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Separating ideals in dimension 2.

James J. MADDEN' and Niels SCHWARTZ*

Abstract

Experience shows that in geometric situations the separating
ideal associated with two orderings of a ring measures the degree
of tangency of the corresponding ultrafilters of semialgebraic sets.
A related notion of separating ideals is introduced for pairs of
valuations of a ring. The comparison of both types of separating
ideals helps to understand how a point on a surface is approached
by different half-branches of curves.

In this paper we study the geometry of separating ideals. Let A
be a Noetherian ring with real spectrum Sper(4) (cf. [2], Chapitre 7;
(6], Kapitel IIT}. For any two orderings o, 8 € Sper{A), the separating
ideal {a, 8) was defined by Madden in [8]. This is the ideal generated
by the symmetric difference (a\8) U (8\a). Alternatively, it can also be
characterized as the smallest ideal I C A that is convex with respect to
both a and £ and for which « and # induce the same total order on 4/J
([8]). The separating ideal was first introduced as a tool for working
at the Pierce-Birkhoff Conjecture ([8]; [10]). By its definition it is an
algebraic artifact. But experience shows that in a ring arising from a
geometric context, e.g. the coordinate ring of an algebraic variety over
a real closed field, separating ideals carry geometric information. For
example, suppose that o, 8 € Sper(R|[X,Y]) are defined by germs of
half branches of curves at 0 € R% Then {, B) measures the degree of
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tangency of the half branches. This leads us to study the relationship
between tangent spaces and orderings.

The classical notion of valuations can be generalized from fields to
rings {cf. (3], Chapitre VI, §3, No. 1, [4]; [9]). Suppose that v: A —
I'U {oc} is a valuation. An ideal I C A is called a v—ideal if

I={e€A|3bel:v(a)>v(d)}

Every ordering a € Sper(A) defines a valuation v, of A. The v, -ideals
are the same as the ideals that are convex with respect to . Similar
to separating ideals of orderings, it is possible to introduce separating
ideals of valuations. If v and w are valuations of A4 then (v, w) denotes
the smallest ideal I C A such that I is both a v-ideal and a w—ideal and
the chains of v- and w—ideals containing I are identical Basic properties
of (v, w) are discussed in section 2. We are particularly interested in the
relationship between the separating ideals {a, 8) and (ve,vg) (where
o,8 € Sper(A)). It is obvious that always {va,vg) C (e, 8). The
question of when these ideals are equal is much more subtle.

The language needed to talk about the geometry of the different
separating ideals is developed in section 1. Suppose that M € A is a
maximal ideal and that v is a valuation having M as a v—ideal. There
is a largest v ideal M? contained in M. Since M2 C MY, the factor
module M/MY can be considered as a factor space of the cotangent
space M /M2 If v = v, for some a € Sper(A) then M/M?" carries a
total order. The translation of these structures into the Zariski tangent
space provides a geometric way of looking at the situation. (Related
concepts have also been introduced by Marshall —- see [10}, p. 1265.) Of
particular interest is the question of what it means that a separating
ideal is maximal. In section 2, Theorem 1 and Theorem 2 juxtapose the
geometric meanings of this condition for separating ideals of valuations
and for separating ideals of orderings.

In section 4 we consider our general concepts of separating ide-
als in the rather benign environment provided by a regular local ring
(A, m, k) of dimension 2. The reason is that separating ideals are com-
plete (or integrally closed) ideals, as are all v—ideals for any valuation v
(cf. [14], Appendix 4). For two-dimensional regular local rings there ex-
ists a highly satisfactory theory of complete ideals, largely due to Zariski
(cf. [13}; [14], Appendix 5). The most important tool in this theory are
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quadratic transformations. Therefore, in preparation for section 4, we
discuss the behavior of separating ideals under quadratic transforma-
tions in section 3. For orderings and valuations there is a notion of
strict transforms. Under hypotheses which are not too restrictive for ge-
ometric applications we show that the strict transform of the separating
ideal of two valuations is the separating ideal of the strict transforms. A
corresponding result for orderings is known from [1}. In section 4, after
excluding a few trivial cases, we deal with orderings a,8 € Sper(4)
such that (a, 3) is m—primary. Finitely many quadratic transformations
transform (o, 8) into the maximal ideal of an iterated quadratic trans-
form of (4,m, k). This means that the tangent directions of o and 3
become separated after finitely many transformations. This can come
about in two different ways: Either the tangent spaces are distinct; or
there is a common tangent space and only inside this space the directions
differ. We show in Theorem 3 that these two cases can be distinguished
in the ring (A, m, k), without doing any quadratic transformations, by
comparing the separating ideals (a, ) and (vq,vg). From a conceptual
point of view it is interesting that at least this piece of information can
be obtained without leaving the ring A.

Notation and terminology. Throughout, all rings other than val-
uation rings are Noetherian. If A is a ring then Sper(4) is its real
spectrum. General references for the real spectrum are {2], Chapitre 7,
and [6], Kapitel H1. The points of the real spectrum are called orderings.
If a € Sper(A) then the prime ideal supp(a) = a N —a is its support.
Similarly, if v: A — I'U {oo} is a valuation then {a € A | v(a) = 00} is
a prime ideal which is also called the support of v. General references
for valuations of rings are [3], Chapitre V1, §3, No 1; [4]; [9]. In analogy
to the usage for valuations of fields, we call {a € A | v(a) > 0} the
valuation ring of v. But, of course, this subring of A does not have the
properties one is used to from the valuation theory of fields. If I C A is
an ideal then v(I) denotes the smallest value of any element of I. This
is well-defined since A is Noetherian. If « € Sper(A) then A/supp(a)
is a domain which is totally ordered with positive cone a/supp(a); the
totally ordered quotient field is x(a). We denote the canonical image
of a € A in x{a) by a(a). An ideal I C A is an a — ideal (or is con-
vex with respect to ) if a € T whenever 0 < a(a) < b(a) and b € I.
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With o we associate a valuation ve: Let V(a) C x(a) be the convex
subring of x(a) generated by the image of A. This is a valuation ring.
If vy : x(a) — T'U{oo} is the corresponding valuation then vq, is defined
to be

A — k(o) A 'y {oo}.

Let v: A — I'U {00} be any valuation of A. Then an ideal 7 C 4 is a
v — ideal if there is some v € I' U {oc} such that

I={e€ Ajv(a)>~}.

The support of v is a v-ideal; it may be the only one. Given a or v
there are a largest a—ideal and a largest v—ideal in A. They are called
the center of a and the center of v. The center is a prime ideal, say p,
and a {or v) extends uniquely to A,. As A is Noetherian, the totally
ordered set of o-ideals or v—ideals is anti-wellordered by inclusion. The
immediate successor of I is denoted by I* or I": it is the biggest a—ideal
or v-ideal properly contained in 1.

1 Tangents

The (Zariski) tangent space of a maximal ideal m in a ring A is the
dual (m/m?)V of the k-vector space m/m? (with k = A/mi). Ifvisa
valuation of A with center m then it is obvious that m? C-m?. Therefore
we can consider the subspace m¥/m? of the cotangent space at m. The
set

Ty={p € (m/m*)V | f(p) ~ 0 forall f¢€m?/m?}

is a subspace of (m/m?)V which is canonically isomorphic to (m/mY)Y.
We shall call T, the tangent space of v. If & € Sper(A) is centered in m
we define the tangent space of o to be T, = T,,. From the definitions
it is clear that m/m® = m/m® is a totally ordered vector space over
the totally ordered field k& and that m/m® is archimedean relative k.
To study the connections of T, with this total order we consider the
following more general situation:

Let k be a totally ordered field, V a finite dimensional totally
ordered vector space over k. The positive cone of V is the union of a
set P of closed convex polyhedral cones in V. With each P € P one
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associates the dual cone PV in VV (cf. [12], Appendix 1). It is defined
as

PY={feVY|WweP:f(v)>0}

It is well-known that P is a closed convex polyhedral cone in VV. Such
a cone in V'V will be called a P-cone, a cone Q C V" is an N —cone if
-@ is a P—cone. Every P-cone can be represented in the form

{reviifv)20&...& f(vs) 2 0}

where vy,...,vs > 0in V. From this it is clear that every convex polyhe-
dral cone in V'V is the intersection of a P—cone with an A'—cone. Finite
intersections of P—cones are P—cones. Every P—cone is full dimensional.

Lemma 1. A finite union of convez polyhedral cones none of which is
a P-cone contains no P-cone.

Proof. Any inclusion
P C|J(Pin ;)
1

(where P and the P; are P-cones, the N; are A'--cones and P; € P;NN;)
yields the inclusion

Pn((}-N) C|Jwvin —ny).

For every i the intersection N; N ~N; is a proper linear subspace of V'V,
A finite union of such subspaces cannot contain a full dimensional cone.
However, P N ([}—N;) is a P—cone, hence is full dimensional, and is

1
contained in [ J{N; N —N;). This contradiction ends the proof.
i

Lemma 2. Let L be the lattice of subsets of VV generated by the set of
all closed convez polyhedral cones. In £ the P-cones are a basis for a
prime filter.

Proof. We must show that the set £’ of elements of £ containing some
‘P—cone has the following preperties:

(1) {0} ¢ '

(2) if @ € £' and Q@ C P then P € L/;
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3)if P,Qe L' then PNQ € L;
(4)ifPUQeL thenPe L or Qe L.
Conditions (1), (2), (3) are evident, (4) is immediate from Lemma 1.

We have shown that a total order on V defines a prime filter in £
which has a basis consisting of full dimensional cones. Conversely, let £’
be a prime filter in £ having a basis B’ which consists of full dimensional
closed convex polyhedral cones. Then £’ defines a total order for V. To
prove this pick any cone PV € B’ and consider its dual cone P C V. It
is claimed that the union T' of these dual cones is the positive cone of a
total order of V. First we check that 7'N —7 = {8}. So, suppose that
v € TN —T. Then there are PV, QY € B’ such that v € P and —v € Q,
ie.,

PYn@¥C{fevY|f(v)=0}

Since the basis B’ consists of full dimensional cones this implies that
v=0. Next we prove TU—-T =V: [f v € V then

HY={feV'|f(®)20}, H ={f eV | f(v) <0}

are both closed convex polyhedral in V'V, Their union is V'V, hence
belongs to £'. By primality of £’ one of H and H~ belongs to £,
hence contains some P¥ € B/, say PY C H'. Then f(v) > 0 for every
f € PY,ie., v € P. Finally we have to check the algebraic properties
of the prospective positive cone T: Pick v,w € T, say v € P, w € Q
with PV,QY € B’, and 0 < A, € k. There is some RY € B’ contained
in PYNQV. But then v,w € R and

Fw + pw) = Af(v) + pf (w) 2 0

for every f € RY. This proves Av + pw € R C T.

It is obvious that the two constructions of assigning a prime filter
of cones to a total order and of assigning a total order to a prime filter
of cones are inverse to each other. We summarize the results obtained
so far in

Proposition 1. Let V be a finite dimensional vector space over the
totally ordered field k. Let L be the lattice of subsets of VV generated
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by the set of closed convex polyhedral cones. Then there is a bijective
correspondence between the total orders of V and the prime filters in L
generated by full dimensional closed convex polyhedral cones.

The situation which is most interesting for the discussion of m/m®
is the one in which the total order of V is archimedean relative k. This
case can be characterized in the following way:

Proposition 2. The order of V is archimedean relative k if and only if
{0} is the only proper subspace W of VvV such that (W NPYY=W for
every PV € B'. (Notation: {X) is the linear subspace generated by X;
L, L' and B’ are as in the proof of Proposition 1.)

Proof. First suppose that V is archimedean and assume (by way of
contradiction) that W = (W 0 PVY) for every P¥Y € B/, where {0} C
W C VY. Let

Vi={veV|fv)=0 VfeW}.

Then {0} C V; C V. It suffices to show that V1 is convex. So, pick
0<v<w, veV, vy €Vy. Now pick 0 € vp,...,vs in V such that
v,v]—v,v1,..., Vs generate a full dimensional cone in V' and let PYevV
be its dual. There is a basis, say fi1,..., fi, of W which is contained"in
PV. In particular, fi{(v1) =0, fi(v) 20, fi(rn—v) > 0foralli=1,...,¢
But this implies fi(v) = 0 for all i, hence v € Vy. This is a contradiction,
and the first part of the proof is complete. — Now suppose that V is
nonarchimedean. Let {0} C Vi C V be the largest convex subspace. In
V'V consider the subspace

W={feVY]f(n)=0Vvr €Vi}.

It is obvious that {0} € W C VY. Pick v1,...,vs > 0 in V generating
a cone P and let PV be its dual. Let #1,...,%, = 0 be the images in
V/Vi, let P be the cone in V/V) generated by these elements. As P
contains no montrivial linear subspace the dual cone PV C (V/V})Y is
full dimensional. The subspace W C VY may be identified with (V/V1)Y.
Then PV contains a basis of W and is obviously contained in PV, This

shows that (W N PY) = W for each such cone P.
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We return to the original setup stemming from an ordering a €
Sper(A) centered at m:

Definition. The tangent direction Do of a i3 the prime filter of poly-
hedral cones in T, defined by the archimedean {over k) total order of

m/m®.

Example. Let A = R[X, Y| and consider the irreducible polynomial
Y2 — X23(X +1). There are four orderings aj, ag, a3, as of A having
support (Y2 — X2(X + 1)) which are centered at (X,Y). For example,
a; can be described as

ag={PeA | 30<eecR:

O<zy<e&y?—z*(z+1)=0
— P(z,y) > 0) '

ag, a3 and a4 are given in the same way, only with "0 < z,y < &
replaced by "0 < —z,y < €”, "0 < —z,—y < " and "0 < z,—y < £”,
respectively. One finds that To, = Ty, is the line X = Y and Ty, = Ty,
is the line X = —Y. On these lines the only full dimensional polyhedral
cones are half lines. Thus, every tangent direction must be a half line
on the appropriate tangent line. For a1, ag, a3 and a4 these are the half
lines lying in the first, second, third and fourth quadrant, respectively.

2 Separating ideals

Separating ideals of orderings have been treated extensively in 8] and
[1]. Here we will first discuss some basic properties of separating ideals
of valuations.

Lemma 3. Ifv is a valuation of A then every proper v—ideal has a prime
ideal as its radical. In particular, \/(v,w) is always a prime ideal.

Proof. Let I' be the value group of v and suppose that I = {a € A |
v{a) > ~} is an ideal, where v € 'U{co}. Then I is proper if and only if
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~4 > 0. Let A €T be the largest convex subgroup that does not contain
~. One checks that

VIi={a€A|V6eA:b<v(a)}
Now it is obvious that +/7T is a prime ideal.
]

From the definition of the support and the center of a valuation it
is clear that we always have supp(v) C center(v).

Let A € I' be the convex subgroup of the value group of v gener-
ated by the set

{ve€Tl|y<0& 3a€ A:v(a) =1~}

Then a coarsening & of v is defined by composing v with the canonical
map I' — I'/A. The valuation ring of ¥ in A is A itself. Both v and &
define exactly the same valuation ideals, and

center(v) = center(v) = {a € A |V6 € A: 6 < v(a)}

(recall that A is Noetherian). Denote the center of v and & by p. Next we
study the behavior of the v— and v-ideals under localization at p. Note
that both v and # extend uniquely to valuations v, and v, of Ay and
that ©, defines the trivial valuation on the residue field. If o € Sper(A)
then v, = ¥, by definition of v,.

Lemma 4. Mutually inverse maps between the sets of v—ideals and
vp—ideals are defined by

I—TAy, J— JNA.
Proof. Suppose that I is a v—ideal and that £ € IA, witha € 1,5 ¢ p.

Pick % € Ap such that v, (i—') > vp (2). This implies v(bs) > v(at). Since
s € A\p there is some r € A\p such that v(r) < —v(s). Then

v(b) > v(brs) > v(atr).

Since atr € I we see that b € I and % € TAp. This proves that 1A,
is indeed a vp-ideal. On the other hand, it is trivial that JN A4 is a
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v—ideal for any vp~ideal J C A,. To prove that A, N A = I we pick
b=2€TAp,N A (with e € I, s € A\p). Again, choosing r € A\p with
v{r) < —v(s) we have

v(b) > v(brs) = v(ar)

with arel. It follows that €. Finally, it is a general property of
localizations that (JNA)A, = J.

The Lemma also applies to ¥, of course. So the v-ideals, t—ideals,
vp—ideals and vp—ideals are essentially the same thing. This makes it pos-
sible to replace v by ¥ in many places and to use localization techniques.
In particular, for any v and w we have {v,w) = (5, ®).

The separating ideal (v, w) of any two valuations is the entire ring
if center(v) # center{w). Since this is a rather unexciting separating
ideal we will restrict our attention entirely to the case that center(v} =
center(w). Denoting this center by p again it is a consequence of the
foregoing considerations that the separating ideal is well-behaved under
localization:

Proposition 3. If v, and w, are the unique extensions of v and w to
Ap then (vp, wp) = (v, w)Ap and (v, w) = (vp, wp} N A.

The next result gives us a set of generators for (v, w):

Proposition 4. Let v,w be valuations of A having a common center,
and assume that v = ¢, w = w. Then either v and w are both triviel
and (v, w) = supp(v) = supp(w) or {v,w) is generated by the set

M={f€eAl3ged: v(f)<v(g) & w(f) > wlg)
or 3g € A:v(f) > v(g) & w(f) < wlg)}.

Proof. Since the case of trivial valuations is clear we suppose that v is
non-trivial. Suppose that f € M and v(f) < v(g), w(f) > w(g). Then

I={a€A|v(a)>v(f}}
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is a v—ideal which contains g, but not f. Hence, I is not a w-ideal
This implies that I C {(v,w), e, v(f) = v({v,w)). This proves that
M C {v,w). Conversely, (v,w) is obviously generated by the set

N = {f € A]v(f) = (v, w))}.

Now pick f € N and suppose that also
w(f} = w({v,w)).
By definition of {v,w) the ideals
I={a€A|v(a)>u(f)}

and

J={a € A|wl(a) > w(f)}

do not coincide. Thus, there is some a € I\J or some a € J\[. In either
case this element a shows that the condition defining M holds for f, i.e.,
f € M. Next suppose that

w(f) > w(g) = w({v,w))

with some suitable g € (v, w). Then there exist a € A such that

v(f + ag) = v({v,w)), w(f + ag) = w({v,w)).

By the first case discussed above we see that f + ag € M. Also, since
g € {v,w) it is clear that v(g) > v(f). The definition of M shows that
g € M. But then f € (M). Altogether this proves that N C (M), and
we conclude that (M) = (v, w).

The description of (v, w) in Proposition 4 is very much reminiscent
of the definition of {a, B)(a,8 € Sper(A)) in [8]). Instead of using
functions changing sign between o and 8, now we consider functions
which are of different order of magnitude with respect to v and w. If
v = v and w = vg then, obviously, this is a much coarser approach
than Madden’s.
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To show the geometric significance of separating ideals we will now
establish a connection with the tangent spaces and tangent directions of

§1.

Theorem 1. Let (A, m,k) be a local ring and suppose that the valuations
v and w are both centered at m and have support properly contained in
m. Then (v,w) = m if and only it Ty # T,.

Theorem 2. Let (A,m,k) be a local ring and suppose that o, 8 €
Sper(A) are both centered at m, induce the same total order on k and
have support properly contained in m. Then (a, 8} = m if and only if
the tangent directions of o and 8 are different.

Proof of Theorem 1. From the definitions it is obvious that m?/m? #
m¥/m? in m/m? if and only if Ty # Ty in (m/m?)Y. It is also clear
that {(v,w) = m if and only if m? # m™.

Proof of Theorem 2. First suppose that {a,8) = m. If {a,8) =
{va,vg) then Theorem 1 implies that T, # 7'g. By the definition of P~
cones, T, is spanned by every cone belonging to the tangent direction
of o and Tg is spanned by every cone belonging to the tangent direction
of 3. Thus, the tangent directions must be different. If {a, 8) D (va, vz}
then m® = m?, ie., T, = Tp, but o and 3 define different total orders
on m/m® = m/mP. The tangent directions of & and A must be differ-
ent since Proposition 1 shows that they determine the total orders of
m/m® = m/mP. Finally suppose that (e, 8) C m. Then m® = m? and
« and F define the same total order on m/m® = m/m®. Therefore the
tangent directions agree.

Returning to the example at the end of §1 we see that all separating
ideals between any two of the orderings a1, a9, a3, and a4 are equal to the
maximal ideal (X,Y). But the separating ideals (va,, va;) (with i # j)
are equal to m if i +j = 1(mod 2) or different from m if i +j = 0(mod 2)
as the tangents are different or equal in these two cases.

From [14], Appendix 4, it is clear that valuation ideals and convex
ideals in a ring A are always complete (= integrally closed). Among the
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complete ideals the simple complete ideals play a particular role. These
are the ideals which cannot be represented nontrivially as a product of
other ideals. They are of great importance for the theory of complete
ideals in 2-dimensional rings (cf. [13]; [14], Appendix 5; [7]). From
Noetherianity it is clear that every complete ideal in A can be factored
into a product of simple complete ideals. For v-ideals it is immediately
clear that they can even be factored into simple v-ideals (cf. the discus-
sion following Proposition 2.1 in [1]). It is shown in [1}, Proposition 2.2,
that under a suitable hypothesis the separating ideal (o, 3) is simple.
Note that I* 2 Im if (4, m,k) is a local ring and I C A is an a-ideal,
hence I/® is a k-vector space. In this situation the hypothesis is that
dimy I/7® = 1. Using an obvious variation of this hypothesis it can also
be shown that separating ideals of valuations are simple:

Proposition 5. Let (A,m,k) be a local ring, let v,w be valuations
centered at m. If dim I/IY = 1 for all v—ideals properly containing
(v, w) then (v, w) is simple.

Proof. Without loss of generality one may assume that v and w induce
the trivial valuation on k. If (v, w) is not simple then it can be written
as {v,w) = IJ where I,J C m are both v—ideals and w-~ideals. Note
that the hypothesis applies to I and J. It is clear that

v(I) +v(J) = v{{v,w)), wl(l)+ w(J)=w({v,w)).

Since {v,w)? is not a w—ideal or {v, w)¥ is not a v—ideal the symmetric
difference of the two ideals is not empty. Without loss of generality,
assume that there exists ¢ € (v, w)"\{v, w)”. Then ¢ € (v, w) = IJ and
w(c) = w({v,w)). There are zy,...,z¢ € I, y1,...,yx € J such that
¢=z1h + ...+ Trye- Suppose that the enumeration is such that

w(z1) = ... = wlx) = w(l},

wip) = . = ww) = w()
and, for every i = 1+ 1,...,k, w(z;) > w(I) or w(y:) > w(J). The
same relations hold if w is replaced by v. Since w(c) = w(IJ) we must
have I > 1. By hypothesis, dim /1Y = 1 = dim J/J". Hence there are
P2y sPl G2y .-, € A* such that
pix1 mod IV = IV,
qyy mod JY = JY,

o = po¥y, -..y X
y2 S qov1, ..., WY1
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This yields

c= (1+pogz+...+ pig)zry + 2
with v(z) > v({v,w)) and w(z) > w({v,w)). Now w(l + paga + ... +
piq1) = 0 implies that also v(1 + paga + ...+ pigr) = 0. But then

v(c) = v(z1) +v(y1) = v({v, w}),
a contradiction.
a

It was mentioned before that for o, 8 € Sper(A) the separating
ideal of the corresponding valuations is contained in the separating ideal
of the orderings. Assuming the hypotheses of Proposition 5 we take a
closer look at this relationship. To do so define

AT = {a€A | signala) = sign a(B)},
A- = {a€d | signa(a) # signa(f)}.

Thaus, {a, 8) is the ideal of 4 generated by A~. If T, is the value group
of vy (including o) then we set

o =va{A), Ty =va(A1), T3 =va(A7).

If oo is deleted then 1Y, is a submonoid of T',. By the definition of v,,
I'/, is contained in the positive cone of I',. Now we associate a sign with
each element of I',,. For v € [}, set

-1 if ye\[E
aly)=4¢ +1 if vy eI\,
0 if yelznNIY or v=o0c.

Lemma 5. If (a, 8) € m then v = va({va, vg)) 8 the smallest element
of T, with sign 0.

Proof. Suppose that ¢(6) = 0 and that § < v. Then there are a €
At b e A~ (say, ala) > 0,b(a) > 0,a(8) > 0,b(8) < 0) with va(a) =
va(b) = 8. The a-ideal

I'={z € A|va(z) 2 6}
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properly contains {(v,,vg), hence dim I/I® = | and there is some c € A*
such that va{a+bc) > 6. This implies c(a) < 0 and (since o and 3 define
the same total order on k) ¢(8) < 0. We conclude that vg(a) > vg{a+be)
and hence, by Proposition 4, a € (va,vg}, a contradiction. It remains
to show that o(v) = 0. If v = oo the claim is clearly true. So assume
that v < o. Pick @ € M (the generating set of (va,vg) discussed in
Proposition 4) with ve(a) = v. First suppose that there is some b € A
with

va(a) < va(b), va(a) > vp(b).

We may assume that a{a) > 0. A S-ideal is defined by
I={z € A|vg(x) 2 vg(b)}-

As the total order induced by 8 on I/I? is archimedean over k there
is some ¢ € A* such that (a + cb}(8) < 0. Since (g + cb)(a) > 0 it
follows that a + ¢cb € A~. Similarly, there is some d € A* such that
(a + db)(8) > 0. Since (a + db){a) > 0 we see that a +db € A™T.
Altogether this proves o(y} = 0. Finally suppose that there is some
b € A such that

vala) > va(b), va(e) < vg(b).

Interchanging the roles of o and 3 in the foregoing discussion one proves
o(y)=0.

The well-ordered monoid [, has a unique minimal set I';, of gener-
ators. To determine the sign of every v < va({va, vg)) it is only necessary
to know the signs of the elements of

I‘((]s) = {6 [ I‘g [ 1) < va((va:vﬂ))}'

In particular, if (va, v3) C (e, B) then va{{ar, B)) € TS). (This strength-
ens the result of 1], that {@, 3) has to be a simple ideal.) So, whenever
1"5;? ) is finite (this is the case, for example, if v, is discrete of finite rank)
and dim I/I* = 1 for every a—ideal and g ranges in Sper(A) then there
are only finitely many possiblities for {a, 8} with {(a, 8) D (va,vg)-
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3 Quadratic transformations

One of the most important tools in the investigation of complete ideals in
regular local domains of dimension 2 are quadratic transformations (cf.
[13]; {14], Appendix 5; [5]). Since we also wish to employ this technique
we will have to clarify the behavior of separating ideals under quadratic
transformations. The setup is as follows: Let (A,m, k) be a regular
local ring of dimension n. Let K be the quotient field of A. A quadratic
transformation of A is a regular local subring A’ of K dominating A
which is obtained in the following way: A’ is the localization of an
extension Az~ !m| of A (where z € m\m?) at a prime ideal restricting to
m in A. The properties of the morphism Spec(A’}) — Spec(A) of schemes
corresponding to the canonical inclusion A — A’ are well-known. The
properties of the functorial map Sper(A’) — Sper(A) are discussed in
[1]. Working in the same vein we will look at the extension of valuations
from A to A’ now.

Let v be valuation of A with center m and support p. First suppose
that p = m, i.e., v is essentially the trivial valuation of the residue field .
For every z € m\m? the prime ideal m Az ~!m| = zA[z~1m] C Alz—m)]
has dimension » — 1. Any valuation of A[x~1m] whose support contains
zA[z"'m] is an extension of v. So, v is always extendible to a valuation
of a quadratic transformation A’ = A[z"1m],, where ¢ C Alz"!m] is
a prime ideal containing x. In general there are many different such
extensions. Now suppose that supp(v) C m. I = € supp(v) then for
any extension w of v to a valuation of A[z~'m) the support contains
zAlz~'m] = mA[z1m], ie., supp(w) N A = m. But this is impossible.
So v is extendible only if x ¢ supp(v). If this condition holds then
A" = Alz~lm], (with gnA = m) is contained in A supp(v)- Since v extends
uniquely te a valuation of 4 supp(v) it is clear that v extends uniquely to
A'. This extension of v is called the transform of v and is denoted by
v’. Similarly, if & € Sper(A) is centered at m and if z ¢ supp(a) then
the unique extension of o to an ordering of A’ is denoted by o' and is
called the transform of o. Finally, for an ideal I the strict transform
is denoted by I'. In {1], §3, the notion of a quadratic transformation
of A along a valuation or along an ordering is explained. It is shown
there (loc. cit., Lemma 3.1) that {a', 8"} 2 (e, B) if a is centered at m,
supp(a} C m and (a, 8) C m. We shall deal exclusively with quadratic
transformations along a valuation or an ordering. If oo € Sper(A) and
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4’ is the quadratic transformation of A along « then it is clear that
ne' = (vq)'. Similar to [1], Lemma 3.1, we prove

Proposition 6. Let v,w be valuations of A, centered at m, {(v,w) C m.
Let A’ be thn_e quadratic transform of A along v. Then the transforms v'
and w' are both defined and (v/,w') 2 (v, w).

Proof. The ring A’ is obtained as a localization A[z~!m}, where v(z) =
v(m), i.e., z € m\m". Since we are assuming (v, w) C m it follows that
{v,w) C m™ = m". Therefore supp(w) # m and x= ¢ supp(w}, and this
shows that both v’ and w’ are defined. Let » be the order of (v, w) (cf.
[14], p. 362). Then

(v, w) =z (v, w)_A',

and this ideal is generated by the set { & | @ € M} (with M as in Propo-
sition 4). It suffices to show that every %, a€M, belongs to (v, w’).
For example, suppose that there is some b € A with v(a) < v(b), w(a) >
w(b). Since A’ C Aguppv) a0d A’ C Agypp(u) it follows immediately that

rf @ b rf @ f b
U;;_(U;’;,WEZU)F,‘

ie, & € (v, w').
B

In (1], Example 3d, it is shown that in the case of orderings the
containment {a', 3"} D (o, 8’} can be proper for 3-dimensional rings.
Similar examples can be constructed to show the same phenomenon for
separating ideals of valuations.

4 Two-dimensional regular local rings

Now we leave the general discussion of separating ideals and turn to the
case that (4,m, k) is a regular local ring of dimension 2. Since we are
aiming particularly at a geometric understanding of separating ideals of
orderings on a smooth real algebraic surface defined over a real closed
field we also assume that the residue field k is real closed. The theory
of complete ideals is very well developed in this situation; this allows
us to obtain more specific results about separating ideals than in the
preceding sections.
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Usually the investigation of complete ideals in a regular local ring
is concerned mostly with m—primary ideals. We will first see that these
are also the most interesting ideals from the point of view of separating
ideals. So, pick a, § € Sper(A), a # 8, having a common center p C A.
If height(p) < 1 then we can localize at p to obtain a regular local ring
of dimension at most 1. Since separating ideals are easy to handle in
such a setting we will not concern ourselves with this situation here.
So we assume that the center of o and 8 is m. If {a,3) = (0) then
a = f contrary to the choice of o and 3. If height{{a, 3)) = 1 then ¢ =

{a, B) is a prime ideal of height one. Again we can localize at ¢ to get
into a one—dimensional situation. Therefore we shall now assume that
(e, B) is an m—primary ideal. The additional assumption at supp(a) C
m, supp(8) C m serves to exclude trivial cases.

The radical r of {ve,vs) is a prime ideal (Lemma 3). Whenever
there is a prime v,— or vg-ideal ¢ of height 1 containing r then a + ¢
and 8+ g are specializations of o and 8 and (since {a, 8} is m—primary)
{o, B) = {@+ ¢, 8+ q). Therefore, to study the separating ideal {a, 3}
is essentially the same problem as to study the separating ideal of the
orderings & and 3 induced in A/q by « and 8. With A/q we are in a
1-dimensional situation again, although in this case the ring A/q is not
necessarily regular. However, the investigation of 1-dimensional rings is
not our main concern here. So we only mention that related situations
were considered in [10] and that the separating ideal in A/g can be
analyzed by looking at the integral closure A/q in ¢f(A/q) which is a
Dedekind domain.

We are left with two cases now: Either r == (0) and (0) and m are
the only prime vo—and vg-ideals, or r = m. In the first case we have
va = vg, and a and 3 are total orders of A. Moreover, by [1], Lemma 4.5,
dim I/I* =1 for every a—ideal I O {«, 8), hence {&, 8} is simple. In the
second case we show that both {a, 8) and (vqa,vg) are simple. First note
that (1], Lemma 4.5, is applicable, hence {(a, 3) is simple. For (v, vg),
consider the sequences p1 = m D p2 D ... of simple v,—ideals and
g1 =m D qy D ... of simple vg-ideals. Since the sequences of v,-ideals
and vg-ideals diverge after finitely many steps it follows from Zariski’s
theory of complete ideals (cf. [14], Appendix 5} that there must be some
n such that py, is not a vg-ideal or g, is not a vo—ideal. (Strictly speaking,
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to be able to apply Zariski’s theory we need to work with valuations of
the field ¢f(A) and not only with valuations of A. However, if, for
example, v, is not a valuation of ¢f(A), i.e., if supp(va) # (0} then
one can replace v, by the valuation obtained as the composition v of
the valuation belonging to the discrete valuation ring A ,upp(s,) 8nd the
valuation of ¢ f(A/supp(ve)) defining va. The separating ideal of v and
vo is supp(ve). If we are only interested in a finite initial part of the
sequence of v We can therefore work equally well with v as with ve.) So
{va,vg) properly contains a simple v,—ideal or a simple vg-ideal. But if
I is any v,—ideal (or vg-ideal) properly containing a simple v,—ideal (or
vg-ideal) then dim I/I% =1 (or dim 1/1P=1).

We have shown so far that {o, 3) is always simple and that (ve, vg) =
0 or {va,vg) is simple. For the further analysis of the separating ideals
we will use (iterated) quadratic transformations. As we saw in §3, we
always have
(.8 € (o,8),
(arvg)’ € (vgvp).

In the present setting this can be improved. It is shown in [1], Propo-
sition 4.7, that {a,B8)Y = {o/, ") if {o,8) C m. For valuations the
corresponding result is almost immediate from [14], p. 390 ff. For, if
(va,ug) = (0) then it is clear that (v,,vg) = (0) = (vVa, vg), and if
{va, vg) is m—primary then (va,vg)' is a simple v~ and vj-ideal, hence
the sequence of v,—ideals preceding (va,vg)’ and the sequence of vg-
ideals preceding (va, vg)’ both agree. But then (v}, vjs) C {va,vg)’ which
proves the transformation formula for separating ideals of valuations. (it
is clear that the same argument works for any two valuations v,w of A
such that {v,w) is simple and m—primary.)

If AC A’ C A” C ... is the sequence of iterated quadratic trans-
formations of A along o then we denote the r—th iterated transforms of
a,f,... by @, 8™ .. Suppose that r is minimal such that

{a, ﬁ)(f) ) c A

Using the terminology of tangent directions introduced in §1, this means
that A(™ is the first quadratic transform in which the tangent directions
of ™) and B(" are separated {Theorem 2). Now there are two possible
cases: Either {c, ,6)(’") = {vq, vg) () (which means that even the tangents
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have been separated - ¢f. Theorem 1) or (a, 8)™ D (va, vg)(") (which
means that the tangents of o™ and 8 agree, but of") and 8" ap-
proach the common center from different directions along the tangent).
This proves

Theorem 3. If AT is the first quadratic transform of A along va with
(a7, ﬂ(’")) = m" then o) and B) have different tangents or different
tangent directions along the same tangent according as (a, 8) = (vq,vg)
or {a, B) D (va,va).

The paper concludes with a couple of remarks.

Remark 1. Suppose that o € Sper(A) is given and that I'/ is defined
as at the end of section 2. Let I be any simple m—primary a-ideal and
let J be any simple m—primary a—ideal of the form

J={a € A|va(a) 27}

where 0 < v € I's. Then using the technique of quadratic transforma-
tions it is possible to show that there exist some 7,9 € Sper(A) such
that I = {a,n) = (va,vy) and J = {a,9) D (va, va).

Remark 2. There is yet another way to distinguish the two ways how
the iterated transforms o™ and 8") are separated. It involves the notion
of minimal reductions (cf. [11]). Every m-primary ideal I C A has
many minimal reductions, each of which is generated by a system of
parameters (i.e., by two elements which generate an m—primary ideal).
I is the integral closure of each such minimal reduction. First suppose
that (@, 8) O (vq,vg) and pick a minimal reduction (a,b) of {a, 8). As
(e, B)* = (o, B)Y? and dim(a, 8)/{a, B)® = 1 we see that one generator,
say a, of the minimal reduction has value v,({a, 8}) and, after replacing
b by a linear combination ca + b with ¢ € A* if necessary, va(b) >
va({a, B)). Since {vq,vg) C {o,B)* = (o, B)? we also have vg(a) =
vg({e, B)), va(d) > vg({e, B}). Now suppose that {a, 8) = (va,vg) and
that (e,%) is a minimal reduction of {(a,d) again. We will show that
either va(a) = va({a, 8)) and vg(d) = vg({a, B)) or va(b) = va({e, B))
and v(a) = vp({a, B)).
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To prove this assume that v4(b) > va({a, 8)) and vg(b) > va{{a, B)).

It is easy to show that if s = ord({a, A)) the transform {, 3)’ under a

a b
a° z*

reduction. In particular v, (m%—) < Vg (f;) and vg (5“;) < vg (%) Now

quadratic transformation A C A’ = Az~ 1m], has ) as a minimal

apply quadratic transformations along o to transform (o, 8) into m().
Then (a,b) is transformed into a minimal reduction (a(”, b)) of m{
with v4(a™) < va(87),v5(b™) < vg(5™)). But m) is basic (ie., it
has no proper reductions), hence m™ = (a("), (). It is obvious that
m(r)2 c m®a B Moreover, 5 € m™Ma A m (B, But then

(m (2 b(r)) C m®a q (M8,
Since dim m (" /(m2 p(")) = 1 this implies that
mre _ (m (n2. b(")) — m®8

Since the order of this ideal is 1 it is a simple complete ideal. Also it is
a vo—ideal and a vg-ideal. Therefore it is the transform of some simple
v~ and vg-ideal I C A. Since I C (a, )7 = (va, v5){") we see that
I C {(va,vg). Thus, there is a simple vo— and vg-ideal in A which is
properly contained in (vg,vg). But then the sequences of vo— and vg—
ideals agree up to I. This contradicts the definition of {vq,vg), and the
proof of the claim is complete.

Remark 3. Suppose that k is a totally ordered field. Let A = k[X,Y]
be the polynomial ring in two variables, K the quotient field of A. Let
a be a total order of A having center p = (X,Y). In Sper(A) the
closed specialization of o is denoted by 8. Refering to o, suppose that
0<Y < X. Set Y= %E and consider A’ = A[Y']. In Sper{A’) there
is a unique point o’ restricting to « in Sper(A). Let 8’ be the closed
specialization of o’ in Sper(A4’). Under suitable hypotheses a directional
form was associated with the valuation vg in [14], p. 364, Definition 1.
The purpose of this remark is to point out a connection between this
directional form and our tangent directions introduced in section 1.
The exceptional divisor of the quadratic transformation 4 — A’
" is represented by the factor ring A’/X A’. This ring is isomorphic to
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the polynomial ring B = k{Y']. In K let V, be the valuation ring of
Uq, let My be the maximal ideal. There is a canonical homomorphism
B — V4 /M. If this is injective then V, is the valuation ring of the order
valuation of A belonging to the maximal ideal p. In this case there is no
directional form, so there is nothing to do.

Now suppose that B — V,/M, is not injective. The kernel is
generated by some irreducible polynomial f in the variable Y’. This
is essentially the directional form of [14]. In A4 let L be the k-vector
space of linear forms. The total order o of A restricts to a total order of
L. The Zariski cotangent space p/p? can be identified canonically with
L, the Zariski tangent space (p/p®)Y can be identified with k2. Given
0<l,....lr €L, let

Py, ... )= {z € k? | Vi : li(x) > 0}.

The set of all these cones in k? defines a tangent direction according
to section 1. Each one of these cones corresponds to a closed interval
on the exceptional divisor of the quadratic transformation. The set of
these intervals is the basis of a filter on k. The following conditions are
equivalent:

(1} The directional form ¥ is linear.

(2) The totally ordered vector space L is not archimedean over .
(3) B’ defines a k-rational point on the exceptional divisor.

(4) The intersection of the intervals contains a k-rational point.

If these conditions hold then the unique nontrivial convex subspace
of L is generated by a linear form f with proper transform f’ € A’ such
that the residue of f' in B is the directional form. The k-rational point
of (4) is unique and is the same as the k-rational point of (3) and the
same as the point defined by the linear directional form in (1).

For the discussion of the general case let R be the real closure of
k. The total order of V,/M, restricts to a total order of B/(f). Since
B/(f) is an algebraic extension of k there is a unique embedding into
R. Let z € R be the image of Y'+ (f). Then, identifying the R-rational
points on the exceptional divisor with R, z belongs to the intersection
of the system of intervals determined above. Clearly, z is one of the
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roots of the directional form. The total order of B/(f) gives enough
information to distinguish z among the different roots of F. Thus, it
is legitimate to consider z as the R-rational point on the exceptional
divisor determining the tangent for the total order a. Of course, the
total order of L contains less information than the total order of B/(f).
Therefore, the intersection of the intervals will, in general, contain more
roots of f than just z. So the directional form offers a choice of tangents
for . With the information coming from the total order of L the field
of candidates is narrowed down, but not necessarily down to 1. If there
is only one candidate left then, of course, this is the true tangent.

Finally, to mention one particularly important special case, sup-
pose that k is real closed, i.e., k = R. Then z is a k-rational point and
the equivalent conditions (1) — (4) apply.
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