REVISTA MATEMÁTICA de la

Universidad Complutense de Madrid

Volumen 10, número Suplementario: 1997

http://dx.doi.org/10.5209/rev_REMA.1997.v10.17378

Periodic solitons and real algebraic curves.

S. M. NATANZON

Abstract

We describe a method of calculation of all physical algebraicgeometrical solutions of KP-equations.

1. In the middle of seventies in works of S. P. Novikov and others was discovered a new method of solution for some important differential equations of mathematical physics [4]. At first, I shortly remind this method.

Let

$$B = \{B_{ij}\} \in GL(g,C)$$

be a complex symmetric matrix such that the matrix ReB is negative definite. Then there exists a θ -function $\theta: C^g \to C$, where

$$\theta(z \mid B) = \sum_{N \in Z^g} \exp\{\frac{1}{2} \sum_{ij=1}^g B_{ij} N_i N_j + \sum_{i=1}^g N_i z_i\},$$

$$z=(z_1,\ldots,z_g), \quad N=(N_1,\ldots,N_g).$$

Let

$$e_k = (0, \ldots, 1, 0, \ldots, 0), \quad k = 1, \ldots, g$$

be the standard basis of C^g and $f_k = Be_k$. Then

$$\theta(z + 2\pi i e_k) = \theta(z)$$

Mathematics Subject Classification: 14H45-14P99-30F30 Servicio Publicaciones Univ. Complutense. Madrid, 1997. and

$$\theta(z+f_k)=\exp(-\frac{1}{2}B_{kk}-z_k)\theta(z).$$

Let Γ be a group generated by

$$2\pi ie_1,\ldots,2\pi ie_g,f_1,\ldots,f_g.$$

Then the quotient set $J = C^g/\Gamma$ is an Abelian variety. Let

$$\Phi: C^g \to J$$

be the natural projection.

In applications there often appear θ -functions connected which Riemann surfaces. Let P be a Riemann surface of genus g and

$${a_i, b_i, i = 1, ..., g} \in H_1(P, Z)$$

be a symplectic basis of $H_1(P, Z)$. This means that the intersection indexes are

$$(a_i, a_j) = (b_i, b_j) = 0, \quad (a_i, b_j) = \delta_{ij}, \quad 1 \le i, \quad j \le g.$$

Let $\omega_1, \ldots, \omega_g$ be holomorphic differentials on P such that

$$\int_{a_k} \omega_j = 2\pi i \delta_{kj}.$$

Then the matrix

$$B_{ij} = \int_{b_i} \omega_j$$

is symmetric and ReB is negative definite. Thus it gives a θ -function $\theta = \theta(z \mid B)$.

2. Consider now Krichever's construction of τ -function. Let $p_0 \in P$, $p_0 \in V \subset P$, and $\epsilon: V \to C$ be a local map such that $\epsilon(p_0) = 0$. Then the differential ω_i has a representation

$$\omega_i = (w_1^i + w_2^i \epsilon + w_3^i \epsilon^2 + \ldots) d\epsilon \quad (i = 1, \ldots, g).$$

Consider vectors

$$w_n = (w_n^1, \ldots, w_n^g) \quad (n = 1, 2, \ldots).$$

Consider also a meromorphic differential Ω_i on P, which is holomorphic on $P - p_0$, has a representation

$$\Omega_i = \frac{id\epsilon}{\epsilon^{i+1}} + (2\sum_{j=1}^{\infty} \alpha_{ij}\epsilon^j)d\epsilon$$

and such that

$$\oint_{a_k} \Omega_i = 0 \quad (k = 1, \dots, g).$$

These conditions completely define $\alpha_{ij} \in C$. It is possibly to prove that

$$\alpha_{ij} = \alpha_{ji}$$
.

An algebraic-geometrical τ -function is

$$au(z_1, z_2, \ldots) = \exp\{-\sum_{ij=1}^{\infty} \alpha_{ij} z_i z_j\} \theta(\sum_{i=1}^{\infty} z_i w_i + \triangle \mid B),$$

where $\Delta \in C^g$.

Solutions to a lot of important equations of mathematical physics can be expressed by $v = \ln \tau$. Consider for example the equations KP (Kadomtsev-Petviashvili), which describe waves in plasma.

$$\frac{3}{4}\partial_2^2 u = \partial_1[\partial_3 u - \frac{1}{4}(6u\partial_1 u + \partial_1^3 u)]$$
 KP1

$$-\frac{3}{4}\partial_2^2\tilde{u} = \partial_1[\partial_3\tilde{u} - \frac{1}{4}(6\tilde{u}\partial_1\tilde{u} + \partial_1^3\tilde{u})], \qquad KP2$$

where $\partial_i = \frac{\partial}{\partial z_i}$. I. M. Krichever proved that

$$u(z_1, z_2, z_3) = -2\partial^2 v(z_1, z_2, z_3, 0, 0, \ldots)$$

is a solution of KP1 and

$$\tilde{u}(z_1, z_2, z_3) = u(z_1, iz_2, z_3)$$

is a solution of KP2. These functions u and \tilde{u} are complex meromorphic functions. For physics applications, however, it is necessary that u and \tilde{u} will be real and smooth functions on $(z_1, z_2, z_3) \in R^3$.

3. In 1988 B. A. Dubrovin and me proved [5] that the functions u and \tilde{u} are real (on R^3) if and only if P is a real algebraic curve and ϵ, Δ satisfy some additional conditions.

Let us describe these conditions. Let (P,β) be a real algebraic curve. This means that $\beta: P \to P$ is an antiholomorphic involution. The fix points of β form a set $\text{Re}(P,\beta)$ of real points of (P,β) . It disintegrates on $k \leq g+1$ simple contours a_0,\ldots,a_{k-1} . We suppose that $p_0 \in a_0$. A local map $\epsilon: V \to C$ is called real if $\epsilon\beta = \bar{\epsilon}$. A differential ω is called positive on a if $\omega = f(\epsilon)d\epsilon$, where ϵ is real and $f(V \cap a) \subset R$, $f(V \cap a) \geq 0$.

The involution β gives an antiholomorphic involution $\beta_J: J \to J$. The fixed points of the involution β_J form $m=2^{k-1}$ tori

$$T_{\epsilon_1,\ldots,\epsilon_{k-1}}$$
 $(\epsilon_i=0,1).$

The Abelian map gives a one-to-one correspondence between points of

$$T_{\epsilon_1,\ldots,\epsilon_{k-1}}$$

and a set of divisors $D \in P^g$ such that a set $a_i \cap D$ contains

$$n_i \equiv \epsilon_i \pmod{2}$$

points.

Theorem [5]. The function $u(z_1, z_2, z_3)$ is real on R^3 if and only if the ϵ is a real local map and $\beta_J \triangle = \triangle$. It is smooth if and only if k = g + 1 and $\triangle \in \Phi(T_1,...,1)$.

A local map ϵ is called imaginary if $\epsilon \tau = -\bar{\epsilon}$. The fixed points of the involution $-\beta_J$ form $m = 2^{k-1}$ tori $I_{\delta_1,\dots,\delta_{k-1}}$ ($\delta_i = \pm 1$). The Abelian map gives a one-to-one correspondence between points of $I_{\delta_1,\dots,\delta_{k-1}}$ and a set of divisors $D \in P^g$ such that $D + \tau D$ is the divisor of zeros of a holomorphic differential ω , which is positive on a_0 and has a sign δ_i on a_i .

Theorem [5]. The function $\tilde{u}(z_1, z_2, z_3)$ is real on R^3 if and only if the ϵ is an imaginary local map and $\tau_J \triangle = -\triangle$. It is smooth if and only if $P \setminus Re(P, \tau)$ is non connected and $\triangle \in \Phi(I_{1,\dots,1})$.

4. For calculations by these theorems it is necessary to find the matrix B, the vectors w_n and the α_{11} . For arbitrary Riemann surfaces

this is Schottky's problem, which has not now effective solution. But in 1987 A. I. Bobenko [2] found a method of calculation B, W_n, α_{11} for real algebraic curves, which was based on classical results of W. Burnside [3] and H. F. Baker [1] and modern results of the theory of Fuchsian groups [6].

Let G be a Schottky group on $\Omega \subset C \cup \infty$ with generators $\sigma_1, \ldots, \sigma_g$, where

$$\frac{\sigma_n z - B_n}{\sigma_n z - A_n} = \mu_n \frac{z - B_n}{z - A_n}$$

such that $P = \Omega/G$. Put us

$$G/G_n = \{\sigma = \sigma_{i_1}^{j_1} \dots \sigma_{i_k}^{j_k} \mid i_k \neq n\}$$

and

$$G_m \setminus G/G_n = \{ \sigma = G/G_n \mid i_1 \neq m \}.$$

Consider the series

$$\sum_{nm} = \sum_{\sigma \in G_m \setminus G/G_n} | \ln\{B_m.A_m, \sigma B_n, \sigma A_n\} |,$$

where

$$\{\overline{z_1,z_2,z_3,z_4}\} = \frac{(z_1-z_3)(z_2-z_4)}{(z_1-z_4)(z_2-z_3)}.$$

One can prove [1,2,3], that if $A_n, B_n, \mu_n \in R$, then $\sum_{nm} < \infty$ and

$$\begin{split} B_{nm} &= \frac{1}{2\pi i} \left(\sum_{\sigma \in G_n \backslash G/G_m} \ln\{B_m, A_m, \sigma B_n, \sigma A_n\} + \delta_{nm} \ln \mu_n \right), \\ w_n^i &= \sum_{\sigma \in G/G_n} ((\sigma A_i)^n - (\sigma B_i)^n), \\ \alpha_{11} &= \sum_{\sigma \in G \backslash 1} c^{-2}, \end{split}$$

where

$$\sigma z = \frac{az+b}{cz+d}.$$

The involution $z \mapsto \bar{z}$ gives an involution $\beta: P \to P$. One can prove [2] that this construction gives all real algebraic curves (P, τ) for GH = H where $H = \{z \in C \mid Imz > 0\}$.

Thus $\Gamma = G \mid_H$ is a Fuchsian group with a standard system of generators $\{\sigma_1, \ldots, \sigma_g\}$. Sets of numbers $\{A_n, B_n, \mu_n \mid n = 1, \ldots, g\}$, which correspond to such a system of generators, were found in [6].

Thus we describe a scheme of calculation of all algebraic-geometrical physical solutions of KP-equations. I. M. Krichever proved that these solutions approximate all quasi-periodical solutions of KP. In [7,8] an analogous method has been used for an integration of two-dimensional Schroedinger operators.

References

- [1] H. F. Baker, Abel's theorem and the allied theory including the theory of theta functions, 1897, Cambridge.
- [2] A. I. Bobenko, Uniformization and finite-gap integration, Preprint LOMI P-10-86.
- [3] W. Burnside, On a class of automorphic function, Proc. of the London Math. Soc. 1892, V.23, p.49-88.
- [4] B. A. Dubrovin, Theta-functions and non-linear equations, Russian Math. Surveys. 1981, 36:2, p.11-92.
- [5] B. A. Dubrovin, S. M. Natanzon, Real theta-function solutions of the Kadomtsev-Petviashvili equation, Math. USSR - Izv. 1989, 32, p.269-288.
- [6] S. M. Natanzon, Moduli spaces of real curves, Trans. Moscow Math. Soc. 1980, N 1, p.233-272.
- [7] S. M. Natanzon, Prymians of real curves and their applications to the effectivization of Schroedinger operators, Functional Anal. Appl. 1989, 23, p.33-45.
- [8] S. M. Natanzon, Differential equations on the Prym Theta Function. A realness criterion for two-dimensional, finite-zone, potential Schroedinger operators, Funct. Anal. Appl. 1992, N 1, s.1-9.

Independent Moscow University, Russia and

University of Strasbourg, France