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Complete decomposability of quotients by
complex conjugation for real complete
intersection surfaces.

S. M. FINASHIN

Abstract

Suppose X is a non-singular complex surface defined over IR,
which is a complete intersection constructed by the method of a
small perturbation, and Y = X/ conj is its quotient by the complex
conjugation conj X — X. Assume that conj has a fixed point. It is
proved that Y is diffeomorphic to a connected sum #RGP2#ME-F2
if wa(Y) #0, or #,(52x5?) if wa(Y) =0

1 Introduction

We mean by a real variety (real curve, real surface etc.) a pair (X, conj),
where X is a complex variety (reduced and irreducible) and conj X — X
an anti-helomorphic involution called the real structure or the complex
conjugation. Given an algebraic variety over IR we consider the set of
its complex points with the natural complex conjugation (the Galois
transformation) as the corresponding real variety. The fixed point set
of conj will be denoted by X and called the real part of X. We put
Y = X/conj and identify in the notation Xg with its image q(Xmr)
under the quotient map ¢ X — Y.

If (X, conj) is a nonsingular real curve then the topological type of Y
depends only on the genus of X, the number of components
in Xgm and orientability of ¥; the latter depends on vanishing of the
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fundamental class [XR] € H1(X;Z/2). On the other hand, any con-
nected compact surface with nonempty boundary can appear as Y for
some (X, conj).

The subject of the author’s interest is the topology of Y in the case
of nonsingular real surfaces. In this case Y is a closed 4-manifold with
the map ¢ being a 2-fold covering branched along Xgi. Moreover, Y in-
herits from X an orientation and a smooth structure making g smooth
and orientation preserving (cf. [2]). The natural question is to describe
the diffeomorphism types of 4-manifolds which can arise as the quotients
Y for real surfaces X. Another interesting question is if the topological
types of X and Xp together with some information about the funda-
mental class [XR] € Ho(X ; Z/2) determine the topology of ¥ like in the
case of curves.

In many examples when Y is simply connected (it is simply connected
for example if X is simply connected and X # @) one can prove that
it splits into a connected sum of copies of CP2, TP° or 82 x 52. Let us
call such decomposability property CDQ-property (complete decompos-
ability for quotients) and call a real surface CDQ-surface if it is satisfied.
Note that CDQ-surfaces X must have X # @ and that surfaces X with
Y 2 5% are CDQ, because the empty set of copies in a connected sum
is allowed. The latter diffeomorphism holds for X = CP?, which follows
easily from Cerf’s theorem {different versions of the proof can be found
in [2, 7, 12]).

For quadric and cubic real surfaces X, with Xg # 8, CDQ-property
was set up by M. Letizia [9]. For real K 3 surfaces (X, conj) with X # 0,
and therefore for quartic real surfaces, CDQ-property was noticed by S.
Donaldson [3]. Further, S. Akbulut [1] analyzed the diffeomorphism
type of Y for double planes branched along real curves of arbitrary
even multi-degree, 2n, whose real scheme consists of n ovals in IRP?
ordered by inclusion; this gave examples of CDQ surfaces of general
type. The method of Akbulut was further developed by the author [4],
which brought new families of real CDQ double planes (in particular it
gave a new proof that K3 surfaces are CDQ). In (5] CDQ property is
set up for all real rational and Enriques surfaces with simply connected
Y. However, not all real surfaces with simply connected quotient ¥ are
CDQ. In [6] it was shown that Y can have non vanishing signature when
it is Spin and simply connected; similar examples in symplectic category
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were also constructed by R. Gompf (personal communication).

In the present paper we show that CDQ-surfaces can be found among
complete intersections in €P™2 of arbitrary mmlti-degrees (d1,...,dn).
Note that existence of such examples was not known already for real
surfaces of degree 5. More precisely, it appears that the construction of
real complete intersections by the method of small perturbation produces
CDQ-surfaces. This gives some arguments for the following relatively
moderate conjecture: any deformation type of simply connected complex
algebraic surfaces contains a CDQ-surface.

The proof is inspired by [11] and is based on the Deformation theo-
rem proved there, which we apply in equivariant version (since the ar-
guments in the proof of [11, Theorem 2.4, Corollary 2.6] are applicable
without essential changes in equivariant setting, I have only indicated in
the present paper the changes to be done). Then we use Laudenbach-
Poenaru theorem {8] to set up CDQ-property, which may remind the
usage of Cerf’s theorem in the proof of CP?/ conj = §4.

2 Main results

Let (V,conj) be a real variety. A holomorphic line bundle p L — V will
be called a real bundle if it is supplied with an anti-linear involution
conj; L — L, which commutes with conj and p:

=)
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A section f V — L is called real if conjpof = f o conj. The zero
divisor of a real section f is a real subvariety of V' (unless it is non-
reduced or reducible, which is ruled out by the further conditions).

- Assume now that (V,conj} is a real nonsingular 3—fold, L; — V,
i = 1,2, are real linear bundles and f; V — L; are real sections whose
zero divisors X ((,i) are nonsingular and intersect each other transversally.
Assume further that f V — L is a real section of L = L1 ® L2 with the
zero divisor X intersecting transversally surfaces X ((,’), i= 1,2, and curve

A= X((Jl) n X(()Q). Consider the section fe : V — Lp, fe = f1® fo+ef,
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e € IR, and denote by X, its zero divisor, which is nonsingular for a
sufficiently small € # 0, as it can be easily seen.

Theorem 1. Suppose Xc(,l) and ng) are CDQ-surfaces, A is connected,
AR # 0 and € > 0. Then X. is CDQ-surface provided that £ is small
enough.

We discuss in the rest of this section some of the corollaries of this
theorem and prove it in §3.

Let (V, conj) be as above. A real linear bundle L will be called CDQ-

bundle if it is very ample and admits a real section with a nonsingular
CDQ zero divisor.

Lemma 2. If L is a CDQ-bundle then its multiples L9, d > 1, are
CDQ@-bundles as well.

Proof. Let Xél) be a CDQ-divisor of L. We prove by induction on

d that there exists a CDQ-divisor, Xéd), of L®¢ which intersects X(gl)
transversally along a curve having nonempty real part. This claim is

trivial for d = 1, since we can perturb X((Jl) so that the result will
intersect X((]l) transversally and contain a given real point of it.

Suppose that X((,d) satisfies the induction assumption. By Lefschetz

Theorem A is connected. A generic real section of L®(@+1) has zero
divisor X transversal to X(()l), X {gd) and to Xél) nX t()d), hence, we can
apply Theorem 1 and get a CDQ-divisor X, by a perturbation of X 61) U
X (gd) via X. We can also choose X containing a real point of X 31)’ since
L®E+Y) 5 very ample. Then, for a sufficiently small € > 0, X, intersects

X 61) transversally and XN X(()l) =X0N Xél) has nonempty real part.

Theorem 3. For arbitrary integers n,dy,...,dn 2> 1 there exists a
CDQ-surface X C CP™? which is a complete intersection of multi-
degree (dy,...,dpn).

Proof is carried by induction on n. The diffeomorphism CP?/ conj
S* was mentioned in the introduction, therefore, O¢ps(1) is a CDQ-
bundle. By Lemma 2, Ogps(d)}, for any d > 1, is a CDQ-bundle as well.
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Assume now that we are given a complete intersection of real hypersur-
faces, X = H1N...NHy, C CP™2, of multi-degree (dy, . . .,dy) and that
X is CDQ-surface. Choose hypersurfaces H] C CP™3, i = 1,...,n,
so that H; = H)! N CP™?2, and the intersection V = H{N...N H,,
is transversal. Then the bundle L — V induced from Ogpn+a(l) is a
CDQ-bundle, since X is its zero divisor. By Lemma 2, L® i also CDQ-
bundle, hence, there exists a CDQ complete intersection of multi-degree
(d1,...,dn, d).

Remark. The method used for Theorem 3 can be applied similarly if
instead of CP™*? we consider for instance products of projective spaces
or the weighted projective space P(1,1,1,n), n > 1 (in the later case we
apply Lemma 2 in a version with V having an isolated singularity and

note that generic hypersurfaces of degree n in P(1,1,1,n) are isomorphic
to CP3).

3 Proof of Theorem 1

Denote by N (9) & conj-invariant compact tubular neighborhood of 4 in
X((f.) and put M@ = N®/conj, B = A/ conj, y® = Xg‘)/ conj and
Ye = X/ conj. It can be easily seen that M () is a regular neighborhood
of B in Y (. Let 2k denote the number of imaginary points in A N X.

Proposition 4. There exists a diffeomorphism tp(?M(l) — oM@ such
that ¥, 2 (CKY © — M) U, YD — M@)) #x TP,
Let us derive first Theorem 1 from the above proposition.

Proof of Theorem 1. Since A is connected and has nonempty real
part, B is a compact connected surface with a nonempty boundary,
hence, M) are handlebodies with one 0-handle and several 1-handles
embedded into Y®. It is well known that if we glue a pair of simply
connected 4-manifolds, Y (9, i = 1,2, along the boundary of such handle-
bodies the result is diffeomorphic to YW#Y@4g Z, where g = bi(B)
and Z = $% x §% or (EPQ#W2 (it is a corollary of {8], cf. [10]). This
implies complete decomposability of ¥ if Y @ are completely decompos-
able. [
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Proof of Proposition 4. Follows closely the scheme of [11]: by blowing
up ¥ — V we lift the pencil X; = Xg+ £X to get a real fibered surface
V- CP!; then we apply the deformation theorem in the equivariant
version. More precisely, assume that ¢ € IR and € > 0 is sufficiently
small. Then X. intersects X((]i), i = 1,2, transversally along the curve
Ci=X (gi) N X. Consider first the blow-up, vV — V, along €, and denote
by 5,—, X (()i), and X ¢ the proper images of C;, X((,i) andhXt. The pencil
X has the base-curve C4q, therefore, the next blow-up V — V along Cs
gives a fibering over CPL with fibers X ¢ (here and below we mark by a
hat the proper image in 17)

- The projections X — X Xy M Xél) are biregular, as well as

(2) — X( ) , whereas X (2) — X(z) is the blow-up at ClnX(Q) =ANX.

The real stiucture on V can be obviously l1fted to the real struc-
ture, COD_]V V- V and we have ¥(1) = Y(l) Y >~ Y. and Y@ =~
Y(2)#k((DP ), where V(l) Y Y@ denote the quotients by conji; of

(1) , X and X, X ). The latter diffeomorphism follows because blows-up
at_ real points do not change the diffeomorphism type of the quotient,
since CP%/ conj = S4,’whereas a pair of blow-ups at conjugated imag-
inary points descends to a blow-up in the quotient. Restrictions give
diffeomorphisms between M () and regular neighborhoods of A/ conjg;
in XO )/conJA for A = X(()l) ﬂféz).

To complete the proof we use the following equivariant version of the
deformation theorem [11, Theorem 2.4, Corollary 2.6). Assume that W
is a complex analytic 3-fold supplied with a real structure conjyy W — W
and f W — A a nonconstant proper holomorphic mapping of W into
a disc, A C €, around zero, such that f o conjy = conjof, where
conj A — A is the complex conjugation on €. Assume further that f
has a critical value only at zero and the zero divisor X¢ of f splits in
two nonsingular irreducible conjy -invariant components X S'), i = 1,2,
of multiplicity 1 crossing transversally along a nonsingular irreducible
curve A. Suppose that U C W is a sufficiently small conjy -invariant
tubular neighborhood of 4, so that N& =y ﬂX((,i) is a conjy -invariant
tubular neighborhood of A in Xy o yi=1,2.

Deformation Theorem. There exists a conjy, -equivariant bundle iso-
morphism g SN — aN©) reversing orientalions of fibers, such that
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X¢ = f7Y1) is conjugation-equivariantly diffeomorphic to CciXx él) -
N (1)) Uz CI(XSQ) - N (2)) for a non-critical value t € A.

Proof. This theorem in non-equivariant version is proved in [11} (in
more general form). The proof in our equivariant setting follows the
same scheme with some not essential modifications: we need to choose
a conjyy~invariant metric on W and instead of the fibering U N X; — A
considered in [11] deal with its quotient, {UNX;)/ conjy — B, and then
apply similarly the arguments on the reduction of the structure group.
More precisely, these arguments can be applied in exactly the same way
for the restriction of this fibering over the complement B —V of a regular
neighborhood V' of 8B. To extend reduction of structure group to the
whole B we note that the product of the complementary fibering over
ClV with the D!-fibering CIV — 8B is a D? x I-fibering over 8B. For
the associated S! x I-fibering the structure group is already reduced, so
we need to use relative reduction of Diff(D? x I). This is possible due to
Cerf’s theorem, since the connected components of B are just circles.
(Note that we can prove equivariant version of the deformation theorem
in higher dimensions following the same scheme, but instead of Cerf’s
theorem we need to make use of Hatcher’s theorem on Diff(5%).)
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