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A really elementary proof of real Liiroth’s
theorem.
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Abstract

Classical Liiroth theorem states that every subfield K of K (£),
where { is a transcendental element over K, such that K strictly
contains K, must be K = K (h(t)), for some non constant element
h{t) € K(t). Therefore, K is K-isomorphic to K(t). This result
can be proved with elementary algebraic techniques, and therefore
it is usually included in basic courses on field theory or algebraic
curves. In this paper we study the validity of this result under
weaker assumptions: namely, if K is a subfield of €(t) and K
strictly contains R (R the real field, € the complex field), when
does it hold that K is isomorphic to R (t)? Obviously, & necessary
condition is that K admits an ordering. Here we prove that this
condition is also sufficient, and we call such statement the Real
Liiroth’s Theorem. There are several ways of proving this result
(Riemann’s theorem, Hilbert-Hurwitz 3]}, but we claim that our
proof is really elementary, since it does require just some basic
background as in the classical version of Liiroth’s.

1 Real Liiroth’s Theorem

Liiroth’s Theorem usually appears in courses on field theory or in courses
on algebraic curves, and -as it is well known- states that every subfield
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K of the field K () (¢t transcendental over K) transcendental over K
(this means, in particular, that ¥ contains K), is isomorphic to K (t),
see [4] vol. I pp. 515 (i.e K has the form K (h(t)), for some h(t) € K (t)),
or equivalently, that the field of rational functions of every K-rational
plane curve is isomorphic to K (t), see [7] vol I pp. 9.

Let now K’ be an algebraic extension of K, and K a subfield of
K'(t) (& transcendental over K') which is transcendental over K. Then
the natural question of analyzing if KK is isomorphic to K(t) arises. In
particular, if K = R and K’ = C one may study if K is isomorphic to
R(t). Clearly, this is not true for every K. For instance if K = C(t},
with ¢ transcendental over C, it holds that R ¢ K C C(¢), but K is
not isomorphic to IR(t). Similarly, if C is the curve defined by z2 432 +1
over C, and K = R(C} is the field of rational functions on C over R,
then R ¢ IK C €(t), but K is not isomorphic to IR(t) since K is not
orderable (2 + y? + 1= 0 in K). Real Liiroth’s theorem states under
which conditions K and R(t) are isomorphicl. More precisely:

Real Liiroth’s Theorem (Field theory version).
Every orderable subfield KK of the field €(t) (¢ transcendental over C)
transcendental over R, is isomorphic to IR(t).

We remark here that it is equivalent, for a subfield K of C(t}, to
be both orderable and strictly containing R and to'be orderable and
transcendental over R. In fact, if K strictly contains R, then either is
contained in € or contains some element in €(t) \ C. In the latter case,
clearly it is transcendental over IR. In the first situation, I can not be
orderable (since it will be an algebraic extension of R). The converse is
trivial

Equivalently, for algebraic curves, the theorem can be stated as fol-
lows:

Real Liiroth’s Theorem (Algebraic curves version).
Every real rational plane curve can be parametrized over the reals.

Let us remark that a real rational plane curve C is a curve parametriz-
able over C ([2] pp. 16,127,130), defined by f € R]z,y], f irreducible,
and such that R(C) is orderable (that is, C has infinitely many real

1This is equivalent to be R-isomorphic. We thank the referee for pointing out this
fact.
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points). In other words, C is a true curve in R? and its complexifi-
cation is parametrizable over C, i.e. it is the Zariski closure of a non
constant rational map from € to €2. A similar definition gives the con-
cept of curve parametrizable over the reals. Both imply, by the classical
Liiroth’s theorem, that the function field of the curve is isomorphic to
C(t) or R(t), respectively.

Before giving a proof of real Liiroth’s theorem, we first prove that
both statements are equivalent: let us assume that the field theory ver-
sion of real Liiroth’s theorem holds and let C be a real rational plane
curve. Then R(C) is orderable, and R ¢ R{(C) C €(t), with ¢ tran-
scendental over €. Thus, by real Liiroth’s theorem (field theory version)
one has that R(C) is isomorphic to R(¢), and therefore C is parametriz-
able over IR. Conversely, let us assume that the algebraic curves version
of real Liiroth’s theorem holds and let KK be an orderable subfield of
C(t) (¢ transcendental over C) transcendental over R. Then, since the
transcendence degree of K over R is one, there exists a curve C defined
by an irreducible f € R[z,y] such that K = R(C). Furthermore, C is
a real rational plane curve (R(C) is orderable, and C is parametrizable
over ). Therefore, applying real Liiroth’s theorem for algebraic curves,
one obtains that C is parametrizable over R.

In the sequel, we focus on the algebraic curves version of real Liiroth’s
theorem. Direct, non elementary proofs of the theorem can be deduced
from [1} or [6] (where algorithmic techniques develop some ideas in [3]).
The approach underlying parametrization algorithms can be applied to
derive a direct and constructive proof [5],[6]: in order to parametrize a
rational curve by means of adjoint curves, one considers the intersection
of the curve with a linear subsystem, of dimension one, of a linear system
of adjoint curves, obtained by introducing finitely many simple points on
the original curves as simple base points of the linear system. Therefore,
since the system of adjoint curves can be computed with ground field
operations, it holds that the rational curve can be parametrized over the
field extension of the ground field where the coordinates of the simple
points belong to. Thus, since any real curve has infinitely many simple
real points it follows that, taking real simple points in the sketched
algorithm, any real rational plane curve can be parametrized over the
reals; and therefore a direct and constructive proof (since methods for
determining simple points of rational curves over optimal extensions are

provided in [3],[6]) of real Liiroth’s theorem is derived. Also, a direct but
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non constructive proof can be given using the ideas of [1]: first one shows
that under the hypothesis of the theorem, K is of genus zero (genus is
defined in [1] through divisors). Since by extending the base field from
R to €, the genus of IK and of the result, IK’, of such extension, is kept
the same ([1], p. 99), we must just prove that the extended subfield
K’ of C(t) is of genus zero. This is achieved using the classical Liiroth
theorem and the fact ([1] p. 22) that C(¢) is of genus zero. Now {1],
p. 22, shows that for genus zero algebraic function fields K, if there
is at least one place of degree one, then IK is a purely transcendental
extension of the field of constants IR. But the hypothesis that K is
orderable implies that it has a real place, namely, a place with R as
residue field, thus of degree one,

2 An Elementary Proof of Real Liiroth’s
Theorem

As announced before, the aim of this note is to provide an elementary
proof of this theorem. By elementary we mean that it does not use
material beyond what is standard in the traditional presentation of the
classical Liiroth’s theorem. Of course it requires the concept of orderable
field, or —in the other version- of the idea (quite natural) of real plane
curve C, in the sense of being defined by a real polynomial and having an
infinite number of real points. Now, assuming that C admits a rational
parametrization with complex coefficients, we want to conclude that it
also has a rational parametrization with real coefficients. Let P(t) be a
proper (i.e. an almost always one to one) complex rational parametriza-
tion of C, then we will proceed as follows: first one associates with C
an additional curve € that provides the complex parameter values that
generate —via P— the real points on C; afterwards, one proves that € has
one real component C* that is either a circle or a line, and finally one
shows that if M = (m1(t), m2(t)) is any real parametrization of this real
component C* of €, then P(m(t) +imy(t)) is a real parametrization of
C. Thus, since C* is always parametrizable over R, one concludes that
C is parametrizable over R.

More precisely, let t = t; +itg, t1,t2 € R, denote a generic complex
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number, Then the parametrization P(t) can be written in the form:

hi(ts,t2) +i fi(ts, ta) ho(ty, to) + i fo(t1, to)

Pl =( ni(t1, to) ’ no(t1, t2)

)

where ny,n2, hi, ko, f1, fo € Rlz,y). Now, since C is real, there exist
infinitely many points (1,t2) € IR? such that P(t; + i o) is a real point
on C. Therefore, if F; is the set of zeros (t1,t2) € B2 of the polynomials
fi € Rlz,yl,i = 1,2, the curves F) and F; have infinitely many common
points, and hence, they have common components. Let C be the curve
defined as the union of the common components of F; and Fo. It is a
real curve, called the associated curve with C and P(t).

In the following, we analyze the algebraic properties of C. We start
with the following technical lemma. It roughly means that a curve in
C?, defined by a real polynomial, that is intersected just on one point
by a pencil of truly complex lines z = ay +t {i.e. non real), must be
either a conic or a line. The second part of the lemma, specifying the
kind of conic is not really needed in our proof, since we always know
how to parametrize a comic, but describes an interesting fact.

Lemma 1. Let f € R[z,y] be a non constant polynomial, and a a non
real complex number, such that, for almost allt € C, one has degy(f{ay+
t,y)) = 1. Then it holds that f(z,y) defines either a line or @ conic.
Furthermore, if f has degree two, then :

(1) If f is reducible over C, then there ezist k € C, such that f defines
the pair of conjugate complez lines (z —ay+k), (z —ay+k), where
a and k denote the conjugates of a and k, respectively.

(2) If f is irreducible over C, then f defines an ellipse. Moreover, in
this case, then f defines a circle if and only if a = =%i.

Proof. Let f be of degree d, and f = fq4+- -+ fo be the decomposition
of f in homogeneous components. The Taylor expansion at x = ay of
the polynomial f; € R[y][z] with respect to the variable = is

<210 -
15@) = 3 7 95 e, )z - o,
=0 "
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and so
J=d j=di 1_3 8f .
fz,y) = ij(m: y) = ZZ hLE A (ay y)(z— a.y)‘
j=0 F=01i=0 il
J=d i=j
190
=225 Lia,1) (e ~ ov)y?
7=04=0
Therefore, if we replace z = ay + ¢ in the above expression, we get:
1= af;
flay+t,y) = ZZ P iGN
j=0 i=0 "

Changing indexes, we can rewrite the above expression as:

k=di=d—k

flay+ty)=3_ > :, af"*‘( )iy~

k=0 =0

Since for almost all ¢ € € the degree of f(ay + ¢,¥) w.r.t y is one,
it follows that for ¥ = 2,...,d the polynomials :____g'k :-—{ﬁ( 1)t
€ C[t] vanish for infinitely many values of t. Hence, counting degrees,
%1‘;}'—"(«1,1) =0fork=2,...,dandi=0,...,d — k. In particular, when
k +i = d, one deduces that %(a,-l) =0for£=0,...,d —2. Therefore
(z — @)4! divides f4(x,1). Now, since a is a non real complex number
and f4(z,1) € Rlz], it follows that (z — @)% ! also divides f4(x,1).
Hence, 2(d — 1) < d, that is d < 2.

We now proceed to analyze the conic defined by f, so we assume
d = 2. Then, taking into account that (z — ay)(z — ay) divides fi(z, ),
one deduces that f can be written (up to a multiplicative constant) as

a? — 2a0zy + (af + al)y® + boz + bry + by

for some by, b1, b2 € R (ag and a; denote the real and the imaginary
part of a, respectively), and that (a: 1:0), (a2 : 1: 0) are the points at
infinity of the conic. Hence, since ¢ € R, f is neither a parabola nor
a hyperbola. Therefore, f has to be either a pair of conjugate complex
lines (clearly, the lines are then (z — ay + k), (z — ay + k) for some k € C)
or an ellipse; depending on the reducibility of f.
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In order to distinguish between general ellipses and circles, we assume
that f is irreducible and we analyze the lengths of the axis of the conic,
i.e. the eigenvalues of the matrix

1 —ag
B =
( —ag ag + a% )

Thus, since (trace(B))? = 4det(B) is the condition for coincident eigen-
values, it follows that f is a circle if and only if ag + (a1 £ 1)2=0, i.e,
if and only if a = +i.

Lemma 2. Let C be a rational real plane curve, P(t) a proper complex
rational parametrization of C, and C the associated curve of C, via P(t).
Then, there is a real component of C that is either a circle or a line.

Proof. Let T(z,y) = Ti(x,y) + iTe(z,y) € C(z,y), with T, T2 €
R(z,), a rational inversion of P(t) (i.e. for almost all (a, b) € € and
almost all ¢ € € it holds that T(P(tg)) = to and P(T(a, b)) = (a,b)).
Since P(t)=P(T1(P(t)) +iT2(P(t)), and since there are infinitely many
values of ¢ that turn P(t) real, it follows that Q(t) = (T1(P(t)), T2(P(t)))
parametrizes one real, irreducible component C* of é (here, since P is
proper one obtains that C* has infinitely many real points).

In order to prove that C* is a line or a circle let ¢* € Rlz,y]
be the irreducible polynomial (even over the complex field) that de-
fines C*. Then m(t,y) = g*(—iy + t,y) is also irreducible (note that
m is obtained by a change of coordinates of g*). Furthermore, since
Ty(P(t)) + i To(P(t)) = ¢ one has that m(t, To{P(t))) = 0, and therefore
m is linear in y (note that (y — To(P(t))) divides m(t,y) € C(t}{y] and
m is irreducible). Thus for almost all tg € € degy(m(to,¥)} = 1. Hence,
applying Lemma 1, and taking into account that C* can not be a pair of
complex conjugate lines since it is real, one concludes that C* is either
a line or a circle.

Summarizing, the previous results can be applied to give an elementary
and constructive proof of real Liiroth’s theorem: let C be a rational
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real plane curve, P(t) a proper complex rational parametrization of C,
and € the associated curve with C and P(t). Then, by the previous
theorem, € has a real component C* that is either a line or a circle.
Let M(t) = (m1(t), ma(t)) be a real rational parametrization of C*, and
consider the parametrization R(t) = P(m;(t) + ima(t)). It covers a
part of C, but since C is irreducible, C must be the Zariski closure of this
part. Moreover, since C*'is a component of € it holds that filmy,mo) =
J2(mi1, m2) = 0, and therefore R(t) ¢ R(t)2. Consequently, C can be
parametrized over the reals.
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