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Around real Enriques surfaces.
Alexander DEGTYAREYV and Viatcheslav KHARLAMOV

Abstract

We present a brief overview of the classification of real Enriques
surfaces completed recently and make an attempt to systemize
the known classification results for other special types of surfaces.
¥mphasis is also given to the particular tools used and to the
general phenomena discovered; in particular, we prove two new
congruence type prohibitions on the Euler characteristic of the
real part of a real algebraic surface.

NBTH. fl sopona yGna.
OIB. 3auem, zauem? Komy ke mano?

MATE. On xapkan Hago MHOM.
Bemumup Xnebuuxon. Mupcrdnya.l

There was a young fellow from Clyde,

Who was once at a funeral spied,
When asked who was dead,”
He smilingly said,

“] don’t know. I just came for the ride.”
Limerick.

1 Questions and their history

From the naive point of view, a nonsingular real algebraic variety is
just a set given in a real projective space by a nonsingular system of
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polynomial equations with real coefficients. However, at a certain stage
it becomes natural, and even necessary, to enhance and extend this
notion. First, as polynomial equations also make sense over €, one
can consider the complexification. The resulting complex variety, given
by the same equations in the corresponding complex projective space,
is invariant under the complex conjugation involution, and the original
real variety is its fixed point set. Then one can take the complexification
out of the ambient space, considering it as an abstract complex analytic
variety (in general, it may be singular), and thus arrive to the notion of
complex analytic variety equipped with a real structure; the latter, by
definition, is just an antihoclomorphic involution, and it is this involution
(and, in particular, its fixed point set) that becomes subject of the study.

In this paper we confine ourselves to dimension two and consider
nonsingular compact (without boundary) complez analytic surfaces with
real structure.

Note that instead of complex analytic surfaces one could as well con-
sider algebraic surfaces over € endowed with a Galois involution. In both
the cases a real structure on a surface X is an involutive isomorphism
c: X — X. However, we prefer to deal with complex analytic manifolds
as, on one hand, the analytic category is wider, and on the other hand,
the problems we are interested in and the tools we are using .are topo-
logical. Above all, in all the cases considered below the topology of real
structures does not depend on the category chosen: all the prohibitions
are of purely topological nature (and thus hold for analytic surfaces),
while all the examples used to prove the completeness of these prohibi-
tions are algebraic (and, moreover, can often be chosen even within a
smaller class, like, say, algebraic surfaces of a given degree).

Apart of the main question, to study the real structure (involution)
up to homeomorphism or diffeomorphism, there are several other, more
visual, levels of investigation. In particular, the so-called purely real
approach concerns only the topology of the real point set of the variety
(i.e., the fixed point set of the real structure). The level of study being
fixed, the question still can be posed in various ways. The first desire is
to classify the real structures (or fixed point sets, or whatever is chosen
for the subject). Then one has to confine oneself to a certain class of
complex surfaces, say, one or several related deformation families.
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Chronologically, the first family considered from this point of view
were cubic surfaces in IRp®, which were subjected to different classifi-
cations. Probably, the first classification taking into account the real
structure was given by Schlafli [S1], who in 1858 introduced his famous
5 kinds of generic (i.e., nonsingular) cubic surfaces. It is rather difficult
to believe that he had no idea about the shape of the real part of these
surfaces; however, it was not until 1872 (see {52}, [S3]) that we could
find in his papers any related remarks. Probably, in spite of Riemann’s
input, the topological setting in that time was still neither current nor
respected. '

Apparently, it was Klein who first explicitly posed and solved all
the basic questions concerning topology of real cubic surfaces. In 1873
(see [K1]) he showed that Schlafli’s classification coincides with the topo-
logical classification of the real parts of cubic surfaces. Furthermore, he
showed that the moduli space of cubic surfaces with a given topological
type of the real part is connected, which in fact gives the complete topo-
logical classification of Galois involutions on cubic surfaces: two such
involutions are equivalent if and only if their fixed point sets (ie., the
real parts of the surfaces)} are homeomorphic.

Cubic surfaces occupy a special position among other surfaces: from
the complex point of view they form omne of the infinitely many. com-
ponents of the moduli space (or, in other words, belong to a particular
deformation type) of rational surfaces. First results on the classification
of general real rational surfaces were obtained by Enriques [Enr] in 1897,
The classification was completed in 1912 by Comessatti (see [Col], [Co2]),
who extended Klein's results to arbitrary real rational surfaces and de-
scribed the topology of the real parts for each (complex) deformation
type (see Theorem 2.1 in Section 2).% In the late sixties Manin [M1], [M2]
and Iskowskikh [Isk1}-[Isk3] put these results into the modern frame-
work, completed some statements, gave new proofs, and generalized the
results to 2-extensions of fields other than IR.

It is worth mentioning that it is due to his solution of this classifica-
tion problem that Comessatti found a nontrivial bound for the number
of components of a real rational surface, which he later generalized to his

2The description of the connected components of the moduli spaces is also con-
tained, but, as far as we know, not explicitly stated in Comessatti’s works [Colj~[Co3|:
with one exception, within one complex deformation type the moduli space of minimal
real rational surfaces with a given topological type of the real part is connected.
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famous estimate on the Euler characteristic: in the modern terminology
this result states that the Euler characteristic of the real part of a real
algebraic surface is bounded by the Hodge number Als! of its complex
part.

Another natural direction of developing the subject is the study of
real quartics in IRp3, which was started by Rohn and Hilbert. (Hilbert
even included the corresponding questions in his famous list of prob-
lems.) After a period of relative oblivion, in the late 1960’s they were
made a subject of study by Utkin, who followed the approach of Rohn
and Hilbert (which relates quartic surfaces to plane sextics) and used
the classification of sextics just obtained by Gudkov. The topological
classification of the real parts of real quartics was completed in 1976
by Kharlamov [Kh]. Once again the solution of a classification. problem
stipulated the discovery of new general phenomena: a series of con-
gruences on the Euler characteristic of the real part of a real surface
{Gudkov, Arnold, and Rokhlin congruences and their generalizations).

Quartic surfaces also belong to a special class: they are all so-called
K 3-surfaces. Complex analytic K 3-surfaces form a connected moduli
space, where quartics constitute a connected subspace. From the differ-
ential point of view all the complex K 3-surfaces are diffeomorphic to one
another. In fact, the topological classification of the real parts of general
K 3-surfaces coincides with and follows from the topological classifica-
tion of the real parts of real quartics; moreover, the final answer is the
same for all K 3-surfaces, algebraic K 3-surfaces, quartic surfaces in P3,
and hyperelliptic K 3-surfaces, i.e., double plains branched over curves
of degree 6 (and, in fact, for K 3-surfaces embedded to PV with a given
degree). Note that unlike the two other classes considered in this paper
(i.e., rational and Enriques surfaces) a K 3-surface may be nonalgebraic,
although all K 3-surfaces are Kahler.

More advanced classification of real K 3-surfaces was done in 1979 by
Nikulin [N1], who found and rather explicitly described the connected
components of the moduli space. According to Nikulin, two real K 3-
surfaces belong to one component if and only if their Galois involutions
are topologically equivalent, and the action of the Galois involution is
determined up to diffeomorphism by some simple numerical topological
invariants. :
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Following the Enriques classification of complex algebraic surfaces,
there remains only five special classes of surfaces: abelian surfaces, sur-
faces with a pencil of rational curves, hyperelliptic surfaces, surfaces
with a pencil of elliptic curves of canonical (Kodaira) dimension 1, and
Enriques surfaces.

Abelian surfaces were classified by Comessatti (see [Co3] for the pre-
cise statements and further references). Some results on the topology
of hyperelliptic surfaces and real surfaces with a real pencil of rational
curves and the classification of singular fibres of real pencils of elliptic
curves were obtained by Silhol [Si].

The topological classification of the real parts of real Enriques sur-
faces, as well as of some canonical structures that they inherit from the
complexification, was started by V. Nikulin [N2] and recently completed
by the authors [DK1], [DK2]. Similar to what happened during the in-
vestigation of other special classes of surfaces, as a by-product of this
study we discovered some new topological properties of the Galois in-
volution. The purpose' of this paper is to present these results, with
an emphasis on the relatively new tools applied and the veritable infor-
mation which they give about surfaces more general than the Enriques
surfaces.

The paper is organized as follows: In §2 we cite some results which
answer some of the questions posed above. In §3 we present a specific
tool which we used to classify real Enriques surfaces and state some of its
properties (see [DK2]). This tool, so called Kalinin’s spectral sequence,
which we know mainly due to O. Viro and L. Kalinin, unfortunately
is not widely known to the specialists in real algebraic geometry and,
in view of its general nature, rather belongs to topology of periodic
transformation groups. In §4 we prove two new results on topology
of real algebraic surfaces, which, on one hand, were originated by the
classification of real Enriques surfaces and, on the other hand, illustrate
applications of Kalinin’s spectral sequence.

Acknowledgements We would like to thank Mathematisches
Forschungsinsitut Oberwolfach: an essential part of this project was
elaborated during our RiP stay in this institute.
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2 Some answers

Below, when describing the topological type of the real part of a surface,
we denote by S the orientable surface of genus g and by Vg = #q]Rpg,
the nonorientable surface of genus g. We use any of § = Sg = Vj for the
2-sphere.

We start with reproducing Comessatti’s result on the classification
of minimal real ratidnal surfaces.

2.1. Theorem (Comessatti [Col-Co3]). Each minimal real rational
surface is one of the following:

(1) real projective plane P2: RX = V;

(2) real quadric PYx Pl: there are four types: S, Sy, and two nonequiv-
alent empty surfaces;

(3) ruled rationdl surfaces L, m > 2:
m even: RX =@ or S, m odd: IRX = Vy;

(4) real conic bundles over P! whose reducible fibers are all real and
consist of pairs of complez conjugated exceptional curves: IRX =
mS, where 2m > 4 is the number of reducible fibers;

(5) Del Pezzo surfaces of degreed = K2 =1 or 2:
d=1: RX = v; 148, d=2: IRX =3S or48S.

Remark. The two nonisotopic real structures on X = P! x P! with
IRX = @ is the exception mentioned in the introduction.

Remark. The Del Pezzo surface of degree 2 with IRX = 38 can also
be represented as a conic bundle over P! with six reducible fibers.
In order to state other results, we need the following notion:

2.2. Definition. A Morse simplification is a Morse surgery which de-
creases the total Betti number, i.e., either removes a spherical component
(S — 0) or contracts a handle (Sg1 ~ Sy or Vyio — V,). A particular
complez deformation family being fized, o topological type (i.e., a class
of surfaces with homeomorphic real parts) is called extremal if it cannot
be obtained. from another topological type by a Morse simplification.
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Remark. Note that a Morse simplification may not correspond to a
Morse simplification in a continuous family of complex surfaces. As a
result, the notions of extremal topological type and extremal (in the
obvious sense) surface may be different. E.g., according to Viro and
Kharlamov [Vi], any surface whose real part is mod 2 homologous to
zero in the complexification is extremal, though it may have nonextremal
topological type. :

~ In order to illustrate this notion we list all (not only minimal) topo-
logical types of Del Pezzo surfaces of degree 1 and 2. (Certainly, this
result follows immediately from Comessatti's classification).

2.3. Theorem. The topological types of the real parts of Del Pezzo
surfaces of degree d = 1 and 2 are those (and only those) which may be
obtained by a series of Morse simplifications from the following extremal
types:

d=1: Wy, VaUS, Vol Vi, and V7 L 45,
d=2: Ve, VoU S, V1 U V1,45, and S;.

Finally, we list the topological types of the real parts of real K 3- and
Enriques surfaces.

2.4. Theorem (Kharlamov (Kh|). The topological types of the real
parts of K3-surfaces are those and only those which may be obtained by
a series of Morse simplifications from the following eziremal types:

(1) M -surfaces: SjoU S, SgU5S, S2U9S;
(2) (M —2)-surfaces: S7U 28, S3L65;

(3) Pair of tori: 25;.

2.5. Theorem (see [DK1}). There are 87 topological types of real En-
rigues surfaces. Each of them can be obtained by a sequence of Morse
simplifications from one of the 22 extremal types listed below. Con-
versely, with the exception of the two types 65 and S; U 5S, any topo-
logical type obtained in this way is realized by a real Enriques surface.
The 22 extremal lypes are: '
(1) M -surfaces:
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(8) x(Em) =8 (b} x(Em)= -8

4V U 28, Vi1 UV,
Vo U 2V; U 3S, Vio bt Vg,
Va2V U4S, Vg LI V3,
2V5 1148, Vg U Va,
Vi LI5S, Ve U Vi,
Vol Sy LUA4S, 2V,

Vio U Sy;

(2) (M - 2)-surfaces with x(ER) = 0:

Va2V, VsliViu s,
VaUVauly, VaUVaUSs,
Ve LI2S, 2Va U S,

VaUSus, 2Veul Sy

(3) Pair of tori: 28;.

Remark. Nikulin's classification of real K 3-surfaces contains the fol-
lowing result: a real K3-surface X is determined up to equivariant dif-
feomorphism by the topological type of its real part IRX and its type
(i.e., whether the fundamental class [[IRX] is or is not homologous to
zero in Ho(CX; Z/2)).

Since the fundamental group of a complex Enriques sutface CE
is Z/2, its real part inherits an interesting additional structure: the
set of its connected components naturally splits into two halves, IRE =
REMN URE®, Each half is covered by the real part of one of the
two real structures on the covering K3-surface. The study of this de-
composition was started by V. Nikulin [N2]| as part of his attempt to
classify real Enriques surfaces. The complete classification of triads
(RE; REM, IRE®@) up to homeomorphism is given in [DK2);

2.6. Theorem. Each half of a real Enrigues surface may be either Sy,
or 2Vy, or aVyUaVi LiIbS, g > 1, a 2 0, 0.2 0, a = 0,1. With the
exception of the types kS and Vo U kS any decomposition into halves
salisfying the above condition is realizable. The exceptional topological
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types admit only the distributions listed in Figure 1.

y——
la a e bI:I a

{aS}U{bS]}, {VallaS}U{bS}  {VeUaSIU{bS}  {VhLiaS}Li{bS},
{VauaS}u{bs} {VioUaS}u{b5}

Figure 1. Exceptional topological types

Remark {added in proof). At present we have completed the classifica-
tion of real Enriques surfaces up to deformation equivalence (see [DK3]
for a preliminary report; two real Enriques surfaces are called deforma-
tion equivalent if they can be included into a one-parameter family of
real Enriques surfaces). The principal result states that the deformation
type of a real Enriques surface E is determined by the topological type
of its real structure. In addition to such classical invariants as the tope-
logical type of the real part IRE, the above decomposition into halves,
and the type (i.e., whether the fundamental classes [IRE], [RE(Y), and
[[RE(?) are homologous to zero, the Stiefel-Whitney class we(CE), or
none of these in Ho(CE;Z/2) or in the homology of certain auxiliary
manifolds), a new invariant, so called Pontriagin-Viro form, is neces-
sary to distinguish between certain M-surfaces. As a by-product, the
solution of this problem brings together such classical objects as cubic
surfaces in P3, intersections of quadrics in P4, quartic curves in P2, and
order 6 curves in a quadric cone.
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3 Tools

In this section we introduce our primary tool—so called Kalinin’s spec-
tral sequence, which was originally constructed by 1. Kalinin [Ka] as a
stabilized version of the Borel-Serre spectral sequence for equivariant
cohomology. This sequence starts at the homology H,.(Y) of a topo-
logical space Y with involution ¢ and converges to the total homology
H,(Fixec) of the fixed point set of ¢. (Unless stated explicitly, all the
homology and cohomology groups have coefficients Z/2.) The resulting
filtration 7* on H,(Fixe) and the isomorphisms bv, between the limit
term of the spectral sequence and Grz H,(Fixe¢) were discovered by
0. Viro geometrically before Kalinin’s work and were primarily related
to the Smith exact sequence. As it is shown in [DK2|, Kalinin's spectral
sequence can be derived from the Smith exact sequence as well.

Below we give a geometrical description of Kalinin's spectral se-
quence and Viro homomorphisms bv, and state their main properties.
Proofs of these results and/or further references can be found in [DK2).
Since homology groups are more transparent and easier to deal with,
we decided to use the homology language (though we cannot certainly
help mentioning cohomology when speaking about multiplications and
Poincaré duality). As our approach is geometrical, we have to appeal to
‘the notion of chain. Depending on the nature of ¥, one may work with
singular, simplicial, smooth, or any other kind of chains considered in
algebraic topology. To assure convergence of the spectral sequence, ¥V
must satisfy certain conditions, which, strictly speaking, depend on the
homology theory chosen (e.g., sheaf theories and locally compact finite
dimensional spaces). However, in this paper all the results are applied
to the best possible topological spaces—smooth manifolds, so they do
not depend on this choice.

Thus, let us fix a good (see above) topological space Y with involu-
tion ¢ and denote by Fix c the fixed point set of ¢. Consider the partial
homomorphisms bv, : H,(Fixc}--»> H.(Y) and the Z-graded spectral
sequence ("H ,,"d,) defined as follows:

(1) bvg is zero on H>1(Fixc) and its restriction to Ho(Fix c) coincides
with the inclusion homomeorphism;

(2) bvy is defined on a (nonhomogeneous) element z € H,(Fixc) rep-
resented by a cycle 3" z; (where z; is the i-dimensional component
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of z) if and only if there exist some chains y; in ¥, 1 <7 < p, so
that 8y; = zq and dyiy1 = xi + (1 + e, )yi for ¢ > 1. In this case
bvy, z is represented by the class of zp 4+ (1 + ¢, }yp in Hp(Y);

(3) H! = H(Y) and- 1d, = 1 + e4;

(4) Tdp, considered as a partial homomorﬁhism Hp(Y)--> Hpira(Y),
is defined on a cycle zp in Y if and only if there are some chains
Yp = Zp, Yp+1,-- -, Ypr—1 50 that Byiy1 = (1 + ci)yi. In this case
"dpzp = (1 + cx)yprr-1.

3.1. Theorem. The homomorphisms bv, and speciral sequence
("H,,"d,) are naturel with respect to equivariant maps. Furthermore,
"H, and "d, do form a spectrel sequence (i.e., "dy are well defined
homomorphisms "Hyp — "Hypir1 and "1 H, = Ker'dp /Im"dp_r11),
and this sequence converges to H.(Fixc) via bv,, i.e., bvp induces an
(honest) isomorphism FP | FPT1 o ®H  where 7P = Domainbv, =
Kerbvp_;.

There is an obvious cohomology version "H* = H*(Fixc) of the
spectral sequence, which is dual to the homology one. The cup- and
cap-products in Y naturally extend to, respectively, a Z/2-algebra struc-
ture in "H* and "H*-module structure in "H,. If Y is a connected
N-manifold and Fixc # @, then the fundamental class [Y] survives
to ®Hy and the multiplication N[Y] : "H? — "Hy_, is an isomor-
phism (Poincaré duality), which, in the usual way, defines homology
intersection pairing 0 : "Hp,® "Hq — "Hpiq-nN. The relation between
this pairing and the ordinary intersection pairing in Fix c is given by the
following statement:

3.2. Theorem. Let Y be a smooth closed N -dimensional manifold
with a smooth involution ¢ : Y — Y, and let F = Fixc be the fized
point set of c. Denote by w(v) the total Stiefel-Whitney class of the
normal bundle v of F in Y. Then for a € FP and b € F9 one has
w(y)N(aod) € FPHN and

bvya o bvgb = bvppg.nlw(r) N (e o b)].

The (homology) Steenrod operations Sq, : H.(Y:) — H,_4(Y) also
extend to "H .. In order to describe their relation to the ordinary Steen-
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rod operations in H.(Fixc), let us introduce the weighted Steenrod op-
P—p—t+j

i Sq, x, where z € Hp(Y') and
-7

erations Sq,T = } p<jcy

P > p+2tis a power of 2. (The binomial coefficients do not depend
on P, see, e.g., Lemma L2.6 in [SE].) Then one has:

3.3. Theorem. Ifz € 7P and t > 0, then Sq,z € FP~! and
Sqbvpxr = bvpy g?hm.

We conclude this section with the description of Viro homomor-
phisms (in dimensions up to 2) in the case when Y is a real algebraic
surface and ¢ is the real structure. Let Cy,Cs,...,Ck be the compo-
pents of RY. Denote by (C;) and [C;] their classes in Ho(IRY') and
fundamental classes in H2(IRY) respectively. Then the values bvg{(C;),
bvia (with a € H1(IRY)), and bvy[Cy] are always well defined and
coincide, essentially, with the inclusion homomeorphisms. The value
bv1{C; — C;) is also well defined and is represented by the equivari-
ant circle (1 4 ¢,)y1, where y; is an arc in €Y connecting a point in C;
with a point in C;. If, under some appropriate choice of ¥, this circle
is homologous to zero, i.e., (1 + ¢,)y1 = dy2; then bvi{(C; —~ C;) = 0
and (1 + c.)y2 represents bva(C; — Cj). Similarly, if bvia = 0, ie.,
a = (1 + ¢,)in for some cycle y; in €Y, then there exists a chain yo
in CY such that 8yo = o + (1 + c.)y1, and (1 + ¢.)y2 represents bvs a.
Finally, if bv; a = bv;{C; — C;), then bva(a + (C; — C;)) is defined and
is represented by (1 + c,)y2, where 8y2 = o + (1 + ¢4)y; and y; is an
appropriately chosen arc connecting two peints in C; and Cj. _

Elements of the form bvy[C;], bve{C; ~ C;), bva e, and bva(a+ (C; —
C;)) span ®Ho(CY) (i.e., “H2(CY) consists of their linear combina-
tions }_ bvozx;; with an abuse of language we let > bvoz; = bva ) z;
provided that the latter is well defined, even if the summands are not
well defined). According to Theorem 3.2, Kalinin’s intersection form
on ®Ho(CY) is the one given by Table 1. In the table, the intersec-
tion a o B is regarded as an element of Ho(YR), and (a o 8){IRY] and
(a0 B)[C;] are, respectively, the total intersection number and its por-
tion falling into C;. &; stands for the Kronecker symbol: 6; = 1 and
6i7 = 0 if i # j. The intersection form extends linearly to the classes
bva(e + bve{C; — Cj)), as if bva a and bve(C; — C;) were well defined.
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bvo{C; — Cy) bvs a bva[C]
bvo{Cy — C1) 0 0 bik + by
bve 8 . 0 (a0 B)[RY] | (B0 B}[Ci]
bva[Cyl bik + 8k (a0 a)[Cy] | 6[ik]x(Ci)
Table 1

The Bockstein homomorphism Ho(CY)} — H1{CY) descends to the
term ®H and coincides with Sq; : ®Ho(CY} — ©H (CY); it is given
by Theorem 3.3: Sq, bvo[C;] == bvy w1(C;) and Sqp bva{a + {(Ci — C;)) =
bv; o. (Here and below w;(X) stands for the homology class dual to the
i-th Stiefel-Whitney class of a manifold X.)

4 Other results

The classification results cited in Section 2 can be considered as an ad-
vanced experimental part of the study of the topology of real algebraic
surfaces. As any experiment, it serves not only to confirm the applicabil-
ity of a certain general theory but also to help to discover new phenom-
ena. Several examples have already been mentioned in Section 1: the
classification of real rational surfaces (Theorem 2.1) led Comessatti to his
inequality on the Euler characteristic, and the Arnold-Gudkov-Rokhlin
congruence [Ro] was first observed for real K 3-surfaces (Statement (1)
of Theorem 2.4).3 The classification of real Enriques surfaces also gives
considerable material for observations. Even a glance at the list of ex-
tremal types given by Theorem 2.5 and at the complete list generated
from it reveals several regularities. One can notice, for example, that
all the M-surfaces are nonorientable and that the orientable (M — 2)-
surfaces (appearing in the derived list) satisfy the same congruences as
M-surfaces. In [DK2] we established (and made use of) several general
results of this kind. (References to other related results known in the
literature are also found in [DK2].) Below we suggest a slightly different

3More precisely, the congruence was conjectured by D. Gudkov based on his
classification of plane sextics, which are closely related to K 3-surfaces. Note that
the experimental material known to Ragsdale and Comessatti could already reveal
some congruences, but they both did not notice them and put attention only to the
inequalities.



106 Alexander Degtyarev and Viatcheslav Kharlamov

interpretation and generalization of this phenomenon. We hope that for
a good observer the classification of real Enriques surfaces may provide
materiel for other discoveries.

4.1. Theorem. Let X be a compact (without boundary) complez ano-
lytic surface with real structure, and let wo(CX) = 0. Then:

(1) if H1(CX) = 0, then RX is orientable;

(2) if Hi(CX;Q) = 0 and RX is nonorientable, then X is an (M —d)-
surface, d > 2, end

(a) ifd =2, then x(IRX) = o(CX) (mod 16);

(b) ifd =3, then x(RX) = o (CX)+2 (mod 16);

(¢) ifd=4 and x(RX) = o(CX)+8 (mod 16), then the image
of [RX] belongs to Tors Ho(CX; Z) @ Z/2 C Ho(CX).

4.2. Theorem. Let X be a compact (without boundary} complez ana-
ytic surface with real structure, and let wo(CX) # 0. Then:

(1) if X is an M -surface, then IRX is nonorientable;

(2) if, besides, wo(CX) € Tors Ho(CX;Z) ® Z/2 end RX is ori-
entable, then X is an (M — d)-surface, d 2 2, and

(a) ifd =2, then x(IRX) = o(CX) (mod 16);
(b) ifd =3, then x(RX) =o(CX) %2 (mod 16);

(c) ifd = 4 and x(IRX) = o(CX)+8 (mod 16), then the image
of [IRX] belongs to Tors Hy(CX; Z) ® Z/2 C H2(CX).

The proof of the congruence part (Statement (2)) of Theorems 4.1
and 4.2 is similar to that of the well known Arnold-Gudkov-Rokhlin
type congruences. Let Discr H* be the discriminant form of the lattice
H7 of the c,-invariant elements of Ha(CX;Z)/ Tors. Then in both
the theorems it suffices to prove that, under the hypotheses, in (a), (b},
and (c) one has dim Discr H+ = 0, 1, and < 2 respectively. This, in turn,
would follow from the fact that either dim ®©H;{(€X) < dim H1(CX) or
portion of Tors H2(CX;Z) ® Z/2 C Ho(CX) dies in ®Ho(CX). (We
address an interested reader to [DK2, §6].) It is this assertion that is
actually proved below.



Around real Enriques surfaces 107

Proof of Theorem 4.1. (1) If there is an element « € H;(IRX) with
a? = 1, then (bvgea)? = 1. (bvga is well defined since H1(CX) = 0.)
This contradicts to the assumption that the intersection form in Ho(CX)
and, hence, in ®H(CX) is even.

(2) By assumption, there is an element a € H;(IRX) with o? = 1.
Similar to (1) one concludes that for any such element bv; a # bv, C
for any C € Ho(IRX) with bvgC = 0. (In particular, bvia # 0.)
Furthermore, any nonorientable component C; of IRX is of even genus,
ie., wf(C,-) = 0. Now it is easy to see that bv; o does not belong to
the image of Sq; o bve. On the other hand, Sq; : Ho(CX)/H:(CX; Z)®
Z/2 — Torsg H1(CY;Z) = H1(CY) is an isomorphism; hence, Im bvs
does not cover Ho(CX)/Ho(CX; Z)® Z/2.

Proof of Theorem 4.2. (1) If IRX is orientable, there is no element o €
H.(RX) with (bv, )2 = 1; hence, wo(CX) dies in ©H2(CX) and the
surface is not maximal.

(2) According to (1), portion of Tors Ho(CX; Z)QZ/2 (at least wa(CX))
dies in ®Hy(CX).
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