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Topology of real algebraic T-surfaces.

Ilia ITENBERG

Abstract

The paper is devoted to algebraic surfaces which can be ob-
tained wusing a simple combinatorial procedure called the T-
construction. The class of T-surfaces is sufficiently rich: for exam-
ple, we construct T-surfaces of an arbitrary degree in RP? which
are M-surfaces. We also present a construction of T-surfaces in
RP3? with dim H,(RX;Z/2) > hY(CX), where RX and CX
are the real and the complex point sets of the surface.

1 Introduction

The subject of the paper is T-surfaces, i. e. real algebraic surfaces which
can be constructed in a simple combinatorial fashion : one can patchwork
them from the pieces which essentially are planes.

The construction of combinatorial patchworking (or T-construction)
works in any dimension. We restrict ourself here by the case of surfaces.
The general T-construction can be formulated in a completely similar
way (the combinatorial patchwork construction in the case of curves is
described in [I-V], [I1], [12]).: The T-construction is a particular case of
the Viro theorem (see [V2], [V3], [V5], [V8], [Ri]).

The results on topology of T-surfaces presented in the paper are con-
centrated around the following conjecture proposed by O. Viro ({V4}):
let X be a nonsingular simply connected compact complex surface with
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an antiholomorphic involution ¢ : X — X; then dim H;(RX;Z/2) <
h11(X), where RX is the fixed point set of the involution ¢ (for a de-
tailed information on real algebraic surfaces see [Kh|, [Si], [Wi]).

This conjecture is related to the Ragsdale conjecture (see [Ra]} con-
cerning the topology of real algebraic curves. To formulate the Ragsdale
conjecture, let us denote the number of even ovals of & nonsingular real
algebraic plane projective curve of degree 2k by p (an oval of a nonsin-
gular curve of an even degree is called even (resp. odd), if it lies inside
of evén (resp. odd) number of other ovals of this curve), and denote the
number of odd ovals by =.

Ragsdale conjecture. For a nonsingular real algebraic plane projective
curve of degree 2k

»< 3k — 3k +2 < 3k2 — 3k
- 2 ' - 2

Any counter-example to the inequality p < &QM produces a
counter-example to Viro’s conjecture: one can take a double plane ram-
ified along the complex point set of a counter-example to the Ragsdale
conjecture with an appropriate choice of a lifting of the involution of
complex conjugation. Thus, the counter-examples to Ragsdale conjec-
ture obtained in [I1) (see, also, [I2], [I-V]) show that Viro's conjecture is
not true. The counter-examples to Ragsdale conjecture are constructed
as T-curves. So, it is natural to try to use the combinatorial patchwork
construction in order to construct counter-examples to Viro’s conjecture
which are real algebraic surfaces in RP>,

We show in sections 3 and 4 that under some conditions of ” maximal-
ity” of the triangulation participating in the combinatorial patchwork
construction, Viro's conjecture is true for the resulting T-surfaces. How-
ever, using a "nonmaximal” triangulation (see exact definitions in sec-
tion 2), we can obtain a T-surface X in RP3 with dim H;(RX;Z/2) >
h11(CX) (see section 6).

We also construct T-surfaces of any degree in RP3 which are M-
surfaces (it means that the total Z/2-homology group of the real point
set has the same rank as that of the complexification; see section 5).

I would like to thank V. Kharlamov and O. Vire for the useful dis-

cussions.
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2 T-construction

Let m be a positive integer number (it would be the degree of the sur-
face under construction) and 7' be the tetrahedron in R?® with vertices
(0,0,0), (0,0,m), (0,m,0), (m,0,0). Let us take a triangulation r of T
with vertices having integer coordinates. Suppose that a distribution of
signs at the vertices of 7 is given. The sign (plus or minus) at the vertex
with coordinates (4, j,{) is denoted by &; ;.

Take the copies

Ty = 54(T), Ty = 3y(T), Tz = 5(T)
Tmy == SQOS!J(T), sz = 3;:032-(:11), Tyz = 3y033(T) sT:ryz = SmOSyosz(T)

of T, where s, 8y, 8. are reflections with respect to the coordinate
planes. Denote by T, the octahedron

TUTzUTyU T U Ty U Tz UTye U Ty

Extend the triangulation 7 to a symmetric triangulation of 7, and the
distribution of signs §; j; to a distribution at the vertices of the extended
triangulation by the following rule: passing from a vertex to its mirror
image with respect to a coordinate plane we preserve its sign if the
distance from the vertex to the plane is even, and change the sign if the
distance is odd. '

If a tetrahedron of the iriangulation of T, has vertices of different
signs, select a piece of the plane (triangle or quadrangle) being the con-
vex hull of the middle points of the edges having endpoints of opposite
signs. Denote by S the union of the selected pieces. It is a piecewise-
linear surface contained in 7,. Glue by s, 0 3y © s, the facets of T,. The
resulting space T is homeomorphic to the real projective space RP2.
Denote by S the image of § in 7.

Let us introduce an additional assumption: the triangulation 7 of T is
convezr. This means that there exists a convex piecewise-linear function
v : T — R whose domains of linearity coincide with the tetrahedra of
7. Sometimes, such triangulations are also called coherent {see [GKZ])
or regular (see [Zi}).

Theorem 2.1 (O. Viro). Under the assumptions made above on the
triangulation T of T, there exist a nonsingular real algebraic surface X
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of degree m in RP® and a homeomorphism RP? — T mapping the set
of real points RX of X onto s.

Moreover, a polynomial defining the surface X can be written down
explicitly: if t is positive and sufficiently small, the polynomial

3 igabaabay I T iah
(ighev

(where V is the set of vertices of 7) defines a surface with the properties
described in Theorem 2.1.

- We consider two special types of triangulations of T. A triangulation
T of T is called primitive if all the tetrahedra of v are of volume 1/6. A
T-surface constructed using a primitive triangulation is called primitive.

A triangulation 7/ of T is called mazimal if all the integer points of
T are vertices of 7v'. Clearly, any primitive triangulation is maximal.
The notions of primitive and maximal triangulations coincide in dimen-
sion 2. The situation is different in dimension 3 : there exist maximal
triapgulations of T" which are not primitive.

3 Euler characteristic of T-surface

Let us consider a k-dimensional simplex @ having vertices with integer
coordinates and belonging to the orthant {z; > 0} of R™. We call the
simplex @ elementary if the reductions modulo 2 of the vertices of Q are
independent (generate an affine space of dimension k over Z/2).

Suppose that a distribution of signs at the vertices of the simplex
Q is given. Let us take the distributions of signs at the vertices of
the symmetric copies of Q using the following generalization of the rule
formulated in section 2 :

the symmetric copy of a vertex a in an orthant b gets the
sign (—1)%®sign(a), where @ is the reduction modulo 2 of
the vertex a ; the i-th coordinate of the vector b in (Z/2)"
is equal to 0 (resp. to 1} if z; > 0 (resp. =; < 0) for a point
(z1,...,%n) in.the interior of the orthant b; and a- b denotes
the standard scalar product of two vectors in (Z/2)™.

We call a symmetric copy of Q nor;empty if it has vertices of different
signs.
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Proposition 3.1. If the simplex Q is elementary and does not belong
to a coordinate hyperplane, then Q@ has exactly 2" _ 9"k nonemply sym-
metric copies.

Proof. Let us, first, remark that the map & — @- & is linear over Z/2.
The following operations do not change the property of any symmetric
copy of Q te be nonempty:

(1) parallel translation of @,

(2) changing of signs at all the vertices of Q.

Thus, we can suppose that the reduction o modulo 2 of a vertex vg
of @ is 0 in (Z/2)", and that the vertex vg has the sign "+". Denote
the other vertices of Q@ and their reductions modulo 2 by vy, ..., ve and
#1; ..., Uk, respectively. The condition that the copy of @ in an orthant
b is empty (i. e. is not nonempty) can be expressed by a system of linear
equations

9 -b=¢€1, ... 0k -b=ck,

where ¢; = 0 if the sign of the vertex v; is positive, and &; = 1 if the
sign of v; is negative. The unknowns of the system are the coordinates
of b. A solution to the system does exist because the rank of the system
is equal to k (the simplex @ is elementary). Moreover, the dimension
of the space of solutions is equal to n — k. It means that the number
of solutions is equal to 2%, in other words, the simplex @ has exactly
2n .. 27~k nonempty copies.

Proposition 3.1 is similar to Lemma 1 in [I-R].

Now we are able to calculate the Euler characteristic of a primitive
T-surface.

Theorem 3.2. If X is a primitive T-surface in RP3, then the Euler
characteristic x(RX) of the real point set of X is equal to the signature
o (CX) of the complez point set of X . In other words, if X is a primitive
T-surface of degree m in RP>, then

m®  4m

+

X(BX)';—T 3
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Proof. Let us take an arbitrary primitive triangulation = of the tetra-
hedron T and an arbitrary distribution of signs at the integer points of
T. The piecewise-linear surface S has a natural cell subdivision: each
cell is the intersection of § with a simplex of the triangulation of T.

All the simplices of T are elementary. The number of simplices of
7 of any dimension is fixed (the number of simplices of any dimension
contained in each face of T is also fixed). Thus, we can calculate the
Euler characteristic of S according to Proposition 3.1.

The triangulation"r contains

m? tetrahedra,

2m? + 2m? triangles, and 4m? of them are contained in the
facets of T,

Tm3/6 + 3m? + 11m /6 edges, 6m? of them are contained in
the facets of T, and 6m of them are contained in the edges
of T,

(m + 1){m + 2)(m + 3)/6 vertices.

We obtain that the described cell subdivision of § contains 7m® two-
dimensional cells, 12m3 edges and 14m3/3 + 4m /3 vertices. Thus,

m3  4m

X(R.X)=——'3—+—3-=O'(CX).

Theorem 3.3. If X is ¢ T-surface construcied using ¢ maximal trian-
gulation of the teirahedron T, then x(RX) > o(CX).

Proof. Let us, first, remark that all simplices of dimension < 2 of a
maximal triangulation 7/ of T are elementary. Denote by ¢ the number
of tetrahedra of 7. If any tetrahedron of 7/ is elementary than, repeating
the calculation of the proof of Theorem 3.2, we obtain x(5)} = 2m3/3 —
g +4m/3.

Each nonelementary tetrahedron of 7’ has at least 6 nonempty copies,
because the rank of the corresponding system of linear equations (see
the proof of Proposition 3.1} is equal to 2. Thus,

3 dm

. Im-
x(RX)mx(S)Z%—quT—q_,
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where ¢’ is the number of nonelementary tetrahedra of v/, It remains to
remark that ¢ + ¢’ < m?, and we obtain

3

m 4m
> =y 2
x(RX) > 3 + 3

4 Case of primitive or maximal triangulation

As we saw in section 3, the Euler characteristic of a primitive T-surface
in RP3 is determined by the degree and is equal to the signature o(CX)
of the complex point set of the surface.

. For a real algebraic surface X (or, more generally, for a real algebraic
variety of any dimension), we have Smith inequality (see, for example,
[Wil) :

by (RX) < b (CX)

between the ranks of total Z/2-homology groups of the real and of the
complex point sets of X. If b,(RX) == b,{CX), the surface X is called
an M-surface. We denote by b;(Y') the rank of i-th homology group of
Y with Z/2-coefficients.

Let us mention two congruences (see [Wi}).

Rokhlin congruence. If X is an M-surface, then

x(RX) = ¢(CX) mod 16.

Kharlamov-Gudkov-Krahnov congruence. If X is an (M-1)-surface
(in other words, if by(RX) = b,(CX) — 2), then

x(RX) = o(CX) £ 2mod 16.

Rokhlin congruence and Theorem 3.2 show that we can expect to
construct primitive T-surfaces which are M-surfaces. We will see in
section 5 that such surfaces do really exist in any degree. On the other
hand, there are no (M-1)-surfaces among primitive T-surfaces in RpP?
according to Kharlamov-Gudkov-Krahnov congruence and Theorem 3.2.
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Theorem 4.1. If X is a primitive T-surface in RP3 then

bi(RX) < B"(CX), bo(RX) < h?O(CX)+ 1.

Remarks. Theorem 4.1 states that Viro’s conjecture holds in the case

of primitive T-surfaces.

The inequality b(RX) < h29(CX) + 1 for primitive T-surfaces was

proved by E. Shustin in [Sh].
Proof of Theorem 4.1. Using the Smith inequality
by(RX) < b,(CX)=m®>—4m2 4 6m

(where m is the degree of X) and the equality

X(RX) = a(Cx) = -2 1 27
proved in Theorem 3.2, we immediately obtain
b (RX) < RVHCX) = gg—s —2m% 4 Z?,ﬂ
and 3
bo(RX) < h?P(CX)+1= ’% —m?+ —”é—m.

Viro's conjecture also holds in the case of T-surfaces constructed

using maximal triangulations.

Theorem 4.2. If X is a T-surface constructed using a maezrimal trien-

gulation of the tetrahedron T, then

b (RX) < aM(CXx).

Proof. The Smith inequality and the inequality x(RX) > o(CX)

proved in Theorem 3.3, give again the desired inequality
b (RX) < RM(CX).
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5 M-surfaces

We describe, first, a special primitive triangulation p of 7" suggested by
Q. Viro. We show that the T-construction using the triangulatiou p
and an appropriate distribution of signs at the integer points of T gives
an M-surface of degree m in RP3. In fact, the surfaces given by the
procedure described below are homeomorphic to ones constructed (not
as T-surfaces) by O. Viro in [V1].

Let us divide the tetrahedron T by the planes z = !, and denote by
P; the polytope

{(z,y,2) €T : 1<z2<1+1, 1=0,...,m~-1}.
Choose an arbitrary primitive convex triangulation of each triangle
Ti=Tn{z=1}, 1=0,....m—1

(a triangulation of the triangle T; is called primitive if all its triangles
are of area 1/2, or, equivalently, if all the integer points of 7 are vertices
of the triangulation).

Each polytope P, is triangulated as follows. If ! is even, take the join
Jy of the side of T; lying in the zz-coordinate plane and of the side of
Tty1 lying in the plane z + y + z = m. If I is odd, take as J; the join of
the side of T} lying in the plane x + y + z = m and of the side of Ty
lying in the zz-coordinate plane. The join J; is naturally triangulated
into the joins of segments

[(,0,1), G+1,0,1)], [(m—=(+1)=3, , i+1), (m=(+1)—(G+1),+1,1+1)],
i=0,...,m—-1-1 j=0,..,m~1-2

if 1 is even, and J; is triangulated into the joins of segments

[(m—l-—j,j,l),(m—l—(j+1),j+],l)], {(i’0=l+1):(i+11011+1)]’
i=0,...m—1-2 3j=0,...,m-1—1

if I is odd.
The polytope P; is the union of J; and of two tetrahedra Pl(l) and

Pl(z). These tetrahedra can be triangulated into the cones over the tri-
angles of the chosen triangulations of T} and of Ti41.
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Clearly, the described triangulation p of T is primitive. To explain
that p is convex, consider a triangulation of T' formed by the tetrahedra

g PO PR =0, m-1)

The later triangulation is convex. Let v/ : T — R be a convex func-
tion certifying the convexity of this triangulation, and let v; : T} — R
(!=0,...,m— 1) be a convex function certifying that the chosen trian-
gulation of T} is convex. Consider a piecewise-linear function v : T — R
which is linear on each tetrahedron of p and takes the value '(r;)+£v(r;)
at an integer point r; of T;. It is easy to see that the function v for a
positive sufficiently small ¢ certifies the convexity of p.

Choose the following distribution of signs at the integer points of
T:

a point (i,j,1) gets thesign "+" ifi=j=I1=0mod 2 or
i = 1mod2andij = 0mod2;

and it gets the sign ”-” otherwise.

Proposition 5.1. A T-surface X constructed using the triangulation p
and the distribution of signs described is an M-surface. 3The real point sel
RX of X is hemeomorphic to the disjoint union of T — m? + 1—165"- -1

spheres and a sphere with -m;- -m?+ 1? handles if m is even or a

projective plane with %i —m?4 ZmT—?z handles if m is odd.

Proof. It is easy to verify that any integer point » lying strongly inside
T has a symmetric copy s(r) with the following property : all the neigh-
bouring vertices of s(r) (i. e. vertices connected with s(r) by an edge of
the triangulation) have the same sign, and this sign is opposite to the
sign of s(r). It means that the surface S has a connected component
homeomorphic to a sphere contained in the star of s(r).

We found ﬂsi ~m2+4 Lm_ ) = p20(CX) components of S. There is
at least one component of § more, because the surface S intersects the
coordinate planes. On the other hand, according to Theorem 4.1, the
number of connected components of RX does not exceed h%%(CX) +
1. Thus, the real point set RX has exactly h%0(CX) + 1 connected
components.
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Using the equalities
x(RX) = o(CX), bo(RX)=r>(CX)+1,
we get b,(RX) = b,(CX), i. e. X is an M-surface. Furthermore,
b (RX) = BY(CX),

and, thus, the topological type of RX coincides with one described in
the statement of Proposition.

6 Counter-examples to Viro’s conjecture

We saw in section 4 that Viro's conjecture is true for T-surfaces con-
structed using a maximal triangulation. Surprisingly enough, a non-
maximal triangulation of T can produce a T-surface X in RP3 with
b (RX) > hbH{CX).
 Let us describe, first, the construction of an extension of a triangu-
lation of the triangle 7o = T N {z = 0}.

Suppose that m is even and that a primitive triangulation 7o of
Ty with the vertices having integer coordinates is given. Divide the
tetrahedron 7T into two parts T N {z > 2} and T N {z < 2} by the
plane z = 2. Take in the first part the triangulation coinciding with the
triangulation p described in the construction of M-surfaces.

Divide now the second part T N{z < 2} by the planez +y+kz=m
(where m = 2k) into the tetrahedron T with vertices (0,0,0), (m, 0,0),
(0,m,0), (0,0,2) and the cone C with the vertex (0, 0,2) over

{{z,y,2) €T : z+y+z=m, 0<z<2}
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(see Figure 1).

Figure 1

To triangulate the tetrahedron T, we take the cones over all the
triangles of 19, and subdivide (in the unique possible way) the cones
containing integer points of the plane z = 1 in order to obtain a maximal
triangulation of T.

To describe the triangulation of the cone C, let us consider the cone
C with the vertex (k + 1,0, 1) over the triangle T N {xt+y+kz=m)
The rest of the cone C is divided into two parts by the plane z = 1 (see
Figure 2}. Denote the lower part (contained in €N {0 < z < 1}) by Cy,
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and denote the upper part (contained in C N {1 < z £ 2}) by C1.

Figure 2

The triangulation of the triangle TN {z + y + kz = m} is already
fixed (it comes from the triangulation of T).. Thus, we can triangulate
the cone C by the cones with the vertex (k + 1,0, 1) over the triangles
of the triangulation of T N {z +y + k2 = m}.

Subdivide Cq taking the cone C’ with the vertex (0,m,0) over the
facet of Cp belonging to the plane z = 1, and the join J' of segments
[(m,0,0),(0,m,0)] and [(k + 1,0,1),(m — 1,0,1)]. Let us choose an
arbitrary primitive convex triangulation of the quadrangle CoN{z = 1}.
It gives a natural primitive triangulation of C’ (taking the cones over
the triangles of the chosen triangulation of CoN {z = 1}). The join J' is
triangulated by the joins of segments [(m — 7,3,0), (m —j — 1,5 + 1, 0)]
and [(4,0,1),(i +1,0,1)] (wherei=k+1,...,m—-2;j=0,...,m— 1).

It remains to triangulate the part C;. Subdivide C; into the join of
segments [(m — 1,0,1), (0,m — 1,1)] and [(0,0,2}, (m — 2,0,2)] (trian-
gulated by the joins of segments [(m —j — 1,5,1),(m —j — 2,5+ 1,1)]
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and {(i,0,2),(i + 1,0,2)}, where i = 0,...,m — 3 ; § = 0,...,m — 2)
and the naturally triangulated cones : with the vertex (0,0,2) (resp.
(0,m — 1, 1)) over the quadrangle Cy N {z = 1} (resp. over the triangle
Ty =Tn{z=2}).

The described maximal triangulation of T is called the extension of
the triangulation 7o and is denoted by ext(rg).

Arguments, similar to ones used in the previous section to show that
the triangulation p is convex, prove that if 7p is convex then ext{rg) is
also convex. Almost all tetrahedra of exi(rg) are of volume 1/6. The
only tetrahedra of a greater volume (more precisely, of volume 1/3) are
the cones with the vertex (0,0,2) over the odd triangles of 9 (we call
a triangle of 79 odd if it does not have a vertex with the both even
coordinates)..

Suppose now that a distribution &g of signs at the integer points of
Ty is given. Let us describe a distribution ez¢(6g) of signs at the integer
points of T which we call an extension of 6;. In the part TN{z > 2} we
take the distribution of signs described in the construction of M-surfaces.
It remains, thus, to fix a distribution of signs at the integer points of
TN{z=1}. Wedo it as follows:

take an arbitrary distributionin TN {z =1} N{z + y < k},
all the integer points of the segment [(k,0,1)}, (0, k,1)] but
the point (0, %, 1) get the sign ”-”,

for the other points of T we apply the rule : a point (i, 5, 1)
gets the sign "-” if i and j are both odd, and the sign "+"
otherwise,

Let us take a triangulation 7§ and a distribution 5§ of signs at the
integer pomts of Tp producing a counter-example to Ragsdale conjecture
with p = w + 1 (see [I1], [I2], [I-V]). The triangulation 7§ can be
obtained placing the hexagon H shown in Figure 3 inside of Ty (on
suppose that m > 10) in such a way that the center of H has both the
nonzero coordinates odd, and extending, then, the triangulation of H
to a primitive convex triangulation of 7). To obtain a distribution of
signs at the integer points of Ty, we complete the distribution presented
in Figure 3 by the rule :

a point (i,j,0) gets the sign "-” if i and j are even, and
i+j<m,
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a point (i, j, 0) gets the sign "+" otherwise.

Remark that this distribution of signs at the integer points of Ty is
slightly different form the distribution described in [I1], [12], [I-V].

+ +
+ +
+ +

Figure 3

Proposition 6.1 The mazimal triangulation ext(rd) arid o distribution
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of signs ext(6}) produce a T-surface X of degree m in RP® with

3 4
x(RX) = ~mT + —3'?- bo(RX) = h20(CX) - 2.

The real point set RX of X is homeomorphic to the disjoint union

3
m g 1lm o
(T BRI 5) S5z s

of -’%i —m2 4 *l-%ﬂ — 5 spheres, a sphere with 2 handles and a sphere with
mgi —mi4+ ?Tm — 5 handles.

Proof. Let us, first, calculate x(RX). It was already remarked that
almost all tetrahedra of ezt(7{) are of volume 1/6. The only tetrahedra
of greater volume (of volume 1/3) are the cones over the odd triangles of
7. Each of these tetrahedra of volume 1/3 has 6 nonempty symmetric
copies (a tetrahedron of volume 1/3 of a maximal triangulation has 6
nonempty copies if the product of signs at its vertices is positive, and
it has 8 nonempty copies if the product of signs is negative). Thus, the
arguments of the proof of Theorems 3.2 and 3.3 show that x(RX) =
a(CX).

Calculate now the number of connected components of 5. Exactly
as in the proof of Theorem 5.1, any integer point lying strongly inside
(TN {z > 2}) UC has a symmetric copy with the star containing a
component of S homeomorphic to a sphere. It is easy to see that the stars
of integer points lying strongly inside T and belonging to the segment
[(%,0,1),(0, &, 1)] aiso contain the components of § homeomorphic to a
sphere. Consider the integer points lying strongly inside the tetrahedron
T. Let us call even interior points of Ty the integer points (4, 7, 0) such
that ¢ > 0, 5 > 0, ¢+ j < m, i and j are both even. There is a
correspondence between the even interior points of Ty and the points of
Int(T)NZ3 : any integer point lying strongly inside T is a middle point
of a segment joining the point (0, 0,2) and an even interior point of 7p.
We denote the middle point of a segment [(0, 0, 2), ] (where r is an even
interior point of Tg) by f(r).

Suppose that an even interior point r does not belong to the hexagon
H. Then r has the sign ”-”, If f(r) has also the sign "-”, then the union
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of stars of r and of f(r) (in the triangulation of T, ) contains a component
of § homeomorphic to a sphere. If f(r) has the sign ”+”, then the union
of stars of r and of s,(f(r)) contains a component of S homeomorphic
to a sphere.

We have found h2%(CX) —4 spheres of S (a sphere was associated to
any integer point lying strongly inside of T except 4 points of the form
f{r), where r is an even interior point of T belonging to the hexagon
H). There are two connected components of S more. One component is
homeomorph_lc to a sphere with two handles and lies inside of HuUs,(H),
where H is a cone with the vertex (0 0,2) over H. The remaining part
of § is connected. The number b;(S) can be calculated via the Euler
characteristic.

Theorem 6.2. If m is an even integer number not less than 10, then
there exists an (M-2)-surface X of degree m in R.P? such that b (RX) =
RLI(CX) + 2.

Proof. Let us take the triangulation ext(r}) of T and the distribution
of signs ext(5}) at the integer points of T'. According to Proposition 6.1
the resulting surface S is homeomorphic to

3
(? -m? it — - 5) 5 HSzHSma i lm s

Remove now 4 vertices of the form f(r), where r is an even interior
point of Ty belonging to H (see the proof of Proposition 6.1), with all
the adjacent edges. Denote the new triangulation (which is nonmaximal)
by exzt'(v3) and consider the surface §' constructed using ext'(r§) and
the restriction ext'(63) of the distribution ext(63) to the set of vertices
of ext '(7§). Clearly, the surface S’ is homeomorphic to

3
m 2 11m 2
(?—"‘ —"5)511821133 e Ipo1

because we added 4 handles to the component homeomorphic to
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s s Thus, the number of b1(8’) is equal to

m3 5
oMt

Using counter-examples of degree 2k to Ragsdale conjecture with
more than "fﬁ%_ﬂ-f— 1 éven ovals (see [I1], [12], [I-V]), one can construct
surfaces X of degree 2k in RP? with bj(RX) > R (CX) + 2.
Theorem 6.3. If m = 2k is an even integer not less than 10, then there
exists a surface X of degree m in RP® such that

b (RX) = AMH(CX) + 2 [ng_ii)_?ﬂ

(where [u] denotes the greatest integer which does not ezceed u).
Proof. We start from a triangulation 7¢ and a distribution 48 of signs at
the integer points of Ty giving a counter-example to Ragsdale conjecture
with

3k% 3k +2
p=——>5  ta

where a = [&%ﬁt‘i] (see [11], [£2], [I-V]). The triangulation 7§ can be
obtained in the following way. Consider the partition of the triangle Tj
shown in Figure 4. Let us take in each shadowed hexagon the triangu-
lation (and the signs) of the hexagon H. The triangulation of the union
of the shadowed hexagons can be extended to a primitive convex trian-
gulation 7§ of Ty. To obtain the distribution 6§ of signs at the integer
points of Ty, we choose the signs outside of the union of the shadowed
hexagons again using the rule :

a point (i,7,0) gets the sign ”-” if i and j are even, and
i+j<m,
a point (4, j,0) gets the sign "+” otherwise.
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Y

Figure 4

Consider the triangulation ext(7$) of 7' and the distribution ext(8§)
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of signs at the integer points of 7. The resulting surface S is homeo-
morphic to

3
m g, 1lm 9
(__6__m +T—1—4G)S ||‘152”S”537m2+1;'—'—5a-

Remove now the vertices of the triangulation ext(r§) (with adjacent
edges) of the form f(r), where r is an even interior point of Ty belonging
to one of the shadowed hexagons, and take the restriction ext/(6%) of the
distribution ext(68) to the vertices of the new triangulation ext/(+§). We
obtain a surface S’ homeomorphic to

3
(—ﬁ_—‘m +‘“‘6—— 1“-40)5 HaS2HSmT3—m2+Ig"—‘~a

with

- 2m?> 7
b (8} = -L;L— —2m?% 4+ Tm + 2a.

Remarks.

1. Removing, if necessary, some of the shadowed hexagons in the
construction of Theorem 6.3, we get counter-examples to Viro’s conjec-
ture with the real point set homeomorphic to

3
(_6_—m +_6_——-1—-4a)S “aSQ.IIS_._ﬂ;"‘_m2+1§l—a’

wherea=1,..., [%}

2. The counter-example of the smallest degree in RP? given by
Theorems 6.2 and 6.3 is a surface of degree 10. The real point set of this
surface is homeomorphic to

8052 J[ 52 ]] Soe-

It is unknown if there exist counter-examples of degree less than 10. The
smallest degree we can expect for a counter-example to Viro's conjecture
is degree 5.
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3. Repeating the procedure described above for the new counter-
examples to the Ragsdale conjecture constructed by B. Haas [Hal, one
can construct surfaces X of degree 2k in RP® with

b1 (RX) = RVYHCX) + 24/,

t_ [ Kk2—7k+16
where a’ = [———3—— .

4. We can obtain counter-examples to Viro's conjecture which are
asymptotically better than the examples described above: there exist T-
surfaces X of degree 2k in RP? with b (RX) = A11(CX) + 24, where
A = k%/24+ terms of smaller degrees. To construct such surfaces, we
divide the tetrahedron T by the planes z = 2! (where I = 1,...% — 1),
and define a triangulation and a distribution of signs in each part of the
subdivision using the procedure described in the proof of Theorem 6.3
for TN{0<2<2}.
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