Since

Proposition 3.6 Let g € CL{OQ) and let v be a classical solution (as-
sumed to exist) of (7). Then

92d5>/ ¢ ds, (13)
A J4y

and, in particular meas(A.) > 0. Moreover
y _
meas ({JL € a0 |V, < :;TQ}) >0, (14)

[ Veoltds < |l9ll3acon - (15)
Jay

arnd

(Here meas(C') denotes the surface-areq measure of a sct C'C 980}

Proof. That meas(A4_) > 0 comes from (13). To prove (14) we use the
descomposition A_ = B; U By where

Blz{m 7<|\_ v|}

Bg:{IGdQ ke VU]}.

From inequality {12) we deduce that

and

=
(AN

[ IValds < [ (0= 2Vl ds

S A4 Ja.

- / (92 - 2|v5‘b‘ 2) a’-s‘l—/ (92 - QIVS.UIZ) ds
B} BQ

Calling f(z} = ¢g%(z) —2|V,v{z)|? for z € 39, it is obvious that f(z) <0
on B, whereas f(z) > 0 on By. Then, if mea‘b(Bg) = 0 we arrive to
a contradiction since meas(B; U Bs) = meas(A4_) > 0. Inequality (15)
immediately follows from (12). The proof is complete. g

(16)
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Remark 3.4 If g > 0, (14) also follows from Remark 3.3. g

Although we have not proved that A, = @, the Proposition 3.6 can
be considered as a partial result in this direction.

About the existence of solutions of (7), it should be noted that in
contrast to the problem (3), the problem (7) automatically is oblique
using the terminology followed in [18]. In fact, for a general formulation

{ Au=10 in
(17)

Gz, u,Vu)=0 on 0%,

the problem (17) is oblique if, at [ = 92 x R x IR?, the following
inequality is satisfled:
x=(Gp,n) >0, (18)

where GG denotes the (weak) partial derivative with respect to p when
G is expressed in dummy variables (z, z, p) € I'. Note that in the case of
the original Backus problem (1) G(z, z,p) = |p| and then G is oblique
if and only if (p,n} > 0 (i.e. the condition depends on du/dn which is a
priori unknown; the same can be said for problem (3)).

Lemma 3.7 Problem (7) is oblique.

Proof. In these variables the boundary operator in {7) is given by

G2, 2,p) = 2+ (pm) — /(g2(x) — [p:1D)y (19)

where p; = p — (p,n}n is the tangential projection of p. Differentiating
(7 with respect to p we get that for any prescribed (2, z)

n if tptl > g(m)a
Gp = n __&__ if p
ORI Ipe| < g(a), &

and this proves that y = 1. ¢

Although G given by (19) is not regular enough as to may apply a
known existence theorem for oblique nonlinear boundary value problems
(see [18]), it seems possible to approach G by more regular functions
G. and to obtain an existence theorem for (7) by passing to the limit

{see [8]).
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Remark 3.5 It is interesting to note Lhe following property of the op-
erator (19). Let A > 0. Observing that

(p+Ann) = (pm)+2A,

and since the tangential projections of p and of p + An coincide, then
we have
G(z,z,p+ An) — G(z,z,p) = A, (20}

for all (z,z,p) € . From (20) we can conclude that the function
CG(z, z,p) is strictly increasing with respect to p in the normal direction
to 6% at 2. G.Barles ([5]) has recently proved that non-linear boundary
value problems with this property have, under some other additional
conditions, a unique viscosity solution (see [5, §I]) in C(R). @
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