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Inner metric properties of 2-dimensional
semi-algebraic sets.

L. BROCKER, M. KUPPE and W. SCHEUFLER

Abstract

We consider 2- dimensional semialgebraic topological manifolds
from the differentialgeometric point of view. Curvatures at singu-
larities are defined and a Gauss-Bonnet formula holds. Moreover,
Aleksandrov’s axioms for an intrinsic geometry of surfaces are full-
filled.

1 Introduction

A metric d on a space X is called inner metric, if for all z, y € X one has
d(z,y) = inf(1(7)). Here the infimum is taken over all rectificable curves
~ connecting z with y and I(v) is the length of v (we set d(z,y) = o0
if z and y are in different path components). We want to study semi-
algebraic sets from the inner metric point of view, and to start with,
we consider sets of pure dimension 2. We will consider curvatures along
1-dimensional singular subsets and at very singular points. Let us give
some examples:

Example 1.1. Consider the surface Q of the standard cube, being
imbedded in IR3. Then @ is locally euclidean at all points except for
the 8 vertices (even at the edges). The total angle at each vertex is
%w. So we count a curvature %w, concentrated at each vertex. For the
total curvature we get 8 - -é-:rr = 47 = 27xx(Q) where x is the Fuler
characteristic,
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Example 1.2. Consider a 2-dimensional cone ¢ ¢ R? with the bot-
tom as in the figure below which one gets by gluing, say, a unit disc and
a half disc of radius 2 along the circle and halfcircle and the edges a
respectively. This time we get a total angle of 7 at p, hence the curva-
ture m, and along the 1-dimensional singular edge we get the curvature
fog’r(% +1)dt = 3w. At the smooth points € is euclidean. So, as total
curvature, we get again 4w = 27y (C).

o .
KJJ \]

Example 1.3. Consider in IR® the surfaces
S={zreRei=(1-+/a?+2)>%0<2z2+23 <1}

o)

@]

q

Here the total angle at the points p and g is 7%#, the total curvature

along the singular edge $! cannot be computed by usual formulas for
curvatures of curves in Riemannian 2-manifolds, since one cannot differ-
entiate sufficiently often. However, it will turn out, that the curvature
along 5! is f02 " 2dt = 4x. The curvature at the smooth points is negative,
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In general, for any compact semi-algebraic 2-dimensional oriented man-
ifold S we expect a formula like

[go K (2)dz + ]S 1 k(t)dt+§ x(pi) = 2m(S),

where S? is the non-singular part of S with Gauss-curvature X and
canonical measure dz, k is the curvature along the 1-dimensional singular
locus and « is the curvature, which is concentrated at finitetly many very
singular points py,...,p,. We are going to explain, how k and & can be
defined. We will also investigate, how this fits into Aleksandrovs surface
theory [A-Z], and thus find a new class of models, for which Aleksandrovs
axioms hold.

2 Semi-algebraic geometry

Let § € R" be a smooth semi-algebraic 2-manifold, endoved -with the
induced Riemannian metric. As before, we denote by K the Gaufl-
curvature and by dz the canonical measure on S.

Proposition 2.1. [¢|K(z)|dz < 0o

In fact, much more is known: If $¢ ¢ R™ is a smooth semi-algebraic
d-manifold, then fg|w| is bounded by a function, which only depends
on the complexity of a description for S, that is on ¢, n and the number
and degrees of the polynomials, which describe S [Eu]. Here w is the
Gaufl-Bonnet form according to the induced Riemannian metric. Note
that |w| is also defined if S is non oriented. w = 0 if d is odd. Similary
one has

Proposition 2.2. Let § C IR™ be a smooth semi-algebraic 1-manifold.
Then

/ IE(t)]dt < oo

8

Here k denotes the usual curvature for regular curves and dt its length el-
ement. Again, the integral depends only on the complexity of describing
equations for S. In fact, consider the semi-algebraic map

v:8 - S L (unit tangentvector).

TS
IT:s|]
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Then fg|k(t)|dt = length of ~(5),

and the right hand side can be estimated by a Cauchy-Crofton formula
[Sa, Chap. 18, 1.}.

Now assume that § is a topological semi-algebraic 2-manifold with bound-
ary 8S. Let S = 5\ 85 be non singular. Then, except for a finite set
S$2 C S at the points y € S one has Nash-wings. That means the
following:

One has a smooth neighbourhood Y of y in 85 and a tubular neighbour-
hood T — Y x [0,1] around Y together with a section ¢ : ¥ x {0, 1[—
T;(y,t) = o(y, t), so that the vanishing order of g;tﬂg is constant along
Y. It follows, that the tangent plane map

s Gopn ; pr TPSO

where (7o, is the Grassmann bundle, can be extended continuously from
5% to §\ 2. [B-C-R, Th. 9.6.13 and Th. 9.6.8]. In this situation y is

called a Nash-point. We also need the following

Lemma 2.3. Let S C R"™ be a semi-algebraic topological 2-manifold.
For p € S let S(p,p) be the n — 1 sphere with center p and radius p.
Let S be stratified: S = SOU S1U 82, dim (S*) = 2 — i such that S° is
smooth.

Then for all € > 0 there exists 5§ > 0 such that for oll§ withO® < p < §

one has: .
i) S{p,p) intersects the sirate S*,i =0,1,2, transversally.

i) For g € S(p,p) NS one has | < X,Y > —1| < € where X is unit
tangent vector of St at ¢ and Y is unit normal vector on S(p, p) at
g (S intersects S(p,p) nearly orthogonally. X and Y are defined
up to e sign.)

iii) For ¢ € S(p,p) N S° one has | < Y, N > —1| < ¢ where again Y
is unit normal vector on S{p,p) at q and N unit normal vector on
S(p,p) N S° at q (in the tangent space of SO at g).

Since we do not know a reference for this, we give a sketch of the proof:
For € > 0 it is easy to find a semi-algebraic stratification of S such that on
each 2-stratum the variation of the tangent space in the Grassmannian
is less than e. Since statement ii) for 1-strata is rather obvious we get i)
and iii) nearly automatically.

We are indebted to the referee for this argument.
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3 Curvature and Gauf3-Bonnet formula

In the sequel we will have to consider curves and angles between curves
on 2-manifolds (possibly with boundary). We will do this in various
situations, for instance, in semi-algebraic topological 2-manifolds and
in Aleksandrov surfaces. So this is just the general setting: A curve is
always a simple continuous map vy : I — S where 7 is an interval in R or
I is the unit circle. In the latter case v is called closed. The restriction

of « to I° will be denoted by ’c))f .

Let p € S and let +,6 be curves with common initial point p but no
further common points. If p ¢ 85, v and § define two germs of regions,
say (v, 6); and (7, §), locally around p. If S, v and § fullfill certain reg-
ularity conditions, there will exist section angles, corresponding to the
two regions, which we denote by ai(y, 8) and a,(v, §). In general, it can
happen that a:(v,8) + ar(y,6) =: a(p) # 2x. This a(p) is called total
angle around p. If p € 88, there is only one section angle.

Similary, a curve v defines two sides and to each side corresponds a
curvature k; or kr respectively of v. (If v is closed, one has to assume
that a neighbourhood of v is oriented). Again, not always k; + ky = 0.
On 85 one has only one curvature, say, ;. In that case we set k, = 0.
Finally, consider a point v(t),t € I° and the curves y,(s) = ~(t —
s),v2(s} = ¥(t+ s). If the section angles oy(1,v2) and ap(v1, ¥2) are de-
fined, we define exterior angles Gi(v(t)) := n — (1, v2)} and Br(v(t)) =
7 — Br(71,72).

Let S be a 2-dimensional semi-algebraic topological manifold with bound-
ary 5.

Notations 3.1. We assume that S = §\ 8S is smooth. We set
88 = §1U 82 where S! consists of the Nash-points of 8S. This includes
that

i) 85 is smooth at each point y € S1.

ii) The tangentplane-map p — TS extends continously to S0y st

By the last section $? can assumed to be finite.

The finite set S again splits into two parts: S2 = §2! U §22 where
52! consist of those points y to which the tangent plane-map extends
continously, but 85 is not smooth at y, and 522 consists of the remaining
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points. A semi-algebraic topological 2-manifold § with boundary, for
which §° is smooth, will be called a simple semi-algebraic surface (or
briefly S5 ).

Definition 3.2. A curve v:I — S is called reqular, if v is of class C!

in the ambient space R® D S, 7 (t) # 0 for all t € I, and if one of the
Jollowing conditions holds

i) yCas
i) vC 89,7 is of class C? and S, 1k(t)}dt < oo.

Heré k is the inner Riemannian curvature of v. Note that in case i) ~
can assumed to be of class C™ inside §1.

On 5! we define the function k, called inner curvature, as follows: We
choose a normal unit vector field N along S, tangent to S and pointing
into the interior of S. The 1-manifold $! in R™ admits alsc a curvature
vector field k along S 1 We set k:=< E,N>.

Proposition 3.3. Let p-€ S'. Then in a neighbourhood U of p the local
Gaufl-Bonnet formula holds. Moreover, k only depends on the inner
metric of S.

More precisely, this means the following: In a neighbourhood U of p,
which is homeomorphic to a half plane and for which 8§ N U € S we
consider a simple closed piecewise regular curve v where the pieces may
be parts of S1.

Sl

Then the inner curvature k; with respect to the inner part Int(y) of the
region enclosed by v is defined at all points of v and also the exterior
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angle §; at the corners y; of -y. Moreover, one has

Ant(q) K(z)dz + ’[y ki(s)ds + Zﬁ, =27

Proof. (it might be better to say: sketch of the proof. For more details
see [Ku|) We write U as a Nash wing as in the previous section. Also
we may assume that v is a triangle,

P

Y v,

Y Sl

¥ = 030~ with v; C S, 40,72 ¢ S° and corresponding interior
angles a; opposite to ~; for i = 1,2,3. In the setting of Nash-wings we
have

NnCY={(y0yev}.

We replace ¥ by the curve § = {{y, ¢)]y € Y} for a small y.

For sufficiently small ¢ we get the following: A decomposition of ares:
Yo = 'y; o ’yé,'}'g = '7;'5 o '7;; And a decomposition of the triangle y =
1 © 72 © 73 into the trlangle 'y = —yl ) 72 o 13 with 4; C 6 and with
interior angles a3,a1 = a1,02 respectively, and into the quadrangle

"

7 =movo(mn) tom.
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We may assume that ~' and 4" are again simple closed curves.

!

Yf'/<a2 Y 0‘3>\Y5’
Y1 S

Moreover, for sufficiently small ¢, a,:- is arbitrarily close to o; and fq‘: k(s)ds
is arbitrarily close to [, k(s)ds.

Since on the other hand fInt(fy”) Kdx gets arbitrarily small and the
GauB-Bonnet formula holds for ~ it also holds for .

Clearly, the correctness of the Gaufi-Bonnet formula defines the curva-
ture function k on S! uniquely. Hence k only depends on the interior
metric of S.

Proposition 3.4. Let p € §21. Then in a neighbourhood U of p the
local Gaufl-Bonnet formula holds.

Proof. Again it is enough to consider triangles. We have the two cases
as indicated in the figure below:

- YI
g N\ T g T
Y; i Y
//— S’l ¥s //_d S]
4 P

We replace 41 by a close curve 71 respectively, as indicated in the next
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figure,

Y2 LK

and argue similary as for proposition 3.3, where in the second case we
also use this proposition.

a
As a corollary of Propositions 3.3 and 3.4 we get

Proposition 3.5. With the above setting for S assume that S22 = @.
Let T C S be a compact oriented 2-dimensional subvariety such that the
boundary 8T is a piecewise regular curve (for instance T — S ). Then

[I‘ K(z)dz + f ki(s)ds + Z Bi = 2mxx(T)

i=1
where 0; is the ezterior angle at the corner p; of 8T and k; the curvature
with respect to Int (T).
It ramains to define angles at the points p € 5§22, More generally, let
p € S and let v,6 be regular curves emanating from p which do not
intersect infinitely often in a neighbourhood of p. Then v and é define a
section, say (v, §); around p.

Proposition and Definition 3.6. With the above notations let S(p, p)
be the n — 1 sphere in R™ around p with sufficiently small radius p. Set
op:=(7,0)1 N S(p,p). Then the limit

o(y, 8) = lim (o) pt

where I(a,) is the length of o, erists and defines an angle only depending
on the inner meiric of S.
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Proof. We parametize o, by arc length. For g € 0, N 5% we choose Y
and N as in Lemma 2.3. Let k be the curvature in R™ of 0, at g. We
get (up to a sign) k; =< k, N > . Hence, by Lemma 2.3,

_ 1
ki =< kY > +e(p) = S+ e(y)

where ¢(p) — 0 for p — 0. Therefore

fa dky = ’(‘%) + e(p)1(o ).

Now consider 7 < p and the rectangle R enclosed by

n = 1|, ol a6l[r, p1) ! o7

As we mentioned before, the inner angles at the four corners of R con-
verge to /2 for p — 0. Also, since v and § have bounded curvature, we
get

f ki(v(6))dt = e(p)
¥[8l

and correspondingly for §. Hence by Proposition 3.5 we get

Kone™ = o)l = [ Kiads+<(p)
which shows the claim.

Corollary 3.7. In Proposition 2.5 the assumption that S22 — @ can be
dropped.

Clearly, for p ¢ 5?2, the angle defined in 3.6 coincides with that we had
before.

4 Piecewise semi-algebraic surfaces

We will extend our class of spaces.

Construction and notations 4.1. Assume we are given two semi-
algebraic 2-manifolds with boundary S;, S2 as above. Let ¥; be a closed
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submanifold of 35; of pure dimension 1, i = 1,2 and ¢ : Y1 — ¥ an
isometry. Then we get a new space S by gluing S, and S5 along ¥7 and
Y2 respectivly:

§=81US8s/p

A 2-manifold (possibly with boundary) which one gets by gluing finitely
many simple semi-algebraic surfaces S; as above will be called a piecewise
semi-algebraic surface (PSS). In fact, a semi-algebraic 2-manifold with
boundary is a PSS, but the converse,in general, does not hold.

Stratification 4.2. Let S be a PSS. We set S° = {smooth interior
points of §}. So for p of §% a neighbourhood of p is isometric to a
smooth semi-algeraic 2-manifold. $' = {Nash points}. For p € 5! a
neighbourhood of p is isometric to a Nash-wing (if p € 85) or a gluing
of two Nash-wings along their boundaries (if p ¢ 85). Again §% =
S\ (8% U $1) is finite. A neighbourhood p € $? comes from gluing
neighbourhoods of p; € S} U 57 for finitely many simple semi-algebraic
surfaces S; such that the points p; € S; are identified.

P
P

We say, that p € §2L if all p; € S} U Sfl and p € §% otherwise.
Let S be a PSS. Then § is a two-manifold with boundary. Also, if

S comes from gluing together simple semi-algebraic surfaces S;,i =
1,...,r, then one has natural isometric imbeddings

a',':Si—VS

Moreover, for p ¢ S° in a neighbourhood of p, S consists of finitely
many branches. We have to enlarge the class of curves we consider.
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Quasiregular curves 4.3. Let v: I — S be a curve. Then there are
countably many open intervals U; C I,i € J, such that v|U; C $°. We
set

c:=1\|Ju.

el
One has 7|C C S U §%. We make the following assumptions:
a) For all i € I, y|U;'is piecewise regular (see Definition 3.2).

b) If y(t) = p ¢ SO, then there exists ¢ > 0 such that v|it — ¢, t{ (and
vlJt,t + €] respectivly) intersects at most one branch of S around
p (in particular, it does not meet p.)

Condition b) allows to define exterior angles g;(v(t)) and ,(v(¢)). In
fact, consider again v1(s) = v(t — s) and v2(s) = v(t + s). If v; has in-
finitely many common points with a branch § of S1 at y(t), just replace
7 by & and consider the corresponding section angle and exterior angle
between -; and 6.

¢} fne Iki(xv(#))ldt + 3 |8i(+(2))| < oo.

The summation runs over all ¢ e;x interior of 7. A curve, which fullfills
the assumptions a}, b) and c) will be called quasiregular. This definition
is symmetric with respect to left and right, since for almost all ¢ € I one

has ki(v(t)) = —kr(7(t)) and Gi(+(2)) = ~Br((2)).

Left and right curvature 4.4. Now we have to assume, that.a neigh-
bourhood of 7 is oriented, if y is closed. Moreover, let v be quasiregular.
We define left and right curvatures on + as regular signed measures:

[r dky = /I O L o k;(s)ds-{-zo Bi()

te]
and correspondingly for the right hand side.

Curvature 4.5. Let 5 be an oriented PSS. We have to define a regular
signed measure dK on S\ 8S. So let U C S\ 88 be open. We set

LdK = LHSOK(a:)dx-F/UnSI dip+dkr 4+ Y (27— o(p))

pelUns2
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Here 0 < afp) is the total angle around p. (For SSS's total angles are
defined in 3.6. The extension to PSS’s should be clear.) With these
notations we have

Theorem 4.8. (GauB8-Bonnet-Formula) Let S be a PSS and let T C S
be an oriented compact 2-dimensional subvariety such that 3T is a union
of finitely many simple closed quasiregular curves. Then

/ dK +/ dky = 27 x(T).
™8T ar

where dky is the curvature with respect to Int (T).

The proof of this is much easier then the description of all the settings
above, although they are quite natural. So we leave the proof for the
reader.

5 Aleksandrovs axiom

Let (S,d) be an inner metric space such that each point p € S admits
a neighbourhood U (p) which is homeomorphic to an open disc in R?
that is, S is a topological 2-manifeld without boundary.

Geodesics and angles 5.1. A rectificable curve v : [a,b] — S is called
shortest geodesic, if d(y(a),¥(d)) = I(v) := length of (v). Also, v is
called geodesic, if for all t € {a,d] there exists ¢ > 0 such that for all
t; < tg with [t; — ¢| < € one has : 7|[t1, to] is shortest geodesic. Next,
consider two curves v; : [0,e] — §,i = 1,2, such that v1(0) = 72(0). We
define the upper angle @(v;, y2) between v and 2 at 4;(0) as follows:
For all t1,t2 €]0, e] consider the euclidean triangle with sides g1, g2, ¢ of
length d(v1(0), v1(t1)), d(71(0), v2(t)) and d(v1(t), y2(t)) respectivly. Let
a(t1, t2) be the angle between g; and g2. Then set

@(711,v2) = limsup{a(ty, t2)|(t, t2) — 0}

This @(y1, 72} is called the upper angle between v, and 3 similary, we
define the angle

a(y1,ve) = lim{e(ty, t2}{(t1, t2) — O}

if it exists. One has m > @(y1,v2), (1, 72)-
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Triangles 5.2. Now let U/ be an neighbourhood, homeomorphic to an
open disc in R?, of some point. We consider a triangle A C U with
vertices Aj, Ag, A3 and shortest geodesics v; connecting A; and A;. We
assume that the v fit together to a Jordan curve. Then A has an interior

o

A and a boundary 84 counsisting of the three geodesic sections. Suppose
that for any two points p, ¢ € 82 and any simple arc 4 connecting p and
q such that 7 up to the endpoints is entirely contained in U \ A one has
I(y) > 1(8) where § € 8A is the section which together with 4 bounds

a region outside of Z\. . Then A is called simple. Let @; be the upper
angle at A;. We define the upper defect of A by

agtoa—m

Aleksandrovs axiom 5.3. For each p € S there exists a neighbourhood
U = U(p), homeomorphic to an open disc in R?, and a bound K = K (p)
such that for any collection A;,..., A, of simple triangles in &/ with
disjoint interiors one has

r

3 [def (A3)] < K.

i=1

For this axiom we briefly say that S has locally bounded curvature.
Also S is called an Aleksandrov surface. In [A-Z] it is shown, that
for Aleksandrov surfaces one can develop a very strong synthetic 2-
dimensional differential-geometry, which shares many properties with
two dimensional Riemannian geometry. However, there are also serious
differences. For instance, in the synthetic setting may exist ramifying
geodesics.

We will show that Aleksandrovs axiom holds for piecewise semi-algebraic
spaces. We are not able to do that directly, since exterior angles are
very difficult to compute in the neighbourhood of singularities. Instead
of that, we will approximate piecewise semi-algebraic spaces by well
behaved ones.

Of course, Aleksandrovs axiom holds for Riemannian twofolds, if they
are smooth enough. This follows immediately from the Gaufl-Bonnet
formula and the Proposition below
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Proposition 5.4. Let S be a Riemannian twofold of class C? and let
1,2 be curves in S of class cl emanating from the same point p. Then
the angle between ~y,v2 al p exisls end coincides with the Riemannian
angle.

This is well known. See also [Sch] for a detailed proof.

We need one of the main results on Aleksandrovs surfaces

Notation 5.5. Let X be a space with two metrics di,ds. Then the
Hausdorff distance d(d;,d2) between these is defined by d(di,da) :=
sup{|d(z, y) — d (z,y)|(z,y) € X x X}

Theorem 5.8. Let S be a topological twofold (without boundary) and let
(dn) — d be a Hausdorff convergent sequence of metrics on S. Assume
that all dyn,d are inner and compatible with the topology of S. If (S, d»)
has uniformly locally bounded curvature, then (S,d) is an Aleksandrov
surface.

Proof. [A-Z, Chap. IV, Th. 15 in connection with IIl, Th. 11 f.f]

6 Piecewise semi-algebraic surfaces are
Aleksandrov surfaces

We are going to show the statement of the headline.

Theorem 6.1. Let S be & piecewise semi-algebraic surface without
boundary. Then Aleksandrovs aziom holds for 5.

The proof is done in two steps: First, by cutting and pasting we replace
the metric d on S by a metric d’ which is close to d and for which the
axiom holds, and then we use approximation according to Theorem 5.6.

1. Recall that S is built up from simple semi-algebraic surfaces S; by
pasting pieces of the boundaries. We replace the metric on each S;. Let
p € S%. Let B(p,¢) be a small ball of radius e around p. By Theorem
2.3, B(p,€) N S; is homeomorphic to a triangle A with sides a, 8, ¢ where
¢ is opposite to p. Taking the original length’s of the sides, we may have
I{c) > I(a) + I(b). We consider a spiral a(t),t € [0,1] in R? around the
origin, such that || (o) ||= a),]| o(1) ||= {(b) and o) = U(c). We
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divide o into k sections T; for which the angle at the origin is smaller
than . Then we cut off B(p,¢) NS from S and replace it by pasting T
along ¢ and S(p,€} N S and the common edges of the T; :

— S — g
S N BE.e) Q \ g:\;
Tz
e —~——

Here S(p, ¢} is the sphere of radius ¢ around p. Note that the number
k of sections T; and the total curvature of ¢ in R? can be bounded
independently of e. After identifying the new surface S " with S, we get
a new metric d on S which is close to d for small e. By comnstruction
it is easly achieved that d|8S = d'|8S. We do this replacement for each
p € S?. Let

Ri:= S;\ UpeSfB(P: €).

Then at R; N S} we have finitely many Nash-wings. Here we replace a
tubular e-neighbourheod T, of S} in such a Nash-wing by an euclidean
quadrangle of corresponding side lengths.

to be replaced by an euclidean quadrangle

If T, is unbounded at both sides (half bounded), we replace by a eu-
clidean parallel strip (half parallel strip). For half parallel strips one has
only to adapt the bounded side length. Again, it is easy to identify the
new surface S with S in a way such that the inner metric d coming
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from S’ is close to d for small ¢, and ¢]8S = d'|88.

Finally we point out, that we have a description of the curves S(p, )NS;
and 8T N S; the complexity of which only depends on the complexity of
a description for S; but not on ¢. Hence the total absclute curvature of
these curves is uniformly bounded, independently of ¢ (see Proposition
2.2). We do this for all S; and patch them together as before. Thus we
get an inner metric de on S so that (S, d.} again is a PSS and d, tends
to d for e — 0.

2. Now Aleksandrovs axiom holds for (S,d¢). This follows from [A-Z,
Chap. IX, 3]. In our situation this can also be seen directly. In fact,
a geodesic arc in (S, d¢) is easily seen to be quasiregular (for a detailed
proof see [Sch]}. Moreover, each building block of (S, d¢) is completely
contained in a C'°°-Riemannian twofold. Therefore, by Proposition 5.4,
upper angles between geodesics coincide with the Riemannian angles.

Hence, by the GauB-Bonnet formula, for a simple triangle A we have
def (A) = f‘; dK.

Now, by the definition of dK (see 4.5) and the first part of the proof
we even get: There is a bound p, independent of ¢, such that for (5, d¢)
one has fgdK < p. In particular, the family {{S,dc)|e > 0, ¢ sufficiently
small } has uniformly locally bounded curvature. Sinced, — d fore¢ — 0,
by Theorem 5.6 it follows that (S, d) is an Alekandrov surface too.

7 Angles, directions and curvature of curves

We want to apply the theory of Aleksandrov surface to piecewise semi-
algebraic surfaces S. To this end we have to review some notations and
results (see JA-Z] for a general reference).

Angles and directions 7.1. Let S be an Aleksandrov surface. Let
p € § and v a curve emanating from p. We say that + has a direction at
p if the angle o between 4 and v at p exists. Then necessarily a = 0. If
4 is geodesic, it has obviously a direction at p. If there is a second curve
6(s) emanating from p and having a direction at p, then also the angle
8 =: a(v, 6) between v and § exists [A-Z, Chap. VI, Th. 1}. I, moreover,
v and é have infinitely many common points in any neighbourhood of
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p, then 8 = 0. If 8 = =, possibly # has no geometrical meaning. For
instance, this occurs if § is piecewise semi-algebraic, p € $2 and the total
angle at p exceeds 27. Therefore one defines sector angles as follows.
Assume v and § have no common points # p in some neighbourhood of
p. Then v and & define two sectors (v, 6); and (v, §),.

Consider in such a sector, say (v, §); a sequence v = 0, Y1, Y2, + -+ ¥r = &
of simple continuous curves emanating from p, having directions at p and
being labeled in their natural order. We set

r—1
a(y0; s 9) = Y alvi, yit1)

=0

and
0-'(’7’: 6)1 = sup{a('yo, LR ,Yf)}

Moreover, we set

a(p) = a(v, 6); 4 a(7, 6)r (total angle at p)

If any two geodesics emanating from p have common points arbitrarily
close to p we set a(p) = 0. Let v, 6 define sectors as above, and let a(y, §)
the angle between -y and § at p. One has

B) 0(7! 6) = min{a(’% 6)1: a(‘Y? 6)1'7 77}

b) If n € (v, 6); has a direction at p, then a(v, 6); = a(y, n)i+ a(n, 8);

c) If (v, 6); is convex, then a(y,§) = min{a(y, &)1, 7}

From b) it follows that the total angle a(p) is well defined. For more
details see [A-Z, Chap. IV, 4].

Curvature of curves 7.2. Let v : [a,b] — S be a curve with directions
at the end points p = v(a) and ¢ = ¥(b). We also assume that a(p) #
0,a(g) # 0. If v consists piecewise of shortest geodesics, « is called a
polygone. In a suitable small neighbourhood ~ has a left and a right
hand side. In particular, if v is a polygone and p; # p,q a vertex, we
have left and right exterior angles 5;(p;) and 8,(p;) defined by v at p;.
We set

ki(y) =) Bilpi), k(1) =D Belpi)
Pi Pi
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where p; runs over the vertices # p, g of .

Now assume, that v is not necessarily polygonal, and let -; be a-sequence
of polygones with endpoints p, ¢ which converpes to v from the left hand
side (so that +; N« consists of vertices only). Then, locally at p and ¢
we have regions enclosed by +v; and -y and corresponding sectorangles o;
and 7;. The sequence (k;(v;) 4 0;+ 7i) tends to a well defined value [A-Z,
Chap. IV, Th. 2] which is called left curvature ({[A-Z] uses the word
“left rotation”) and denoted by ky(v). If v is polygone, then k;(v) and
ki() in general do not coincide.

Next, let v : I — S be a curve. We say that v has bounded curvature
(in {A-Z] one says more precisely “bounded variation of curvature”) if
the following conditions hold:

.a) At all p € « the total angle afp) # 0.

b) Forallp ey ,v has left and right directions and hence left and right
exterior angles Gi(p) and G.(p).

c¢) There is a bound p such that for all ordered sequences of points
(=]
P1,..-,Pr €Y one has

r+1 T

2 (k) + () + 3= (18i(pa)l + 18-(p0)]) < p-
i=1 i=1

Here =i, ..., ¥+ are the sections of v defined by the p;.

If v has bounded curvature, one has natural regular signed measures dk;
and dk, on v. [A-Z, Chap. IX, Th. 1]

Examples 7.3. Assume that a(p) # 0 for p € .

a) Let v be a geodesic in 8. Then - has bounded curvature. However,
it is not true in general, that dk; = dky = 0. One only has dk; <
0,dk, < 0.

b) Let S be piecewise semi-algebraic, and let ¥ be a (quasi)regular
curve in S. Then v has bounded curvature and the set functions
dk, and dk; coincide with those we defined in 4.4, We will apply
this for the special case that v is a semi-algebraic path.
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Proposition 7.4. Let v : [a,b] — S be a curve of bounded curvature.
Then ~ has directions at the endpoints.

Proof. {A-Z, Chap. IX, Th. 2].

Gauss-Bonnet formula 7.5. There is a canonical regular signed mea-
sure dK on S [A-Z, Chap. V]. Let T C § be a compact oriented sub-
‘manifold of dimension 2 with boundary 85. So 85 consists of finitely
many closed curves v, ..., .. Then

D dK + ) ki) = 2rx(T)
Te i=1

Where the left hand side is the inner side of 7.
Proof. [A-Z, Chap. VI, Th. 5.

8 Piecewise semi-algebraic surfaces revisted

Now let S be a piecewise semi-algebraic surface. Since S is also an
Aleksandrov surface, we have many things doubly defined: sector angles,
curvature on S and left and right curvatures of curves. We have also two
GauB-Bonet formulas. These will help us {o identify these quantities.
Let us provide the notations we had for piecewise semi-algebraic surfaces
with tildes. First we show

Lemma 8.1. Let p € S1,6 a branch of S' at p and v a geodesic ema-
nating from p which intersects § in any neighbourhood of p. Then v is
of class C! at p and &(v,6) = 0.

Proof. The projection of S into the tangent space TS defines a semi-
algebraic C! chard pr : § — R in a neighbourhood of p and the origin
respectively. It is enough to show that the claim holds for pr(y) and
pr(6) at 0. If the claim does not hold we have a linear ray 7, starting at
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0, whicti includes with pr(é) a positive angle 3, so that - also intersects
1 in any neighbourhood of 0.

pr(y)

pr(8)
0

Then in any neighbourhood of 0 there are pieces of pr(y) C pr(89) the
total curvature of which exceeds a certain value. Since the map ¢+ T,$
(in some ambient space) extends continuously to ', the variation of the
curvature on -y converges to that on pr(-y). On the other hand, v being
geodesic has no curvature on S°. Contradiction. Similary it follows, that
the right derivation on « is continuous.

Lemma 8.2. Under the assumptions of Lemma 8.1 assume we have a
second geodesic y; which intersects § in any neighbourhood of p. Then

aly, 1) =a(y,m) =0.

Proof. Clearly a(v,v) = 0. Also a(y,m1}) = 0 if v and ~+; intersect
in any neighbourhood of p. Assume first, that in any neighbourhood of
p there exist ¢ € N 8% ¢; € 1N S and a €2 — arc 7 in §° from
P to g such that we get a triangle A with vertices p, g, ¢ enclosed by
a simple closed curve consisting of a section of +,~; and 5. For such a
triangle the defect tends to zero (for dK and dK } and the angles at ¢, ¢;
coincide in both settings. Hence both Gauf-Bonnet formulas yield, that

also a(y, m) = &y, m).
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In the remaining case, v and v; may have common tangents with 6,
arbitrarily close to p. Then we choose a shortest geodesic 2 connecting
a point “between” - and v, with p.

In the situation of the figure by what we have shown we get a(y,v2) =.
0 = a(y2,m1) = ay, 7). Still it might happen that s remains on the
same side of § than v; but then one can achieve that ~2 has a common
point with «, arbitrarily close to p. It follows a(y, v1) < € and a(m1, 12) <
€.

Lemma B.3. Let p and & be as in the previous Lemmata. Then & has a
direction al p.

Proof. Assume that the claim does not hold. Then there are geodesics
7,71 emanating from p such that a{y,v1) > 0 and § intersects v and 1
in any neighbourhood of p. Contradiction to Lemma 8.2.

Lemma 8.4, Let v be a regular curve in S emanating from p € S with
a{p) # 0 such that, apart from p,~ is contained in 8. Then v has a
direction at p. Moreover, dk = dk on ~.

Proof. First we show that for v in S° we have dk = dk. For this let us
first assume that ~ is geodesic, v C 8. Then dk; < 0 and dk, < 0. Of
course we have dK = dK on 5°. Hence 0 > [ (ki + dky) = [ dK =
f’r dK = 0. The first equality is by [A-Z, Chap. VI, Th. 6]. It follows
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dk; = dk, = 0. Next let ¥ C S° be regular. For small curves v we
may consider a simple triangle in S° with sides v, 6,7 where § and n
are geodesics. We know, by Proposition 5.4, that for the angles we
have a; = a4, = 1,2,3. Comparing the Gauf-Bonnet formulas we get

fdk = [ dk.
Now we allow that the startpoint p of «y is possibly not in $%. However,
by Proposition 7.4, v has a direction at p.

Proposition 8.5. Let p € S%U S! and let v1,v2 be regular curves
emanating from p. Then a(vy1,v2) = a(v1,v2) and correspondingly for
section angles at p. In particular, for the total angle at p one has a(p) =
afp) = 2n.

Proof. We need only to show the first claim. Since a(vi, y2) exists, we
can compute it by considering sequences (v1(tn)), (v2(5n)),tn — 0, 5, —
0 for v; : [0,e[— S, such that d(p, v1(tn)) = d(p,v2(sn)) # 0. In this
situation the claim follows easily from the continuity of the Riemann
metric at p.

Corollary 8.8. (Reflection law) Let p € 81,861,680 the two branchs of
S at p and let v be o geodesic passing through p with branchs vy, vo
emanating from p. Then a(v1,61) = a(ye, 62).

Proof. One has a(v1,61) + a(y2,61) 2 7 and a{v, 62) + a(ve, 62) > =.
[A-Z, Chap. VI, Th. 6]. On the other hand a(yi1,61) + af{v2, 61) +
(71, 62) + alye, 62) = 27,

Corollary B.7. dK = dK.

Proof. This is clear on S°. Next let v be a small arc in $*. In a small
neighbourhood U of v we choose a piecewise regular closed curve n which
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intersects S! at the endpoints of «.

By Proposition 5.4, Lemms 8.4 and Proposition 8.5 we know that dk =
dk on #, hence

/ dK = f dK .
Int () Int(n)

Since dK is regular, for small & the left hand side tends to

de=fdk,-+/dk;=de;+/d?c—,..
Y ¥ o vy 4

The left equality holds by [A-Z, Chap. VI, Th. 3] and the right one by
Theorem 4.6.

Similary, a point p € $2 can be enclosed by a small simple piecewise
regular curve. Then, using the same argument, we get

K(p) = alp) — 2r = K (p)

From this proof we see furthermore:

Corollary 8.8.

a} Let v be @ regular curve in S with a(p) # 0 for all p € v. Then
dk = dk on ~.

b) For p €S with a(p) # 0 and any two regular curves vy, vz em-
anating from p one has og(v1,72) = &, v2) and ar(yi, 12) =
&f(7la 72)‘
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¢) For all p € 5,a(p) = a(p).

Proof. For part b) only the case where p € $2 has not yet been con-
sidered. This can again been done by comparing both Gauf-Bonnet
formulas. Part c) follows from the fact that also K (p) = a(p) — 2r.

Part a) extends to quasiregular curves. We will not enter into this since
quasiregularity is just an auxiliary notation. For the remaining part of
this paper let § C IR™ be a semi-algebraic twofold without boundary.
This is the sitnation we are originally interested in. However, our intrisic
approach shows that many properties of S do not depend on the special
presentation of S. In particular, we get some insight into the behavior
of geodesics.

Proposition 8.9. Let S C R" be semi-algebraic and let v be a curve
with bounded curvature in S. Then at all points p on v the curve v in
IR™ has left and right derivatives respectively and these are left (resp.)
right continuous.

Proof. We may assume that p € S with a(p) # 0 is the initial point of
. Chose a semi-algebraic chart ¢ : U — V ¢ R? where U is a neigh-
bourhood of p,V is an open disc with center 0 and w(p) = 0. We set
V = {ty|t € [0, 1],y € C} where C C R? is the unit circle. Then we can
choose ¢ in such a way that the following conditions hold:
i) For fixed y € C the curve ¢y : [0,1f— U;¢ — ¢~ 1(ty) is of class
cl.

ii) The map [0,1{xC — R"™;(t,y) e, (t) is continuous.
Moreover, for ¢ > 0 the chart can be chosen in such a way, that uni-
formly
| frk(t}dt| < ¢ where I C ¢y,y € C and k(t) is the curvature
on ¢y.

This can be seen by using resulution of singularities for the Zariski-
closure of S. For the last statement see also the argument in Lemma 2.3.
Let }° be the bundle of all curves c,(t) for y € C. Since a(p) > 0, can
only finitely often turn around p. [A-Z, Chap. IX, Th. 2]. Therefore, if
v has no right derivative at p, there are o; and o2 € ¥_ having different
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right derivatives in R"™, such that v runs infinitely often back and forth
between o1 and oo.

It follows, that ~ shares the direction at p with 1 and o2. Contradiction.

Similary, for any € > 0 there exists p > 0 such that in B{p, p) one has:
is contained in a section (o1, 09);, 01,02 € ¥, such that og{o1,02) < €.
Therefore, if g € YN B(p,p) and o € 3 with ¢ € o, then, at p, ay{e,v) <
e. Also, for g close to p, the right derivative of v at g becomes close to
the left derivative. If the latter is the same as the left derivative of o at
g, we are done. Otherwise there is a first point r (possibly p) where ~
and ¢ meet again.

p

By the GauSi-Bonnet formula, the angles o and 3, as in the figure, get
small if ¢ is close to p. This shows, that the right derivatives of v are con-
tinuous. ]
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Corollary 8.10. Let S C R™ be semi-algebraic, p € S with a(p) #£ 0
and let v be a curve, emanating from p, such that ‘S)J’ is geodesic. Then ~
has continuous right derivatives.

Proof. It is known, that geodesics in Aleksandrov surfaces have bounded
curvature. In our situation, one can easily compute it:

[an=[ S a0)

pery0

where F;(p) is the left exterior angle at p. Note that 8i(p) < 0 for all
p € 70 and for almost all of them one has equality.

It -is not hard to show the preceding result directly, if p ¢ §22, but
for p € 52 we were not able to do that. Next we will get rid of the
assumption that a(p) # 0.

Proposition 8.11. For p € S the following conditions are equivalent:
a) The total angle a(p) =0

b) All semi-algebraic arcs emanating from p have the same right deriva-
tive in R™.

Proof. We have a(p) = a(p) = lim,_,ol{o,)p~ ! (see Definition 3.6).
]

Of course, this result is expected, but we were not able to get it by
direct computation of angles in Aleksandrov surfaces. If a(p} = 0, au-
tomatically all curves v emanating from p have directions and also right
derivatives in R™. The angle between two of them is zero. So quite
generally it holds that a;(vyi, v2) = vy, 12) if both angles are defined.

However, there may exist curves v emanating from p such that v is
geodesic but the right derivative is not continuous. Then v turns in-
finitely often around p with respect to each semi-algebraic chart.

Natural stratification 8.12. Let S be semi-algebraic. Then S admits
a natural semi-algebraic stratification which only depends on the inner
metric of § ;: We set 7™ = set of points which admit a Riemannian
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neighbourhood, where the fundamental form is of class C*. Then 50
T%°. Moreover, T \ 5% consists of those points p of S!, where dk; =
—dk, in a neighbourhood of p and possibly certain points p € $% where
necessarily a(p) = 2r. Hence 70\ S is semi-algebraic. From this one
can show that Ty \ T% is a semi-algebraic subset of S* U §2 for i < .
Also R!:= (S'US?)\ T is semi-algebraic. It consists of those points p,
which admit neighbourhoods I/ such that vol(U) is arbitrarily small but
| fy dK]| is bigger than some constant. In R! in turn we have a finite
set of very singular points: Ramification points and points p, for which
a{p) # 2x. To the latter belong the isolated points of R!.
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