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Non-maximal cyclic group actions on compact
Riemann surfaces.

David SINGERMAN and Paul WATSON

Abstract

We say that a finite group G of automorphisms of a Riemann
surface X is non-mazimal in genus g if (i) G acts as a group of
automorphisms of some compact Riemann surface X, of genus g
and (ii), for all such surfaces Xy , | Aut X, |>| G |. In this paper
we investigate the case where G is a cyclic group C, of order
n. If Cy acts on only finitely many surfaces of genus g, then we
completely solve the problem of finding all such pairs (n, g).

Introduction

We start with examples of the sort of phenomena in which we are in-
terested. It is known that C7 (the cyclic group of order 7) acts as an
automorphism group of a Riemann surface of genus 3. In fact, there
are precisely two Riemann surfaces on which C7 acts, namely Klein’s
Riemann surface of genus 3 with 168 automorphisms and a hyperellip-
tic Riemann surface which necessarily contains an involution in its full
automorphism group. (This Riemann surface has C7 x Co = Ch4 as its
full automorphism group.) Thus even though C7 acts as an antomor-
phism group in genus 3, there is no Riemann surface X of genus 3 with
AutX = C7. In other words the action of C7 in genus 3 is always non-
mazimal. This example, though interesting is atypical and in a sense is
an accident in low genus. A more typical example is that Ci2 also acts
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non-maximally in genus 3. This result extends to every g in that Cy,
always extends to an automorphism group of order 89. However, for each
g there is only one compact Riemann surface of genus g that admits a
Clyg action. A different situation occurs for Cyy actions. We shall show,
with the exceptions of ¢ = 3,6,15, that Cay acts on infinitely many
Riemann surfaces of genus g and in all cases this action extends to an
action of a group of order 4g4.

To be precise we let, for each integer g > 1,

A(g) = {n € N|C,, acts as an automorphism group of some
Riemann surface of genus g},

B(g) = {n € A{g)| there is a Riemann surface X, of genus g with
AutX, = Cp},

D(g) = Alg) — B(g).

Thus D(g) consists of those values of n such that C, necessarily acts
as a non-maximal group of automorphisms of some Riemann surface of
genus g. The examples above can now be written as 7 € D(3),4¢g €
D(g),2g € D(g) if g > 15. Another simple example is to take G to be
the group of order 1. Then @ is a non-maximal group of automorphisms
in genus 2 but not a non-maximal group for genus ¢ > 2. This is
because in genus 2 every Riemann surface is hyperelliptic but for genus
g > 2 there exist Riemann surfaces with trivial automorphism group. (In
fact 'most’ Riemann surfaces of genus g > 2 have trivial automorphism
group.) Thus 1 € D(2) but 1 € D(g) if g > 2. The aim of this paper is
to investigate the set D{g). We will see that D(g) naturally falls into a
disjoint union of two subsets depending on whether C,, acts on infinitely
many surfaces or finitely many surfaces so we let

Do(g) = {n € D(g)| for finitely many Riemann surfaces X,
of genus g, C, < AutX,},
Doolg) = {n € D(g)| for infinitely many Riemann surfaces X,
of genus g,Cp < AutXy}, .
where < here denotes proper inclusion. Thus according to the infor-

mation in the first paragraph 7 € Dy(3), 49 € Dolg), 29 € Do (g) if
g > 1h.
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There is no general formula that will determine the integers in A(g)
although Harvey’s Theorem(see below) yields an algorithm and for small
values of g it is not too difficult to compute A(g). It is more interesting
to determine B(g) but this is a more difficult problem. We concentrate
on investigating D(g) as it is usually a smaller set than B(g) and knowing
both A(g) and D(g) will yield B(g).

Preliminaries. Let G be a group of automorphisms of a compact Rie-
mann surface X, of genus g > 1. We shall regard (G, X¢) as a Riemann
surface transformation group in the sense of Macbeath [M}. We can then
lift (G, Xg) to its universal covering transformalion group, (T, H), where
H denotes the upper-half complex plane which is the universal covering
surface of Xy and T is a cocompact Fuchsian group. Thus there is a
homomorphism @ : ' — G whose kernel is the surface group A, the
uniformising group of X, An epimorphism whose kernel is a surface
group is called a smooth epimorphism and a necessary and sufficient
condition for an epimorphism to be smooth is that it preserves the or-
ders of elements of finite order, see e.g. |H]. We shall suppose that I" has
signature

o(I') = (h;my,...,my) (1.1)
and presentation
(ﬂ.l,bl,..-,ah,bh,xl,...,$r|r?“ = I-rr'rh‘
h
=z1Z2...Zr Halblaflbfl =1). (1.2)

=1

First we recall Harvey’s Theorem|[H], which gives a necessary and suffi-
cient condition for the existence of a smooth epimorphism froma Fuch-
sian group to a cyclic group. We use the notation |u, u2, ..., ur| to denote
the least common multiple of uy, uo, ..., us.

Harvey’s Theorem. Let ' be a Fuchsian group with signature (1.1).
Then there exists a smooth epimorphism 6 : T — Cpn if and only if

(i) [m1,m2,....,me| = [m1,..., M4, ...,mys| = M, where m; denotes the
ommission of my,

(ii) M divides N and if g= 0 then M = N.
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(#i) r# 1, and if g=0, thenr > 3.

(1v) If2|M then the number of periods divisible by the mazimum power
of 2 dividing M is even.

We shall call a signature obeying the conditions (i),...(iv) of Harvey’s
Theorem a Harvey signature.

We shall also be using the Riemann-Hurwitz formule which in our
context tells us that if there is a smooth epimorphism from a group of
signature (1.1) to a group of order N whose kernel is a surface group of
genus g then

.
1
29 —2= N(2h 2+§(1 m,-))'
Definition. We say that G is a non-marimal group of auvtomorphisms
in genus g if (i) G acts as a group of autormorphisms of some Riemann
surfece Xg of genus g and (i) If G ects as a group of aultomorphisms
of a Riemann surface X, of genus g then [AuiXy| > |G|.

Now let G be a non-maximal group in genus g, and X, be a surface of
genus g on which G acts. If (I, H) is the universal covering transforma-
tion group of (G, X;) then every Fuchsian group with the same signature
as I' is non-maximal and hence must appear in the list of such groups
appearing in [S1], where all pairs of signatures o, ¢’ are listed with the
property that a group I' of signature o is always properly contained in
a group I' of signature ¢’. In this paper we are only interested in the
case when G ¥ C, and moreover when we have a smooth epimorphism
6 : ' — €, we require it to extend to a smooth epimorphism ¢’ : I' — G’
where G' contains Cy, with index [IV : T'|. This places further restrictions
on I' and also sometimes on the epimorphism 8. Such restrictions were
found by Bujalance and Conder in [BC] and are presented below. To
describe their Theorem we will denote the signature (0;my,...,m,) by
(m1,...,my); we shall write 8(z;) = z; and let v be the generator of C,.

Theorem 1. (Bujalance and Conder[BC]). Suppose that G2 C,,
acts as o non-mazrimel group of automorphisms of a Riemann surface
X, of genus g and suppose that the universal covering transformation
group of (G, Xg) is (I',H). Then one of the following must hold;
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(a) T has signature (n,n,d), (n > 3), n+d > 7, d dividesn and either
z1 = zg or Cp, has an automorphism of order 2 that interchanges
z1 and 29.

(b) T' has signature (n,n,n) and Cp has an automorphism of order 3
permuting z1, zg, 23 in a 3-cycle.

(¢) T has signature (3,4,12) and {21, z2, z3} = {v4, v, v} or= {vt, 073,07
(d) T has signature (m,m,n,n) where m +n > 5 and m divides n.
(e) T has signature (1;¢,t) where t > 2 and t divides n.

(f) T has signature (2;—).

Computation of Dg(g). The distinction between Do(g) and Du(g)
corresponds precisely to whether the universal covering transformation
groups I' in the above theorem are triangle groups or not. This is be-
cause the dimension of the Teichmiiller space of a non-triangle group is
positive and hence, for example, there are an uncountanble infinity of
groups of signature (1;£,t). If we consider a smooth epimorphism from
any such group onto Cp, (where ¢|n) then each kernel will be a surface
group corresponding to some Riemann surface with a non-maximal Cy,
action. On the other hand there is a unique conjugacy class of groups
of signature (I, m,n) in PSL(2, R) and there can only be finitely many
epimorphisms of this group onto a triangle group. Hence in order to
compute Do(g) we only need consider cases (a),(b),(c), above.

(a) We let n = dm and suppose m > 1, (otherwise we are in case
(b)). As we want (dm,dm,d) to be a Harvey signature we require m
to be even whenever d is even. The triangle group I' has presentation
(a:l,zg,mgl:r‘lim = zgm = .’tg = zizoz3 = 1). We shall suppose that
8 : T — Cym is the smooth epimorphism and that 6(z;) = v, 8(zg) =
v*,0(za) = v *"1. Now as v* has order dm we have (k,dm) = 1. As
v*+1 has order d, k + 1 = um where (u,d} = 1. By Theorem 1, for Cgr,
to act non-maximally we require that there is an automorphism of order
2 mapping v to v*. This implies that k2_E 1 moddm, or (um — 1)? =
1mod dm which is equivalent to the congruence -

um = 2modd.
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We are interested to find when Cy,, is a non-mazimal group in genus g.
If this holds then for ail smooth epimorphisms @ : ' — Cgyy, there is an
automorphism of order 2 that interchanges the two generators » and v*
of order dm. This leads us to consider the following number-theoretic
question:

Find all integers d > 1 with the property that there exists m > 1 such
that for all units u mod d,

m is even whenever d is even and (um — 1,d) = 1

implies that um = 2modd. (1)

(The condition m is even whenever d is even or equivalently
(dm,dm,d) is a Harvey signature means there is a smooth epi-
morphism from (dm,dm,d) onto Cgay, and so there is a unit u mod d
with (um — 1,d) = 1). Once we have found these values of d we search
for the corresponding values of m. Given such a pair (d, m) we then
have a cyclic group Cgm with the property that for all epimorphisms
0 : I' = Cgpm, there is an automorphism of order two that interchanges
the two generators of order dm so that by part (a) of Theorem 1, this
cyclic group acts as a non-maximal group on some Riemann surface of
genus g where by the Riemann-Hurwitz formula, g = m(d — 1)/2. Con-
versely, if Cym is non-maximal group of some Riemann surface of genus
g = m(d — 1}/2 and arises from a (dm,dm,d) triangle group (where
m > 1) then (d,m) obey (1).

Proposition 1. The only integers d that obey (1) above are d =
2,3,4,6,12.

Proof. We start by finding the prime powers that obey (1). Assume
first that d = p® where p is an odd prime. Let u = 1; then

{m — 1,p%) = limplies that m = 2mod p®.
Thus m £ kpfP+ 1, (1 <k <p,1 <8 < «) implies that m = 2mod p°.

Therefore m = 2modp® or m = kp® + 1. (1<k<p1l<PB<a) We
want to show that the second possibility cannot occur. Suppose that
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m=kpP + 1L (1 <k <p1<P<a)andlet u=2 (aunit mod p* as p
is odd). Then (2m — 1,p®) = 1 implies that 2m = 2 mod p* and hence

(2kp® + 1,p%) = 1implies thatm = 1modp®

so putting m = kpP+1,(1 <k < p,1 < B8 < a)we get p*lkpP,
a contradiction. Thus m = 2modp®, and mnow the statement
(2m — 1,p®) = limplies that m = 1 mod p*, becomes (3, p®) = 1 implies
that 2 = lmodp™ which is false unless p = 3. If & > 1 then the statement
(m — 1,3%) = 1 implies that m = 2mod3® is false by letting m = 5 so
that the only odd prime power for which (1) can be true’is p = 3, and
we easily verify that (1) is true for p=3.

We now consider the case p = 2. We then have to determine the values
of a such that (um — 1,2%) = 1 implies that um = 2mod2*. The units
u are now all the odd numbers so (um — 1,2%) = 1 if and only if m is
even, (which also follows from the Harvey conditions). Thus we have to
determine when m even implies m = 2mod2®. This fails for a > 2 by
taking m = 4. Thus @ = 1 or 2 and it is easily seen that d = 2,4 do
obey (1). »

We now observe that if d and e are two integers obeying (1) with (d,e) =
1 then de also obeys (1), so that the integers 2,3,4,6,12 all obey (1). Also
if d obeys (1) and p* is a prime power divisor of d then p® obeys (1) so
that the only integers obeying (1) are 2,3,4,6,12.

Having found the values of d it is easy to find the corresponding
m. (These values must be even). We illustrate this for d = 12. The
units are u = 1,5,7,11. If m = 2 then (22 —1,12) = 1 gives u = 1
or 7 and in both cases um = 2mod12, so d = 12,m = 2 obeys (1).
However, d=12, m=4, fails as letting u = 5, we have (4u — 1,12) = 1
but 4u £ 2mod12. Similarly m = 5,8 fail but m = 10,d = 12 also
obeys (1), as (10u — 1,12) = 1 implies that » = 5 or 11 and in both
cases um = 2mod 12. In this way we find all such pairs (d,m) to be as
follows:

1. (2,m), m even,
2. 3,m), m=1or2mod3,

3. (4,m), m = 2mod4,
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4. (6,m), m =2 or 4mod6,
5. (12,m), m =2 or 10mod 12.

We sum up in

Proposition 2.The pair (d,m) obeys (1) if and only ifd = 2, 3,4, 6,12
and m = +2modd.

Proposition 3. The orders of the non-mazimal cylic groups of a surface
of genus g that arise as smooth images of the triangle groups of signature
{dm,dm,d) (m > 1) are of all of the form 4g,3¢,8g/3,12¢/5,24g/11.

Proof. The orders of the groups are dm and by the Riemann-Hurwitz
formula ¢ = m{d — 1)/2. Thus dm = 2dg/(d — 1) and letting d =
2,3,4,6,12 gives the result.

Proposition 3 does not always imply that a smooth cyclic image of
(dm,dm,d) is necessarily non-maximal. It is possible that the same
cyclic group is a smooth image of a different triangie group giving a
maximal action in the same genus. For example there is a non-maximal
C12 action in genus 4 coming from a smooth epimorphism (3, 12,12} —
C12. However there is also a smooth epimorphism (4, 6,12) — Ci2, and
as the measure of the fundamental region of (3,12, 12) is the same as
that of (4, 6, 12) it follows from Theorem 1 that there is a maximal action
action of Ci2 in genus 4. It turns out that there are not many of these
exceptional cases though to find them all does involve a fair amount of
elementary calculations. We indicate the main steps in this calculation.
We want to find all signatures (ki, k2, k3) with the following properties.

1. (k1, k2, k3) is a Harvey signature with {kq, ko, k3] = dm where d =
2,3,4,6,12.

2. The fundamental regions of (ki, k2, k3) and {(dm,dm,d) have the
same measure, and thus

1 1 1 1 2
l1-—— — = — =1 — 1.
ky ko ks d dm ( 4)

We suppose that k) < ks < k3 and split the calcylation into two cases.
Firstly, when k3 = dm secondly k3 < dm. In the first case we have

1 1 1 1

}c: E:d dm
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and thus we see that

d<k<2d (1.5)

and as [ky, ko] = dm we get

ki1k
k1 + kg — (k1 k2) = LdZ (1.6)

where (k1,k2) denotes the greatest common divisor. From (1.6) it is
not difficult to find the exceptional signatures. Ior example, when
d = 2, (1.5) gives k; = 3 and (1.6) implies that k2 == 4 and then
dm = [3,4] = 12 and thus (3,4, 12) also maps smoothly onto Cy2. The
other cases require a bit more calculation but it is not difficult. Writing
(k1, k2, k3) ~ (d,dm,dm) to denote the statement that there is also a
smooth epimorphism from (ki, k2, k3) — Cam we find that

1.
2.

10.
11.
12.
13.
14.

(2,12,12) ~ (3,4,12),
(3,12,12) ~ (4,6,12),
(3,30, 30) ~ (5, 6,30),
(4,24,24) ~ (6,8,24),
(4, 56,56) ~ (7,8,56),

. (6,24,24) ~ (8,12,24),

(6, 60,60) ~ (10, 12, 60),
(6,132,132) ~ (11, 12,132),
(6, 168, 168) ~ (8,21, 168),
(12, 120, 120) ~ (15, 40, 120),
(12, 840, 840) ~ (15, 56, 840)
(12,120, 120) ~ (20,24, 120)
(12,168, 168) ~ (21,24, 168)
(12,264, 264) ~ (22,24, 264)
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15. (12,552, 552) ~ (23,24, 552)

We now consider the second case where k3 < dm, so that k1 < ko <
k3 < dm. We still have k) > d, for otherwise by (1.4) we have k3 > dm
contradicting (k1, k2, k3) being a Harvey signature. Also by (1.4) we
have k1 < 3d. The following result is useful in eliminating many cases.

Lemma. If k1 < kg < k3 and if (ky, ko, k3) is a Harvey signature with
[k1, ko, k3] = N, then if ky = p" (where p is prime) then ks = N.

Proof. We have [p", k;}(p", ki) = p"ki so that k; = N(p", k;)/p" = N/p%,
for i = 2,3. Thus N = [kq, k3] = [N/p®2, N/pj|, and so s3 = 0.

It follows that in the second case we can assume that kj is not a
prime power. As k; < 3d no possibilities occur when d = 2 and the
only possibility if d = 3 is k; = 6. If (3,3m,3m) ~ (6,%1,%k2) then
[6, k:](6, k;) = 6k;, so that 3m(6, ki) = 6k; and thus k; == m/2 or m, or
3m /2. The only possibility to make (6, k1, k2} a Harvey signature is that
k1 = m , ka = 3m /2 and then (1.4) gives m = 6 and then (6, k1, k2) is
not a Harvey signature. Now suppose that (4,4m,4m) ~ (k1, ke, k3). As
k1 is not a prime power and less than 12, k; == 6 or 10. The same argu-
ment as above shows that k3 = 4m /3 and k3 = 2m and then (1.4) gives
m — 9 This is impossible by proposition 2. Similarly we rule out k; = 10.
When we consider the possibilities that (6, 6m, 6m) ~ (ki, ke, ka) we see,
as above that k1 = 6, 10, 12, 14, 15. k; = 6 or 10 again lead to contradic-
tions. If (6,6m,6m) ~ (12, ko, k3), then [12, k;](12, k;) = 12k;, so that
ki = (12,k)m /2. Thus k; = m/2,m,3m/2,2m,3m. As [kg, k3] = 6m,
the possibilities are (i)ko = 2m, k3 = 3m, (ii}jka = Im/2,ks = 2m.
Using (1.4), (i) implies that m = 6 which contradicts m = +2mod 6
in proposition 2. In (ii) we find that m = 10 which gives the solu-
tion (12,15,20) ~ (6, 60,60). Similarly, for d = 12 we obtain a unique
solution (24, 30,40} ~ (12, 60, 60).

Thus we can add the final two exceptional signatures as
16. (6,60,60) ~ (12, 15,20),
17. (12,120, 120) ~ (24, 30, 40).

Theorem 2.
For all g; 49 € Dolg),



Non-maximal cyclic group actions on compact. .. 433

for all ¢ = %1 mod 3,( g # 2,4, 10); 3¢ € Do(g),

for all g =3 mod 6,( g # 3,9,21); 8¢/3 € Dy(g),

for all g = £5 mod 15, (¢ # 5, 10,25, 55); 12¢/5 € Dy(g),

for all g = +11 mod 66,(g # 11,55, 77,121,253, 385); 24¢/11 €

Dolg)-

Proof. The Theorem mostly follows directly from Proposition 2 and
the above lists of exceptional signatures. For example d = 12 gives
the orders 24g/11, with these occurring precisely when 24¢g/11 is of
the form 12m with m = +2 mod 12. This gives ¢ = %11 mod 66.
The exceptional signatures are those listed as 10,11,12,13,14,15, and 17
above which give g # 55,77, 121,253, 385. There is one other exception,
namely g=11. This oecurs because we will show later in Theorem 4 that
24 € Dy(11). Thus 24 ¢ Dy(11) but we still have 24 € D(11). The
same reason gives the exceptions 2,3,5 in the second, third and fourth
cases. Thus 6 € D(2), 8 € D(3), 12 € D(5). In the case when d = 2,
we have (2,12,12) ~ (3,4, 12) and by Theorem 1, (3,4, 12) also gives a
non-maximal action of Cyg in genus 3, which shows 4g € Dy(g), for every
g. These values in Dy{g) arise out of case (a) of Theorem 1; however
note that case {(c) (g = 3,n = 12) has already been included in case (a).

We now consider case (b) of Theorem 1 and find the non-maximal
groups arising from images of (n,n,n} triangle groups. We note that
in order for (n,n,n) to be a Harvey signature n must be odd and
as g = (n — 1)/2, we can also assume that n > 3. As before we
suppose that the presentation of the triangle group I' = (n,n,n} is
(w1, x2, T3jzh = z§ = z§ = zi1xez3 = 1) and that we have an epimor-
phism 6 : I' —» C, where C, = (v|v"™ = 1). We may suppose that
8(z1) = v, 8(z2) = vF, 8(z3) = v™*"1. Thus we have the generating
triple (v, v*,v*71) of C, and in order for Cyp, to act non-maximally, we
need, for all such triples, either an automorphism of order two inter-
changing two generators of the triple or an automorphism of order three
that cyclically permutes them. In order for there to be an automor-
phism of order two that interchanges two of the generators we need an
automorphism a : Cp — Cp, with either a(v)) = v¥, a{v) = v7% 1 or
a(v*) = v=*"1. That is we need k*=1mod n, or (k+1)>=1 mod n
or k2 = (k + 1)? mod n. For there to be an automorphism of order 3
we need k2 +k + 1 = 0 mod n. If n is a prime then we see that there
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are at most 7 values of k that could satisfy one of these congruences. If
n is composite then the total number of solutions is no more that 7#(™
where v(n) is the number of prime factors of n. By considering all possi-
ble generating triples it is easily seen that for n = 5,7,9,15,21. such an
automorphism must exist. For example when n = 21 these triples (with
8(z1) = v) are (v,v,v?), (v,v%,9'%), (v, v1%,v19), (v, 0%, v?), (v, 419, v)
and in the 1st, 3rd and 5th cases there is an automorphism of order
two interchanging the generators and in the 2nd and 4th cases there is
an automorphism of order three permuting the 3 generators. On the
other hand when n = 11, we have the generating triple (v, v2,v®) which
leads to a maximal action. We now show, with the exceptions noted
above, that this will always be the case. :

Theorem 3. An epimorphism 6 : I' — C,, leads to a non-mazimal group
action if and only if n =5,7,9,15,21, corresponding to g = 2,3,4,7,10
respectively.

Proof. We have already noted that the action is necessarily non-
maximal if n = 5,7,9,15,21. To prove the converse we need only show

that in all other cases the number of generating triples is greater than
the number of exceptional values of ¥ where an automorphism necessar-
ily exists. We have seen that the number of such % is bounded above by
7¥"), The number of values of k giving a generating triple (v, v*,v™%~1)
is the number of pairs of consecutive units (k, k£ + 1} mod n. By exercise
46 page 74, section 2.3 of [NZM], this number is

2
o(n) =n]J1- ;)-

" pln

(We would like to thank Robert Syddall for pointing out this exercise
to us.) Thus we have to compare two multiplicative .functions 7¥(")
and % (n) and it is enough to do this for prime powers, p’. Thus we
need all prime powers for which ¥{pt) = pt — 2p(*) < 7 and this is
the case only for n = 3,5,7,9. Thus all the exceptions have these as
prime power factors and it is then not difficult to see that except for
n=3,57,9,15,21 the number of generating triples is greater than the
number of exceptions.

Using Theorems 2 and 3 we can find the sets Dy(g) for each g > 2
precisely. See the final section for examples.
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3. Computation of Dy(g). As we have already noted at the begin-
ning of section 2 in order to compute the integers in Doo(g) we need
to consider cases (d),(e),(f} of Theorem 1. For example if N = [m, =],
the least common multiple of m and n, then there is a smooth epimor-
phism 8 : ' — Cy. This leads to a non-maximal action of Cy on a
surface of genus g = N(1 — & - 1) + 1. To show that N € Duo(g)
we need to show that there does not exist another Fuchsian group IV,
having the same measure of fundamental region as I', whose signature
does not appear in Theorem 1 and for which there is a smooth epimor-
phism 8’ : [ — Cx. As an example, let I have signature (4, 4,4, 4) and
I have signature (2,2,2,4,4). Both are Harvey signatures and both
groups have the same measure of fundamental region. Both groups map
smoothly under epimorphisms 6,6’ onto Cy4 and have as kernel a surface
group of genus 3. The kernel of 8 gives a Riemann surface with a non-
maximal Cy4 action. However by choosing a maximal (2,2,2,4,4) group,
the kernel of ¢ gives a Riemann surface with a maximal Cy action and
50 4 & Doo(3).

Unlike the case of Do(g) it is not easy to precisely compute the
integers in Doo(g). However we will prove

Theorem 4. If N € Duolg) then

(i) g— 1 < N < 2g+2. Moreover, the lower bound is attained if and
only if (¢ — 1,6) = 1 and g > 6 while the upper bound is attained
if and only if g = 2,3,5,11.

(ii) If in addition N # 2g+2 then N < 2g, and this bound is attained
if g # 3,6, 15.

Proof.(i) The lower bound follows easily from the Riemann-Hurwitz
formula. If the measure of a fundamental region of a group I is 2mp(T)
then for the groups of signature (d),(e),(f) in Theorem 1 we have u(I') <
2, wheras for a surface group A, of genus g, u(Ag) = 2¢g — 2, so that
a non-maximal cyclic group acting on a surface of genus g has order
p(Ag)/p(T) > (29—2)/2 = g— 1. To see when this bound is attained we
first note that if 2 divides g — 1, then g — 1 ¢ Do (g). For we can get a
maximal Cy_; action in genus g via a smooth epimorphism from a group
of signature (1;2,2,2,2) onto Cg_;. If 3 divides g—1 then g—1 ¢ Doolg)-
For we can get a maximal Cy-1 in genus g via a smooth epimorphism
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from a group with signature (1;3,3,3) onto Cy_;. If g = 6 then we get
a maximal action via a smooth epimorphism from a group of signature
(5,5,5,5,5) onto Cs. Now suppose that (g — 1,6) = 1 and g > 6. Then
a Cy.1 action in genus g must come from a smooth epimorphism of a
group with signature (h;m,,...,m,) onto Cy_). The Riemann-Hurwitz
formula gives

k
2h—2+z(1ui)=2,
=1 i

and as (m;,6) = 1 we have m; > 5 and an arithmetic calculation gives
h = 2,r = 0. By Theorem 1 we must have a non-maximal action.

For the upper bound we note that we can get a non-maximal Cay42
action in genus g via a smooth epimorphism from (2,2,2g + 2,29 + 2)
onto Cogya. We now consider other signatures giving groups of the same
measure which could map smoothly onto Cggy9. By Riemann-Hurwitz
such a group I' would have pu(I') = %—;—g < 1. The non-triangle groups
I' with Harvey  signatues and u(T') < 1 are easily found
and in fact are enumerated in [S2]. Their signatures are
(3,3,3,3), (3,3,4,4), (3,3,5,5), (2,3,3,6), (2,3,4,12), (2,3,5,30),
(2,2, m,m) and these give Cy actions on genus g surfaces where (g, N) =
(2,3),(6,12), (8,15),(3,6), (6,12), (15,30) and in the final case (g, m)
if m is even and (m — 1,2m) if m is odd. Only in the final case do
we get a Cgy12 action in genus g. However, there is also a smooth
epimorphism from a group of signature (g -+ 1,29 +2,2g+2) onto Cayyo
whose kernel has genus g. By Proposition 2 this only gives a maximal
action if g = 2,3,5, 11, Thus if g # 2,3,5, 11, Cg412 is a non-maximal
group of automorphisms in genus g. For (ii) we note that by the above
list of pairs (g, N) that we cannot have N — 25 + 1. We get a non-
maximal action of Cyy in genus g via a smooth epimorphism from a
group .of signature (2,2,2g,2g) to Co4. The above list of pairs (g, N)
shows that the only case where we get a maximal action is when T
has signature (2,3, 3,6), (2,3,4,12), (2,3, 5,30) which gives g = 3,6,15
respectively.

Theorem 4 only partially tells us what the elements of Dy (g) are.
‘This is unlike the case of Dy(g) where Theorems 2 and 3 give us very
precise information. What we find is that if N is close to the bounds
g — 1 and 2g of Theorem 4 then using the arithmetic ideas of the above
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proof we can find ount precisely when N belongs to Do(g). Otherwise a
great deal of work may be necessary. As an illustration we prove

Theorem 5.
{i) 2g — 1 € Do(g) if and only if g =2 and g = 8.
(i) 29 — 2 € Doo(g) for all g # 2,3,4,5,6,7,10,11,13, 16,22
(iii) 29 — 3 € Doo(g) if and only if g = 4,6,12.
(iv) g € Doolg) if and only if (6,9) = 1.
(v) g+ 1€Dxlg) ifand only if (g +1,6) =1 or g =2.
(v3) 942 ¢ Deolg) if g > 2.

Proof. The proofs are just arithmetic and simple refinements of the
proofs in Theorem 4. We just indicate the main points.

(i} The cases g = 2 and g = 8 come from smooth images of (3,3,3,3)
and (3,3,5,5).

(ii) The reason here is that we can always get a maximal Cog_g action
in genus g by Theorem 1 by mapping a group of signature (1;2,2) onto
Cgy—2. However we can get non-maximal actions for the exceptional
genera listed above. For example, a Harvey signature (m1, mg, m3, my4)

4
with at least 3 distinct periods and 3 ;—ll— = 1 will give a non-maximal
=1

Cog—2 action. These give all the above cases except for ¢ = 2; for
example g = 22 comes from mapping (2,3,7,42) onto Cs3. We get
g = 2 as an exception from the group with signature (2,2,2,2,2,2) and
g =3 from (2,2,2,4,4).

(iii) These come from smooth images of (5, 5, 5, 5}, (3,3,9,9), (3,3,7.7).
(iv),{v) The proofs here are similar to the proof of Theorem 4(i).

(vi) If g + 2 € Dyo(g) then by Theorem 1, there must be a smooth epi-
morphism from a group either with signature (1,n, n) or with signature
(m,m,n,n) onto Cyyio whose kernels are surface groups of genus g. By
the Riemann-Hurwitz formula we obtain, in the first case, that

3n=1(9+2)
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and hence (g + 2} is divisible by 3. However, we can now get a maximal
action of Cogyo in genus g via a smooth epimorphism from a group
with signature (9':;'—2, g+2,942,9+2) to Cogy2 a contradiction so that
g +2 & Dyolg). In the second case Riemann-Hurwitz gives

g+2 g+2 o
me n

By Harvey's Theorem, both m and n are divisors of ¢ + 2. Hence one
of the terms in the above sum is 2 and the other is 1. We can suppose
that 912 = 2 and thus g is even. If g is divisible by 4, then we get
a mammal actlon of C’g+2 via a smooth epimorphism from a group of
signature (2,2, % 2 V8=, 2+2) onto Cg+2, if g >2and g =2 mod 4
. then we get a maximal action of Cg2 via a smooth epimorphism from
(2, 2,412 ) ,g + 2,9 + 2) onto Cyy2. hence for all ¢ > 2 we can get a
maximal action of Cy.9 in genus g.

Examples. Finally we give some examples of the sets D(g) that can be
easily found. Our results should enable us to write down Dg(g) exactly
and also the values of N in Dy (g) for N close to g or 2g. Thus we
should be able to compute D(g) for small g, but may need extra work
to compute it for larger g. We shall write D(g) = (....]....) where the
integers before the bar are those that lie in D, (g) and the integers after
the bar are those that lie in Dg(g).

D(2) = (3,4,6]5,8),
D(3) = (6,87,12),
D(4) = (5,8/9, 16),
D(5) = (5,10]12,15,20),
D(6) = (7,9,12|16,24),
D(7) = (7,14]21,28),
)

D(8) = (7,14,15, 16|24, 32),

Comments. If N € D(g) and N > 29 + 1 then by Theorem 4, either
N =2g+2 or N € Dg(g), so all these values are determined by Theorems
2,3 and 4. If N € D(g) and N < 2g then we have to use Theorem 4 and
5 or, in the cases where these don't apply, (i.e. when g+3 < N < 2¢g—4)
to search for the appropriate smooth epimorphisms in each case or prove
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none can exist. In the above lists this only applies to ¢ = 7,N = 10,
and g = 8, N = 12. Here we use smooth epimorphisms from (3,9,9,9)
and (4,4,4,12) to show that 10 ¢ D(7), and 12 ¢ D(8).

The first author would like to thank the staff of the Departamento
de Mateméticas Fundamentales at UNED (Madrid) for their hospitality.
The ideas of this paper were first worked out during a visit there in the
summer of 1996.
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